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ABSTRACT

Log-linear acoustic models have been shown to be compet-
itive with Gaussian mixture models in speech recognition.
Their high training time can be reduced by feature selection.
We compare a simple univariate feature selection algorithm
with ReliefF - an efficient multivariate algorithm. An alter-
native to feature selection is ¢;-regularized training, which
leads to sparse models. We observe that this gives no speedup
when sparse features are used, hence feature selection meth-
ods are preferable. For dense features, ¢;-regularization can
reduce training and recognition time. We generalize the well
known Rprop algorithm for the optimization of ¢; -regularized
functions. Experiments on the Wall Street Journal corpus
showed that a large number of sparse features could be dis-
carded without loss of performance. A strong regularization
led to slight performance degradations, but can be useful on
large tasks, where training the full model is not tractable.

Index Terms— feature selection, {1 -regularization, Reli-
efF, acoustic modeling, log-linear models

1. INTRODUCTION

Almost all statistical speech recognition systems are based
on Hidden Markov Models (HMMs) with Gaussian Mix-
ture Models (GMMs) as emission probabilities. They can
be trained efficiently according to the maximum likelihood
(ML) criterion. In state-of-the-art systems, ML acoustic
models are only used as an initialization for discriminative
training, e.g. maximum mutual information (MMI) train-
ing. In contrast, direct models are inherently discriminative
and do not depend on a ML initialization [1]. Recently,
log-linear models have gained interest in speech recognition
and were successfully applied to phoneme recognition, e.g.
[2, 3], and large vocabulary continuous speech recognition
(LVCSR) [1, 4]. A major advantage of log-linear models is
that their training with respect to the MMI criterion is convex.
Log-linear models correspond to linear classifiers which are
normalized to provide a probabilistic interpretation. Non-
linearity is achieved by an explicit mapping of features into a
high dimensional space. In our previous work we employed
polynomial features and sparse clustering features, similar to
those introduced in [2]. Despite of being theoretically attrac-
tive and performing comparably to state-of-the-art systems, a
disadvantage of log-linear models is their high training time
in comparison to GMMs, which depends on the number of

features. Therefore, feature selection is attractive for reduc-
ing training time.

Feature selection is an extensive field of research in machine
learning [5]. On many problems where overfitting is a severe
problem, feature selection even improves the classification
accuracy. In speech recognition, feature selection for acous-
tic features has not gained much attention, because in GMMs
only low dimensional feature vectors are employed. Simple
feature selection algorithms are univariate, which means fea-
tures are scored individually. When interaction of features
is important, multivariate feature selection algorithms can
provide better results. In this work we compare the univariate
x2-algorithm with the multivariate ReliefF algorithm. In-
deed, we show that the multivariate algorithm performs better
than the univariate one for typical features used in speech
recognition.

Embedded methods jointly learn the structure of the model
and the model parameters. Such approaches are conceptually
attractive, because they avoid heuristics. A popular em-
bedded method for linear models is ¢;-regularized training,
which leads to sparse models. For binary classification prob-
lems, this corresponds to a feature selection. For multiclass
classification, strictly speaking it is not a feature selection, but
is often discussed in the context of feature selection. Sparse
models are beneficial because of their smaller size. However,
as discussed in the next section, when sparse features are
used, ¢;-regularization does not reduce training or recogni-
tion time, therefore feature selection is preferable in this case.
For dense features this does not hold. We modify the well
known Rprop algorithm [6] in order to directly incorporate
the non-differentiable ¢;-regularization term in the training
procedure of our previous work and apply this method to
polynomial features.

The remaining paper is structured as follows. In the next sec-
tion, we analyze the complexity of log-linear model training
and recognition and how it is affected by feature selection and
sparse models. In Section 3, we present the feature selection
algorithms used in this work and describe our modification
of Rprop. Experimental results are given in Section 4. We
conclude with a discussion and an outlook.

2. COMPLEXITY OF LOG-LINEAR MODEL
TRAINING AND RECOGNITION

Let X C RP be the feature space and S a finite set of classes.
A log-linear model with parameters A = (Xs;)s; € RISIxT



is a model for a posterior probability of the form

pa(sle) = exp (}Ij Nifi(@)) [ 3 exp (fj Nsifi(@)),
=1 5 i=1

where the components of f : X — R are called feature func-
tions. Posterior probability models can be incorporated into
HMM recognizers via the hybrid approach, see [7]. Usually,
log-linear models are trained according to the MMI-criterion.
For a given sequence of training samples (s;, x;)¢=1,. 7 the
objective function of framewise MMI is defined as
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Here, r(A) is a regularization term, e.g. the ¢1- or {3-norm.
For both choices, the MMI criterion is a convex optimization
problem. For training, gradient based optimization algorithms
can be employed. The time consuming part of training is the
calculation of the gradient. For MMI training the gradient of
the unregularized objective function F" at A with respect to a
parameter A ; is
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Hence, for every feature vector the posterior probabilities
according to the current model have to be computed and the
statistics need to be updated. For the posteriors, the inner
product of all parameter vectors and the feature has to be cal-
culated. For dense features, the complexity of this operation
is in the order of O(27'|S|I) floating point operations. The
update of the statistics has again a complexity of O(2T'|S|I).
Training costs reduce drastically for sparse features. For the
inner product of a dense parameter and a sparse feature vector
only the non-zero components have to be considered. Thus,
the costs of calculating the inner products are in the order
of O(2T'|S|Ay), where Ay denotes the average number of
active features. Since only the statistics for non-zero features
have to be updated, these costs are reduced by the same fac-
tor.

Determining the complexity is more subtle when sparse pa-
rameter vectors are used as well. For sparse parameter vec-
tors and dense features, the inner products are again cheaper.
When in addition the features are sparse, in principle only
those components have to be considered, where both param-
eters and features are different from zero. Unfortunately,
this structure can not be exploited efficiently, since then
comparisons have to be performed instead of floating point
operations. Therefore, the efficiency of a sparse-sparse inner
product depends on the computer architecture, but on a mod-
ern CPU no speedup can be expected !.

When using ¢;-regularization the structure of the parameters
is learned during model training. Therefore the costs for the
statistics update do not change when sparse parameters are

INote that also in standard sparse vector routine libraries as Sparse BLAS
[8] sparse-sparse operations are not supported. In addition, sparse features
are typically orders of magnitude sparser than sparse parameters, see [2, 1]

used. If the structure is known in advance, the costs for the
statistics update are proportional to the number of active pa-
rameters.

For decoding in the hybrid approach, instead of the acoustic
distance calculations for GMMs, the feature vector has to be
constructed and the inner products of features and parameters
have to be computed. Decoding with hybrid log-linear mod-
els with clustering features as in [2, 1] is faster than decoding
with GMMs, because the same Gaussians are used for all
states. Selecting sparse features and imposing a sparse struc-
ture on the parameters corresponding to polynomial features
further reduces the complexity as described above.

The same considerations hold for different discriminative
training criteria as minimum phone error (MPE) [9] and
when generalized iterative scaling (GIS) is used instead of
gradient based optimization algorithms.

In summary, feature selection is advantageous in comparison
to ¢1-regularization for sparse features. For dense features,
{1-regularization can speed up training and may therefore
be preferable to feature selection, because of its conceptual
attractiveness.

3. FEATURE SELECTION METHODS

As described in the previous section, the costs of using a
dense feature are much higher than those for a sparse feature.
Therefore sparse and dense features should be treated sepa-
rately. According to the considerations above, we performed
a feature selection for sparse features and regularized the pa-
rameters of the model corresponding to dense features with
{1-norm.

3.1. Sparse Features

Feature selection methods can be divided into methods which
use the performance of the classifier on a cross-validation set
for ranking features or feature subsets (wrapper methods) and
methods that are independent of the classifier, (filter meth-
ods). Since our goal is to speed up the training of the classi-
fier, we are interested in filter methods.

Simple methods are univariate, which means they rank ev-
ery feature individually. The 2-algorithm is one of the best
performing univariate filter methods, especially on very high
dimensional problems as text classification [10]. The idea of
the algorithm is to apply the well known y2-independence
test to each feature and the class variable (see [10] for a more
detailed description). Higher scores correspond to a higher
dependence of the variable to the class label, hence to better
features. In order to apply the y-test to continuously valued
features, the feature range has to be discretized. Experimental
results for the y2-algorithm are presented in Section 4.
ReliefF [11] is a state-of-the-art feature selection algorithm
and can be seen as a compromise between univariate and mul-
tivariate methods. Every feature is scored individually, but the
score takes the interaction of features into account. The idea
of the algorithm is to measure how well a feature separates
neighboring training samples in the original space. It can be
applied to categorical as well as numerical features. A small
subset of m training samples is chosen randomly. For each
sample the k nearest instances of the same class (nearest hits)



and all other classes (nearest misses) are computed. When a
feature of a sample and one of its nearest hits is different, the
score of the feature is reduced. Conversely, the feature score
is increased, if the feature of the training sample and one of
its nearest misses is different. The nearest hits and misses
are calculated in the original feature space with the ¢5-norm.
The expensive part of the ReliefF algorithm is the calcula-
tion of the nearest hits and misses, which are chosen from the
complete set of training samples. This part can easily be par-
allelized. Typically, a small m in the range from 50 to 1000
is chosen and regarded as a constant, hence the complexity
of the algorithm is linear in the amount of training data. The
costs of feature selection with ReliefF are negligible in com-
parison to the log-linear training. Experimental results and a
comparison to the y2-algorithm are given in Section 4.

3.2. Polynomial features

For the optimization of ¢;-regularized objective functions,
special care has to be taken, because the regularization term
is non-differentiable. In our previous work we used Rprop
for training. Advantages of Rprop are its robustness to tuning
parameters and its simplicity. Furthermore, Rprop leads very
quickly close to the optimum of the objective function. Our
proposed modification to Rprop is analog to that of L-BFGS
in [12]. We refer to it as Orthantwise-Rprop in the following
(OW-Rprop). First, it is observed that the components of the
objective function with ¢;-regularization are left and right
differentiable, which is used for the definition of the pseudo
gradient:

aj,iF(A) , if asfiF(/\) >0
OsiF(A) = 8;2-F(>\) , if 8;1-F()\) <0.
0 , otherwise

A parameter vector A maximizes the objective function if and
only if the pseudo gradient of F' at A is zero. The idea of
the algorithm is that the objective function is differentiable,
when it is restricted to the orthant (a multidimensional quad-
rant) containing the current iterate and into which the pseudo
gradient leads. The concept of orthantwise optimization can
directly be applied to Rprop. For OW-Rprop, the pseudo gra-
dient is used instead of the gradient. Furthermore, whenever
for Rprop the sign of a parameter changes from one iteration
to the next, OW-Rprop sets it to zero. Experimental results for
the application of OW-Rprop to the optimization of log-linear
models with polynomial features are reported in the next sec-
tion.

4. EXPERIMENTAL RESULTS

All experiments were performed on the Wall Street Jour-
nal corpus with a vocabulary of 5k words (WSJO), a small
LVCSR task. The training corpus consists of 15 hours and the
evaluation corpus of 0.4 hours of English read speech. Since
the official WSJO corpus does not provide a development set,
additional 0.5 hours were extracted from the North American
Business task. The vocabulary of the task is closed.

The acoustic front end of all experiments uses 16 Mel-
frequency cepstral coefficients (MFCC). The MFCC features

sparse feature dim. | 9120 | 7168 | 5120 | 3072 0

context reduction 10.1 102 | 11.3 | 11.8 | 14.0

X2 10.1 | 104 | 11.8 | 125 | 14.0

ReliefF 10.1 | 103 | 104 | 11.8 | 14.0

Table 1. Word error rates for feature selection on monophone
systems with second order polynomial features and sparse
clustering features. Recognitions were performed with a bi-
gram language model.

are normalized by a vocal tract length normalization and aug-
mented with a voicedness feature. Feature vectors from nine
consecutive frames are concatenated and a linear discrimina-
tive analysis is used to reduce the dimension to 33.

For our log-linear system, a single GMM (independent of the
state) with 1024 densities has been trained. The posteriors of
each density were used as sparse features. Acoustic context
expansion led to 9216 sparse features in total. In addition,
second order polynomial features were used. The system
uses 1500 generalized triphone states. All log-linear systems
were trained with Rprop respectively OW-Rprop until con-
vergence, which takes about 75 iterations. For comparison,
a GMM recognizer with the same number of states and 223k
Gaussians in total has been trained. All Gaussians share a
single diagonal covariance matrix. The recognitions were
performed with the baseline bigram language model deliv-
ered with the corpus and a trigram language model trained at
our group. The GMM system has been trained with the ML
criterion and has a word error rate (WER) of 3.6% with the
trigram and 5.6% with the bigram language model. To our
knowledge, these are the best ML results published on this
corpus. The log-linear system achieves a WER of 3.6% with
the trigram and 6.6% with the bigram language model.

An alternative to the application of feature selection on the
9216 sparse features is to decrease the acoustic context length.
This simple method is considered as the baseline in the fol-
lowing. For the discretization of the feature range needed by
x?2, we simply distinguished between active and non-active
features. For the ReliefF algorithm m = 650 samples were
chosen. The number of nearest hits and misses was set to
k = 50. We observed that the algorithm seems to be very
robust to the choice of the tuning parameters. Initial feature
selection experiments were performed on a monophone sys-
tem with the same features as the final triphone system. Since
our interest is the quality of the acoustic model, the recogni-
tions were performed with the bigram language model. The
results are shown in Table 1. The performance of the 2
feature selection is not satisfactory. The error rate is higher
than the baseline in all cases. In contrast, ReliefF allows for
discarding almost half of the features by only a slight increase
in WER.

The same feature configuration was used for the experiments
with ¢;-regularization. Only the second order features were
regularized with ¢;-norm. In our experiments OW-Rprop
converged as fast as Rprop. Recognition results of the mono-
phone system are shown in Table 2. The results are in between
those of the system with all second order features (C' = 0)
and a system which uses only first order and clustering fea-
tures (C' = inf).

Final experiments were performed on the log-linear triphone




C sparse coefficients (%) | WER (%)
0 0 10.1
100 16.6 10.2
500 67.5 11.2
1000 89.7 11.9
inf 100.0 12.5

Table 2. Results for ¢;-regularized monophone systems with
bigram language model. In addition to the second order poly-
nomial features, first order features and sparse clustering fea-
tures have been used.

sp. coeff. | sparse dim. | 3gr. | 2gr.
GMM-Baseline - - 36 | 5.6
LL-Baseline 0.0 9216 36 | 6.6
ReliefF 0.0 5120 3.6 | 6.6
I 60.0 9216 39 | 7.0
¢1+ReliefF 70.7 5120 41 | 70

Table 3. Results of the final triphone system with feature
selection and sparse models. WERSs are given for recognitions
with a bigram and trigram language model.

system (see Table 3). Reducing the number of sparse features
with ReliefF to 5120 did not degrade the error rate at all. The
application of ¢;-regularization with C' = 100 led to a model
where 60.0% of the parameters corresponding to the second
order features are zero by only a slight increase in error rate.

Unfortunately, with the current training scheme for ¢;-
regularized training, we could not obtain a speedup. This
has two reasons. First, for /;-regularization the model struc-
ture is learned during training. Therefore the costs for the
statistics update do not decrease. Furthermore, even though
we initialized the parameters with zero, the parameter fill up
immediately and then slowly get sparse during training. That
means for most iterations the model is not sparse. However,
for recognition the final sparse model is used.

5. DISCUSSION AND OUTLOOK

In this paper we investigated the application of feature se-
lection techniques to log-linear acoustic models. The use of
the multivariate feature selection algorithm ReliefF allowed
us to reduce the sparse feature dimension by almost 50%
without increase in WER. For polynomial features, training
with /;-regularization has the potential to speed up training
and recognition. In order to incorporate ¢;-regularization
into our training scheme, we proposed to apply the concept
of orthantwise optimization to Rprop. The sparse models
performed only slightly worse than the full models.

Feature selection for sparse features is especially useful for
huge feature dimensions. For example, feature selection can
be employed for the integration of offset features as in MPE
into the log-linear model. In the future, we want to investi-
gate techniques for fixing the model structure corresponding
to polynomial features, e.g. learning the model structure on
a small subset of the training data or preventing parameters
to get non-zero after some iterations. With reduced training
time, we want to evaluate log-linear acoustic models on larger
data sets.
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