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ABSTRACT
Modern approaches to speaker recognition (verification) operate in a
space of “supervectors” created via concatenation of the mean vec-
tors of a Gaussian mixture model (GMM) adapted from a universal
background model (UBM). In this space, a number of approaches to
model inter-class separability and nuisance attribute variability have
been proposed. We develop a method for modeling the variability as-
sociated with each class (speaker) by using partial-least-squares – a
latent variable modeling technique, which isolates the most informa-
tive subspace for each speaker. The method is tested on NIST SRE
2008 data and provides promising results. The method is shown
to be noise-robust and to be able to efficiently learn the subspace
corresponding to a speaker on training data consisting of multiple
utterances.

Index Terms— Partial least squares, speaker recognition, latent
vector, GMM supervectors

1. INTRODUCTION
Speaker recognition [1] deals with the task of verifying a speaker’s
claimed identity from a sample utterance based on a number of train-
ing utterances for which the speaker is known. Apart from carrying
the speaker-specific characteristics, the speech data also encapsu-
lates phonemic content, channel variability, and session variability.
It is also often subject to noise and reverberation, making the prob-
lem of speaker recognition challenging. Over the past decade, the
field has made substantial progress in addressing these issues. Vari-
ability in the phonemic content is removed by posing the problem
of recognition over a collection of data spanning several utterances.
The commonly used feature space is the set of mel-cepstral coeffi-
cients along with their deltas and double-deltas. More robust fea-
ture spaces have been considered but are not yet adopted as adding
them to existing architectures might lead to excessive feature space
dimensionality and therefore high computational load.

State-of-the-art speaker recognition systems use a Gaussian
mixture model (GMM) to represent each speaker. To account for
limited training data available, the problem is cast into a framework
in which differences from a universal background model (UBM)
are used to adapt speaker-specific GMMs [3]. More recently, the
problem has been transformed into a task of learning the between-
class separability in a supervector setting [2]. Substantial progress
has also been made in rejecting channel/session variability in the
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supervector setting via joint factor analysis (JFA) technique [4] [5],
nuisance attribute projection (NAP) [6] and i-vectors [7].

The objective in the supervector space is to discriminate between
a speaker and imposters by accounting for the speaker variability
while ignoring nuisance information. Commonly, only a few (of-
ten one) speech samples from a very large speech database belong
to the target speaker, which necessitates use of the method capable
of learning from a few samples in a very high dimensional space.
Different approaches such as GMM likelihood ratios [3] and support
vector machines [6] have been explored previously.

Several learning techniques have been used to tackle similar sce-
narios in other domains. One approach that was originally developed
in chemometrics is partial least squares [8] and its kernelized ver-
sion [9]. Partial least squares (PLS) [8] techniques are a wide class
of methods for modeling relations between sets of observed vari-
ables by means of latent variables. These methods include regres-
sion, classification, and dimensionality reduction. The underlying
assumption in PLS is that the observed data is generated by a sys-
tem/process that is driven by a small number of latent variables.

PLS is often used as a dimensionality reduction technique and
therefore draws comparisons with principal component analysis
(PCA) and linear discriminant analysis (LDA). PCA is an unsuper-
vised dimensionality reduction algorithm, which results in a single
projection irrespective of the task. LDA is a supervised dimen-
sionality reduction technique that results in different subspaces for
different tasks. PLS is similar to LDA in this sense. But unlike
LDA, PLS is not limited by a projection space dimension of c − 1
(where c is the number of classes). A detailed comparison of PLS,
PCA, and LDA is presented in [9]. PLS based techniques have been
very successful in the fields of chemometrics and bioinformatics.
Recently, PLS has been adapted to image processing and computer
vision problems (such as human detection and face recognition) [10]
and was shown to greatly improve the performance, especially for
2-class problems.

Motivated by this, we explore here a partial least squares based
framework for speaker modeling and recognition in the supervector
space. Extension to handling nuisance parameters is a subject of
future work. This paper is organized as follows. In Section 2, we
introduce the PLS framework and its adaptation to speaker recogni-
tion. We describe our experiments and discuss results in Section 3
and conclude the paper with future directions in Section 4.

2. PARTIAL LEAST SQUARES
Denote a d-dimensional supervector by x and the corresponding
speaker label by y. Essentially, x is the feature (super)vector (in-
put variable) and y is the speaker identity (output variable that has
to be learned). Assume that the total number of speakers is N and
denote the N × d matrix of supervectors by X and the N × 1 vec-
tor of labels (1 for speaker and −1 for imposter) by Y . Given the
variable pairs {xi, yi}, i = 1, . . . , N (x ∈ Rd, y ∈ R), PLS aims



(a) PLS based subspaces (b) PLS based speaker recognition
Fig. 1. Schematic of the proposed Partial Least Squares (PLS) technique for speaker recognition.

at modeling the relationship between x and y using projection into
latent spaces. While a detailed analysis of PLS can be found in [8],
we provide a brief overview here. PLS decomposes X and Y as

X = TPT + E, (1)
Y = UQT + F, (2)

where T and U (N × p, p < d) are the latent vectors, P (d× p) and
Q (1× p) are the loading vectors, and E (N × d) and F (N × 1) are
residual matrices. PLS is usually solved via the nonlinear iterative
partial least squares (NIPALS) algorithm [8] that constructs a set of
weight vectors W = {w1, w2, . . . , wp} such that

max[cov(ti, ui)]
2 = max

|wi|=1
[cov(Xwi, Y )]2, (3)

where ti and ui are the ith columns of T and U respectively and
cov(ti, ui) indicates the sample covariance between latent vectors
ti and ui. Maximizing the covariance in the latent vector space is
equivalent to maximizing discrimination in the same space; in other
words, for a particular speaker, PLS learns a subspace in which the
speaker latent vectors tS are well separated from the imposter latent
vector tI . This is illustrated in Fig. 1(a). Thus, PLS learns a unique
latent space for each speaker. After extraction of latent vectors ti
and ui, the matrices X and Y are deflated by subtracting their rank-
1 approximation based on ti and ui:

X ← X − tip
T
i ; Y ← Y − uiq

T
i . (4)

This step removes any information captured by ti and ui from X and
Y . The process is repeated till a sufficient number of latent vectors
is obtained. This number is determined via standard cross-validation
techniques [10].

It has been shown [8] that the NIPALS algorithm is equivalent
to iteratively finding the dominant eigenvectors of the problem

[XT yyTX]wi = λw. (5)

The weight matrix W can be used for dimensionality reduction, and
the resulting projection can be used with any standard classifier to
model a target speaker. However, it was observed that the perfor-
mance was not as good as the alternative presented below. We in-
stead use PLS in a regression framework that implicitly utilizes the
PLS weights W obtained from the NIPALS algorithm.

PLS Regression: Substituting the w from Eq. (3) in Eq. (1), we get

XW = TPTW + E ⇒ T = XW (PTW )−1. (6)

Now, U can be written in terms of T [8] as U = TD+H , where D
is a diagonal matrix and H is the residue. Eq. (2) now becomes

Y = TDQT +HQT + F = XW (PTW )−1DQT + F̄ , (7)

and we get the PLS regression:

Y = XB +G; B = W (PTW )−1DQT , (8)

where B is the set of PLS regression coefficients. This regression
framework directly provides the way to compute the matching score
for seamless speaker discrimination, eliminating the need for a sep-
arate classifier. It also utilizes the latent structure learnt by NIPALS
algorithm better – the regression coefficients weight the supervector
centers that discriminate the current speaker against imposters more
than other centers. Hence, the regression coefficients are unique to
each speaker. Note that, although PLS is used widely a dimension-
ality reduction technique, we use a PLS-based regression technique,
and the dimensionality reduction is not used explicitly for speaker
modeling.

In our work here, we first train the GMM UBM using a large
amount of data. Then, we create a specific GMM for each speaker in
the database by adapting the UBM using the speaker (training) utter-
ances. Then, the speaker supervector [2] is created by concatenating
the means of the speaker GMM. Note that the whole training utter-
ance is represented by one point in the supervector space. We then
learn the PLS regression model using a one-vs-all scheme. Finally,
we perform the scoring and normalize output scores in a T-norm
sense [1] using a large number of non-target speakers (imposters).
These steps are summarized in Fig. 1(b).

The beneficial properties of the proposed PLS framework for
speaker recognition can be summarized as follows:

1. It is a discriminative technique (like SVM); hence, the perfor-
mance should improve as the amount of speaker training data
increases.

2. SVM learns a separating hyperplane between speaker and im-
poster supervectors, whereas PLS learns discriminative pro-
jection that maximizes the covariance of supervectors and
speaker labels in the projected space. PLS regression weights
the supervectors based on these projections to score each ut-
terance.
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Fig. 2. Performance of PLS against SVM and GMM baseline systems on the NIST 2008 core set.

3. The computational cost of PLS is O(Nd) against O(N2d) for
SVM, where d is the supervector dimension and N is the
number of supervectors.

4. The PLS technique used here is linear. Non-linear PLS can
potentially be done by using the kernel-trick [9]. However,
this direction was not pursued here.

Accelerating PLS: Despite the success of PLS, its O(Nd) compu-
tational cost does not scale well for large sample sizes and large
number of features. We have already addressed this scalability issue
via use of graphical processors [11] and achieved ∼ 30X speedups
against standard CPU-based implementations.

3. EXPERIMENTS

We performed experimental evaluation of the proposed method on
the core (short2-short3) test set and 8conv-short3 test set in the NIST
SRE 20081 evaluation dataset. The dataset is grouped into 8 trial
conditions: C1: interview speech (IS) both for training and testing
(BTT); C2: IS, using the same microphone for training and testing;
C3: IS, using different microphones for training and testing; C4: IS
for training, telephone speech (TS) for testing; C5: TS for training,
noninterview microphone speech for testing; C6: TS BTT; C7: En-
glish TS BTT; and C8: English TS BTT by native English speakers.
For all experiments, we used 19 MFCC features along with their
deltas.

We compared performance of the PLS-based approach against
the GMM/UBM based system [3] and GMM-supervector-kernel
based SVM [6]. The libSVM package was used for our SVM runs.
The GMM/UBM code was developed in house and validated against
results reported in NIST SRE 2006. Note that since nuisance at-
tributes are not being modeled, the GMM/UBM EER is relatively
high compared to SRE 2008 results (where nuisance corrections
based on JFA were applied).
Supervector dimensions: It was observed that 4096-center GMM
gave the best performance with core set, while 2048-center model
was best for 8conv-short3 set. With SVM, these numbers are 1024
and 512, respectively; and with PLS, 512 and 256, respectively.
While a larger number of GMM centers leads to severe over-fitting to
the background data (which helps GMM capture background char-
acteristics better but does not provide room for supervector based

1www.itl.nist.gov/iad/mig/tests/sre/2008/

GMM SVM PLS PLS PLS
2-splits 4-splits

C1 13.84 19.73 18.43 18.02 17.13
C2 6.15 12.73 3.38 3.38 3.64
C3 13.54 19.49 18.39 18.08 17.13
C4 21.31 23.63 22.48 22.79 22.79
C5 19.03 24.34 13.90 13.64 13.90
C6 13.48 18.44 10.13 9.60 9.77
C7 10.69 15.41 6.52 5.51 5.92
C8 10.42 16.34 6.61 5.47 5.98

Table 1. Equal-error-rates obtained with PLS (with/without data
splitting), SVM, and GMM across various condition for the NIST
2008 core set. Note: there is no nuisance attribute compensation.

discrimination), very few centers lead to severe under-fitting and
the resulting GMM models do not generalize well to test conditions.
This is the reason PLS works best with moderate number of GMM
centers, which also reduces the computational load by an order of
magnitude.
Single training utterance: In the core set, there is only one training
utterance per speaker. There are 1270 male and 1993 female speak-
ers (3263 total) and 98776 trials. Each trial belongs to one or more
of 8 conditions outlined above. The DET curves for all 8 conditions
are shown in Fig. 2 and the equal error rates are listed in Table 1.

Note that having only one training utterance per speaker does
not provide enough data for discriminative approaches like SVM and
PLS; the GMM/UBM system is likely to perform better in this case.
In spite of that, the PLS framework outperforms GMM/UBM in con-
ditions 2, 5− 8 (5 out of 8) and is comparable for condition 4.

As mentioned, the PLS framework makes use of intra-speaker
variability. Therefore, the performance is expected to improve if
more supervectors belonging to the target speaker are available. Ide-
ally, speaker utterances should be recorded across various nuisance
conditions, which will enable PLS to truly capture speaker-related
information and reject channel-related one. Alternatively, we ex-
plored simple mechanism of splitting the training data to create mul-
tiple supervectors per utterance. Note that this does not guarantee
the availability of training vectors across nuisance conditions. How-
ever, it was observed that the PLS performance indeed improved
significantly with 2-way split of the training data, although there is
no further improvement with 4-way split. The DET curves for these
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Fig. 3. Performance of PLS against SVM and GMM baselines on
8conv-short3 set.

GMM SVM PLS
C5 10.98 10.52 8.63
C6 6.66 5.62 4.30
C7 4.82 3.94 2.41
C8 5.27 3.76 3.02

Table 2. Equal-error-rates obtained with PLS, SVM and GMM
across various condition for the 8conv-short3 set. Note: there is
no nuisance attribute compensation.

cases are also shown in Fig. 2.
Multiple training utterances: The 8conv-short3 set consists of 8
training utterances per speaker. There are 240 male and 395 female
speakers (635 total) and 16570 trials. There are no trials correspond-
ing to conditions C1 through C4, as all training data is telephone
speech.

We compared the performance of PLS-based speaker recogni-
tion against GMM/UBM and SVM baseline systems, and the DET
curves are shown in Fig. 3 with the corresponding equal error rates
in Table 2. It can be seen that PLS outperforms other systems in all
conditions.
Effect of training sample size per speaker: Because the 8conv-
short3 set contains 8 training utterances (and therefore 8 supervec-
tors) per speaker, it also provides a good framework for evaluation
of the recognizer performance dependence on the amount of training
data. We have trained each of our recognition systems with 1, 2, . . . 8
utterances per speaker; the corresponding results are shown in Fig.
4(a). It can be seen that all 3 system show improved performance
with the increase in the number of training speaker supervectors.
However, unlike GMM and SVM, PLS performance does not satu-
rate but instead continues to decrease. This is because PLS relies on
the intra-class variance to determine the projection; therefore, hav-
ing more training data implies better intra-speaker variance estimate
and better performance.
Noise robustness of PLS: To evaluate PLS robustness to noise, we
added Gaussian noise to test samples in the 8conv-short3 set (male
only) and evaluated the performance of all three recognition systems.
The results are shown in Fig. 4(b). It can be seen that additive noise
decreases the performance for all systems, but PLS still outperforms
both SVM and GMM.

4. CONCLUSION

We have applied a PLS latent vector framework to the GMM super-
vectors in speaker recognition and have shown that it outperforms
the baseline GMM/UBM and SVM systems on NIST 2008 SRE
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Fig. 4. EER for PLS, SVM, and GMM/UBM systems in various con-
ditions.

dataset in most conditions. The PLS system we currently have does
not account for nuisance parameters (channel and session variabil-
ity); therefore, our baseline systems also did not include nuisance
parameter elimination for fair comparison. The PLS approach pro-
posed here is currently being extended to address channel/session
variability issues.
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[8] R. Rosipal and N. Krámer (2006). “Overview and recent ad-
vances in partial least squares”, in Subspace, Latent Structure,
and Feature Selection Techniques: Lecture Notes in Computer
Science, pp. 34-51, Springer.

[9] R. Rosipal and L. J. Trejo (2003). “Kernel PLS-SVC for linear
and nonlinear classification”, Proc. ICML 2003, Washington,
DC, pp. 640-647.

[10] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis
(2009). “Human detection using partial least squares analysis”,
Proc. IEEE ICCV 2009, Kyoto, Japan.

[11] B. V. Srinivasan, W. R. Schwartz, R. Duraiswami, and L. S.
Davis (2010). “Partial least squares on graphical processor
for efficient pattern recognition”, CS-TR-4968, Department
of Computer Science, University of Maryland, College Park.
http://hdl.handle.net/1903/10975


