
THE HKCUPU SYSTEM FOR THE NIST 2010 SPEAKER RECOGNITION EVALUATION

Weiwu Jiang1, Man-Wai Mak2, Wei Rao2 and Helen Meng1

1The Chinese University of Hong Kong, Hong Kong SAR, 
2

{wwjiang, hmmeng}@se.cuhk.edu.hk, {enmwmak, 10901332r}@polyu.edu.hk
The Hong Kong Polytechnic University, Hong Kong SAR

ABSTRACT

This paper presents the HKCUPU speaker recognition 
system submitted to NIST 2010 speaker recognition eval-
uation (SRE). The system comprises five subsystems, 
each with different acoustic features, session-variability 
reduction methods, speaker modeling and scoring me-
thods and classifiers. This paper reports the results of in-
dividual and fusion systems for the core test and high-
lights the improvements made by our newly proposed 
JFA-Fishervoice (FSH) subsystem. Results show that FSH 
outperforms JFA when its projection matrix is channel-
dependent (telephone or microphone) and that FSH is 
complementary to other state-of-the-art techniques. It was 
also found that VAD is an important pre-processing step 
for interview speech.

Index Terms— speaker recognition, factor analysis,
Fishervoice, discriminative models, NIST SRE 2010.

1. INTRODUCTION

The NIST 2010 Speaker Recognition Evaluation (SRE) is
part of an ongoing series of evaluations conducted by 
NIST [1]. This year, not only does the evaluation contain 
more speech materials and longer conversations, but also 
it comprises speech collected under different conditions 
(telephone conversations or interviews) and speech pro-
duced by different level of vocal efforts. This makes the 
evaluation this year particular challenging.  

In speaker verification, Gaussian mixture model 
(GMM) [2] based joint factor analysis (JFA) [3] and sup-
port vector machine (SVM) [4][5] have become popular 
methods. More recently, studies [6] have shown that low-
dimensional speaker-dependent feature vectors can be 
obtained from the total factors (also named i-vectors) in 
JFA. The i-vector of a test speaker can be classified by 
SVM or by comparison with the i-vector of the target 
speaker via cosine distance. 

This paper presents the HKCUPU submission to 
NIST 2010 SRE. HKCUPU combines the effort of Chi-
nese University of Hong Kong and The Hong Kong Poly-
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technic University. The paper describes the five subsys-
tems in HKCUPU and reports the performance in terms of 
EER, minDCF, actual DCF and DET curves. In particular,
the paper highlights a new JFA-based Fishervoice [7] ap-
proach to speaker verification. The method maps a super-
vector into a compressed subspace by nonparametric 
Fisher discriminant analysis [8], which has the effect of
suppressing intra-speaker variations and emphasizing the 
discriminative speaker information. Another advantage of 
this Fishervoice framework is that it can be applied direct-
ly in the testing phase to compute the distance between a
test vector and the reference vector of a target speaker.
Results suggest that the Fishervoice approach outperforms 
JFA [3] and GMM-SVM [4] when its projection matrices 
are channel-dependent. The paper also demonstrates the 
complementarity between the Fishervoice approach and 
other state-of-the-art approaches.

2. SYSTEM DESCRIPTION

The HKCUPU system consists of three main modules: (1) 
feature extraction, (2) a parallel of five classifiers, and (3) 
system score fusion. We implemented different acoustic 
features in combination with various speaker modeling 
and session-variability reduction methods to maximize
subsystem diversity. In total, five generative or discrimin-
ative subsystems have been built (see Table 1).

Table 1. Speaker modeling and scoring methods, acoustic fea-
tures, model types, and score normalization techniques used in 
the HKCUPU system. (Note: JSV is short for JFA-supervector 
with linear SVM; JSF is short for JFA speaker-factor with co-
sine-kernel SVM; GSV is short for GMM-SVM with NAP; FSH
is short for JFA speaker-factor with Fishervoice [7].)

Model Features Model Type Normalization
JFA MFCC Generative TZnorm
JSV MFCC Discriminative Tnorm
JSF PLP Discriminative Tnorm
GSV MFCC Discriminative Tnorm
FSH PLP Discriminative TZnorm

2.1. Feature Extraction

The first stage of feature extraction is voice activity detec-
tion (VAD). For telephone speech, an energy-based VAD 
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[9] was used in the GSV subsystem, while the VAD in the
ETSI Adaptive Multi-Rate (AMR) coder [10] was used 
for other four subsystems. For microphone and interview 
speech, the AMR coder either fails to detect any speech or 
considers the whole speech file as speech. Therefore, 
spectral subtraction followed by energy-based VAD was 
applied [9].

[9]

Note that spectral subtraction was only used 
for speech/non-speech segmentation; acoustic features 
were extracted from the speech segments of the original 
signals. Except for the GSV subsystem, we used the 
NIST10 ASR transcripts of the interviewers to remove the 
interviewer’s speech segments that appear in the intervie-
wee’s channel (crosstalk). For the GSV subsystem, we 
applied VAD to both interviewer and interviewee
channels in order to remove the crosstalk appeared in the 
interviewee channel. After VAD, speech segments were 
converted to sequences of feature vectors using HTK.
Three types of cepstral features were used and they are 
detailed in Table 2. All feature vectors were processed by 
mean-variance-normalization (MVN) followed by feature 
warping [11].

Table 2. Acoustic features used in HKCUPU.
Subsystem Features and dimension Frame Size

JFA 17 MFCC_0+ + (51Dim) 25 ms
JSV 17 MFCC_0+ + (51Dim) 25ms
JSF 12 PLP_E+ + 20ms
GSV 12 MFCC+ (24 Dim) 25ms
FSH 12 PLP_E+ 20ms

2.2. Subsystem Descriptions

JFA Subsystem. The training of the JFA subsystem main-
ly follows [3], with the assumption that the speaker- and 
channel-dependent GMM supervector M can be expressed 
as the sum of four supervectors:

          M m Vy Dz Ux (1)
In Eq. 1, m is the UBM supervector, U is the Eigenchan-
nel matrix, V is the Eigenvoice matrix, D is the diagonal
residual scaling matrix, x is the speaker-dependent Eigen-
channel factor, y is the session- and speaker-dependent 
Eigenvoice factor, and z is the session- and speaker-
dependent speaker-residual. The JFA subsystem is differ-
ent from [3] in that it does not have matrix D. Further-
more, log-likelihood ratio (LLR) based scoring similar to 
[12] was used during verification. This scoring approach 
aims to reduce the session variation at the feature level.

In the training phase, two 2048-Gaussian gender-
dependent UBMs were created by combining the mixture 
components of the UBM of telephone speech and micro-
phone speech, each comprising 1024 Gaussians. We used
NIST SRE04, SRE05 and SRE06 telephone data to train
the telephone UBMs and used NIST SRE05 and SRE06
microphone data to train the microphone UBMs. The 
gender-dependent Eigenvoice matrix V (speaker space

with rank = 300) was trained by using 893 male speakers
(11,204 utterances) and 1,365 female speakers (16,556
utterances) from Switchboard II Phase 2 and Phase 3, 
Switchboard Cellular Parts 2, and NIST SRE04, SRE05,
and SRE06. We trained 3 Eigenchannel matrixes U, one 
for each channel type. Specifically, we used (1) telephone 
data in NIST SRE04, SRE05, and SRE06 to train a tele-
phone-Eigenchannel matrix with 100 channel factors; (2)
microphone data in NIST SRE05 and SRE06 to train a 
microphone-Eigenchannel matrix with 75 channel factors;
and (3) interview data in NIST SRE08 to train an inter-
view-Eigenchannel matrix with 75 channel factors. We 
combined these three subspaces to obtain a full channel 
space of 250 channel factors. Both U and V were trained 
using 15 iterations of expectation maximization. For train-
ing speaker factors, we used a relevance factor of 14.

JSV Subsystem. This subsystem uses supervectors (M’ =
m + Vy) determined by JFA as feature vectors for classifi-
cation by SVM [13]. Specifically, given a test utterance,
one iteration of EM was applied to estimate a speaker 
factor y (taking Ux into account) from which a 104448-
dim GMM-supervector M’ was obtained. The matrices 
U and V are the same as those in the JFA subsystem. A
special background data set was constructed by selecting 
utterances (including non-English) from NIST SRE04, 
SRE05, SRE06, SRE08, and Switchboard Cellular Parts 2 
training set, which amounts to 3,000 male speakers and 
3,500 female background speakers.

JSF Subsystem. This subsystem uses JFA speaker-factor 
y to construct kernels for SVM. Its training procedure is 
similar to that of the JFA subsystem, with the following 
differences: (1) 52 PLP features were used, (2) 20 itera-
tions of EM was used to estimate U and V. Given a test 
utterance, a JFA-based GMM is estimated by a single 
iteration of EM, followed by extracting a 300-dim speaker 
factor y for SVM classification with a cosine kernel [6].
The background speaker set was identical to that of the 
JSV subsystem.

GSV Subsystem. We created two 512-Gaussian UBMs –
one from a subset (totally 5,077 utterances) of microphone 
speech in NIST SRE05 and SRE06 and another one from 
a subset (totally 5,162 utterances) of telephone speech in 
NIST SRE04, SRE05, and SRE06. For each target speak-
er in NIST SRE10, we created two channel-dependent 
(microphone and telephone) speaker models by applying 
MAP adaptation with a relevance factor of 16, to form
two 12288-dim GMM-supervectors [4]. Similarly, 300
gender- and channel-dependent background GMM-
supervectors were obtained. NAPs with 64 co-ranks for 
telephone speech and 128 co-ranks for micro-
phone/interview speech were applied to the GMM-
supervectors. The gender-dependent projection matrix for
telephone speech was obtained from 517 male and 934
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female speakers from NIST SRE04, SRE05, SRE06 and 
SRE08. For microphone/interview speech, 143 male and 
178 female speakers were selected from NIST SRE05, 
SRE06 and SRE08.

FSH Subsystem. This subsystem extends Fishervoice [7]
to speaker verification. Specifically, it uses JFA speaker 
factors y as feature vectors to estimate a nonparametric
Fisher discriminant projection matrix W [8]:

W = W1 W2 W (2)3

Given a test utterance, the matrix W is used to project 
the corresponding JFA speaker-factor vector y to a low-
dimensional discriminant subspace that better represents 
speaker characteristics. Then direct cosine distance is cal-
culated to obtain a trial score. In (2), W is a combination 
of three subspace projection matrixes: PCA projection 
matrix W1, whitened within-class projection matrix W2,
and nonparametric between-class projection matrix W3.
Matrices W2 and W3 aim to minimize the distance be-
tween the projected vectors of the same speaker while 
maximizing the distance among different speakers. Unlike 
classical LDA, it is not necessary to use parametric mod-
els to approximate the distribution of y. This characteristic 
leads to a W3

During training, telephone utterances from NIST 
SRE04, SRE05 and SRE06 were used to train the gender-
dependent Fishervoice matrices (W

that focuses on the boundaries between 
speakers. As will be shown in Section 4, focusing on the 
boundary allows us to exploit the discriminative features 
of speakers, leading to better verification performance.

1, W2 and W3). This 
amounts to 400 male and 400 female speakers, each has 8
different utterances. The projection matrices, W1, W2 and 
W3

[7]

, have dimensions 300 299, 299 298, and 298 295,
respectively. These correspond to the upper limit of their
matrix ranks. The parameter R in was set to 4, accord-
ing to the median number of sessions for each speaker.
The JFA parameters U and V are the same as the JSF sub-
system.

2.3. Score Normalization

The scores of the JFA and Fishervoice subsystems were
normalized by TZnorm, whereas the scores of subsystems 
based on SVM were normalized by Tnorm. For the JFA, 
JSV, JSF and FSH subsystems, NIST SRE04, SRE05 and 
SRE06 training data was used for training cohort models 
for Tnorm (300 speakers for each gender). For the GSV 
subsystem, 261 male utterances and 277 female utterances 
from NIST SRE05 were used to create the GMM-SVM 
telephone Tnorm models; for microphone/interview 
speech, 300 male and 300 female utterances extracted 
from NIST SRE05 and SRE06 were used. For the Znorm, 
we used 800 speakers for each gender from the Switch-

board II Phase 2, Phase 3 and Switchboard Cellular Parts 
2 training data.

3. SYSTEM FUSION

The scores obtained from five different systems, including 
JFA, JSV, JSF, GSV, FSH were fused using a set of linear 
fusion weights that achieve the best fusion performance 
(in terms of minimum DCF) in NIST SRE10. A 5-
dimensional grid search was performed to determine the 
fusion weights.

4. RESULTS

Table 3 shows the fusion of two subsystems under com-
mon conditions 5, 6 and 8 (cc5, cc6, and cc8). These 
common conditions involve telephone speech only. Here, 
the focus is on the non-interview data conditions because 
the FSH subsystem was trained on telephone data only.
We chose the best four subsystems for fusion, which 
amount to six fusion systems. The results show that in 4 
out of 6 cases, the fusion systems involving FSH achieve 
either the lowest EER or the lowest minDCF, suggesting 
that FSH is complementary to JFA, GSV, and JSV. Fig. 1 
provides further evidences on this complementarity prop-
erty. Fig. 1 shows the DET curves of JFA, GSV, FSH, and
the fusion of FSH with either JFA or GSV under common 
conditions 6 and 8. Evidently, when FSH is fused with 
either JFA or GSV, significant performance gain can be 
achieved across a wide range of decision thresholds.

Figure 1. DET curves of JFA, GSV, FSH, and the fusion of FSH 
with another best performing subsystem under common condi-
tions 6 and 8.

cc=6

cc=8
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Table 4.  Performance of individual subsystems and the fusion of 5 subsystems. For each common condition, the first line represents EER 
(%) and the second line represents minDCF 1000. The relative improvement is the improvement of the fusion system over the best indi-

vidual system. As a reference for comparison, the actual DCF of the fusion system under CC5 is 0.585.
Common Condition JFA JSV JSF GSV FSH Fusion Relative Improvement

cc=1 3.88
0.628

4.55
0.725

7.51
0.825

4.40
0.669

7.10
0.734

2.69
0.408

31%
35%

cc=2 8.04
0.843

9.11
0.813

13.55
0.893

7.39
0.774

11.32
0.857

5.70
0.566

23%
27%

cc=3 4.53
0.665

7.59
0.792

11.32
0.893

6.28
0.696

8.26
0.896

2.94
0.509

35%
23%

cc=4 5.79
0.760

7.14
0.681

11.11
0.831

5.58
0.678

6.96
0.853

3.59
0.545

36%
20%

cc=5 4.52
0.467

5.73
0.646

5.77
0.603

4.76
0.574

4.09
0.539

2.36
0.385

42%
18%

cc=6 7.17
0.819

8.31
0.843

9.14
0.830

7.75
0.786

6.09
0.807

3.87
0.675

36%
14%

cc=7 7.52
0.740

8.79
0.905

8.63
0.775

9.15
0.747

8.35
0.852

5.00
0.548

34%
26%

cc=8 2.01
0.457

2.68
0.549

3.69
0.443

2.57
0.475

1.68
0.284

1.00
0.215

40%
24%

cc=9 3.45
0.395

2.76
0.464

3.79
0.406

4.13
0.390

4.14
0.494

1.69
0.172

39%
56%

Table 3. EER and (minDCF 1000) of the fusion of best per-
forming subsystems.

Fusion System cc5 cc6 cc8
JFA + JSV 3.94 (0.50) 6.64 (0.78) 1.89 (0.42)
JFA + GSV 3.49 (0.37) 5.49 (0.72) 1.23 (0.23)
FSH + JFA 3.21 (0.46) 5.26 (0.78) 1.34 (0.17)
FSH + GSV 2.93 (0.45) 4.06 (0.73) 1.34 (0.26)
FSH + JSV 3.21 (0.49) 4.71 (0.69) 1.34 (0.20)
GSV + JSV 3.60 (0.41) 4.97 (0.69) 1.34 (0.40)

Table 4 shows the performance of the 5 subsystems 
and their fusions. The results show that fusion of five sub-
systems reduces both EER and minDCF of individual sub-
systems significantly. In particular, FSH shows superior
performance for all conditions (cc5, cc6, and cc8) that 
involve telephone speech only. On the other hand, FSH 
shows no improvement on microphone/interview or cross-
channel conditions because its projection matrices were 
trained by telephone data only.

5. DISCUSSIONS AND CONCLUSIONS
The HKCUPU system submitted to NIST 2010 SRE is
composed of 5 subsystems. Different acoustic features, 
speaker modeling techniques, session-variability reduction 
methods, and VAD schemes have been used for individual 
systems. This strategy has led to a significant performance 
gain when the subsystems were fused. Specifically, the 
fusion system reduces the EER by 42% and minDCF by
56% when compared with the best individual subsystems.
It was also found that the newly proposed FSH subsystem
is complementary to JFA and performs significantly better 
than JFA when its projection matrices were trained by the 

type of speech that matches the evaluation conditions.
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