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ABSTRACT

Most bioimaging modalities rely on indirect measure-
ments of the quantity under investigation. The image is
obtained as the result of an optimization problem involv-
ing a physical model of the measurement system. Due
to the ill-posedness of the above problem, the impact
of the noise on the reconstructed images must be con-
trolled. The recent emphasis in biomedical image recon-
struction is on regularization schemes that favor sparse
solutions, which renders the optimization problem non-
smooth. In this work, we show how step-size adapta-
tion can be used to speed up the most recent multi-step
algorithms (e.g. FISTA) employed in sparse image re-
covery. We present experiments in MRI and Fluores-
cence Molecular Tomography with specifically tailored
step-adaptation strategies. Our results demonstrate the
possibility of an order-of-magnitude speed enhancement
over state-of-the-art algorithms.

Index Terms— Bioluminescence tomography, par-
allel MRI, inverse problem, FISTA, FWISTA.

1. INTRODUCTION

This paper is concerned with the general problem of im-
age reconstruction from linear measurements, including
MRI and various forms of X-ray and optical tomogra-
phies. The generic form of the image-formation model
in vector notation is

y = Hxorig + b, (1)

with y : the physical measurements acquired by the scan-
ner, x : the coefficients of the image in some suitable
basis (e.g. pixels), H : the “system matrix” which re-
sults from the discretization of the physical model, and
b : some additional measurement noise. The goal is to
reconstruct the unknown image x given the noisy mea-
surements y.
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This linear model is valid for most biomedical imag-
ing modalities[1]. The reconstruction is especially diffi-
cult when the problem is underdetermined or when H
is badly-conditioned, in which case a standard matrix
inversion is not applicable because it dramatically am-
plifies noise. Under those circumstances, the common
approach for reconstructing x is to introduce regulariza-
tion constraints and to reformulate the problem as an
optimization task. The reconstructed image is defined
as the minimizer of a cost functional of the form

x� = arg min
x

‖y − Hx‖2
2 + R(x), (2)

where R is a regularization term that penalizes undesir-
able solutions.

Choosing R(x) = ‖Rx‖2
2 leads the famous Tikhonov

solution x� =
(
HTH + RTR

)−1
HTy. The latter can

be computed iteratively by efficient methods such as the
conjugate gradient (CG) algorithm that exhibits a linear
rate of convergence; i.e., ‖xn − x�‖2 ≤ ρn for 0 ≤ ρ =√

κ−1√
κ+1 < 1 with κ the conditioning number of the matrix

to be inverted.
With the recent advent of compressed sensing, the

use of �1-norm regularization, which favors sparsity, has
become extremely popular. This is motivated by the
fact that most biomedical images are well represented
by their K-term approximation (with K small) in an
appropriate basis. �1 regularization has been found to
lead to images of better quality than the classical linear
reconstruction techniques (in particular, Tikhonov and
Wiener-filter-type methods). The method owes much of
its success to the iterative shrinkage/thresholding algo-
rithm (ISTA) [2, 3], which has the ability to handle the
large-scale problems encountered in bioimaging. Unfor-
tunately, ISTA is relatively slow, which has prompted
researchers into searching for ways to accelerate it [4, 5].

The current state of the art is the fast iterated shrink-
age/thresholding algorithm (FISTA), which incorporates
some of the latest technology in gradient-based convex
optimization [4]. While FISTA is faster than ISTA, its
convergence rate is still sublinear and often not compet-
itive with the best linear methods such as CG. Since
reconstruction duration remains a major concern in the

5760978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



case of very large scale and ill-posed problems, our pro-
posal here is to revisit and fine-tune FISTA by taking
advantage of the specific structure of the problem in or-
der to improve the bound constants of the algorithm.

This paper is structured as follows. First, we in-
troduce our modified version of FISTA, FWISTA, that
applies the principle of an optimized step size adapta-
tion. We derive the associated convergence properties
whose tighter form is indicative of a reduced reconstruc-
tion time. Second, we present experiments in biolu-
minescence tomography (BLT) and parallel magnetic
resonance imaging (pMRI) with phantom data where
our method brings a significant speedup over ISTA and
FISTA.

2. THEORY

In this paper we denote Λw the diagonal matrix with en-
tries given by the vector w. We consider the variational
problem

x� = arg min
x

‖y − Ax‖2
2 + ‖Λλx‖1︸ ︷︷ ︸

C(x)

, (3)

where λ is a vector of arbitrary regularization weights. In
particular, λ accounts for the regularization parameter.
We also denote A = HW , where W is the reconstruc-
tion matrix of the underlying basis (or frame) and x the
corresponding signal coefficients.

We now slightly extend FISTA by adapting it to the
form of the above problem. Our main point will be to
show how we can theoretically improve the convergence
by exploiting the structure of A. We then substantiate
the feasibility of such a convergence enhancement with a
specific example of magnetic resonance imaging (MRI).

2.1. Fast Weighted ISTA (FWISTA)

The derivation of FWISTA follows the one of FISTA.
Our key concept is to consider some weighted norms of
the form ‖x‖2

S = xTSx where S is symmetric positive-
definite matrix.

We define the thresholding operation with pixel-
dependent threshold values as

Tτ (x) = arg min
v

‖x − v‖2
2 + ‖Λτ v‖1 . (4)

where τ is an arbitrary weight vector. The important
point is that this operation can be achieved in one step
with a low computational cost.

We then formulate FWISTA in Alg. 1, as an exten-
sion of FISTA with adapted thresholds.

It is not difficult to show that the condition for Algo-
rithm 1 to converge to x� is that Λ−1

τ − ATA must be
positive-definite.

Algorithm 1: FWISTA solving (3)
input : M = ATA, a = ATy, x0, Λτ .
Initialization: n = 0, u0 = x0, t0 = 1;
repeat

xn+1 ← TΛτ λ (un + Λτ (a − Mun));
tn+1 ←

(
1 +

√
1 + 4t2

n

)
/2;

un+1 ← xn+1 + tn−1
tn+1

(xn+1 − xn);
n ← n + 1;

until stopping criterion is met;
return xn+1.

Standard FISTA corresponds to the case Λτ = 2
L I

and Λλ = λI. Note that the key difference between
FISTA and FWISTA is that the thresholding step in
FWISTA can apply a different threshold value for each
component of x depending on the entries of Λτ and Λλ.

Considering the weighted norm formalism, we revisit
the convergence results of FISTA [4, Thm. 4.4].

Proposition 1. Let {xn} be the sequence of estimates
generated by Algorithm 1 with Λ−1

τ such that Λ−1
τ −ATA

is positive-definite. Then, for any n ≥ 1,

C(xn) − C(x�) ≤
(

2
n + 1

)2
‖x0 − x�‖2

Λτ
. (5)

If C is ε-strongly convex, i.e. ε = 2λmin(ATA) > 0, then

‖xn − x�‖2 ≤ 2
√

2
ε

‖x0 − x�‖Λτ

n + 1 . (6)

Proof. Consider the change of variable z =
√

Λτ x
and apply FISTA with L = 2 to the new problem.
It results in steps equivalent to the ones of FWISTA.
Hence the convergence result of FISTA transposes di-
rectly C

(√
Λ−1

τ zn

)
− C

(√
Λ−1

τ z�
)

= C(xn) − C(x�) ≤(
2

n+1

)2
‖z0 − z�‖2

2 =
(

2
n+1

)2
‖x0 − x�‖2

Λτ
. In the

strongly convex case, we have ε
2 ‖xn − x�‖2

2 ≤ C(xn) −
C(x�).

The convergence improvement over FISTA resides in
the constant. Practically, we expect a significant speedup
in the first iterations when the matrix Λτ can be chosen
such that ‖x0 − x�‖2

Λτ
� L

2 ‖x0 − x�‖2.
We note that FWISTA can be simply adapted in or-

der to impose a monotonic decrease of the cost functional
value, in the same fashion as MFISTA proposed by Beck
and Teboulle, while preserving an identical convergence
property.

2.2. Example of speedup analysis for MRI

For illustration, let us consider a simple MRI problem
with one receiving channel and a full k-space Cartesian
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Fig. 1. PMRI simulation. ‖xk − x�‖2.

sampling. In such a case, we get H = F Λs where F is
the unitary Fourier matrix and where Λs is the diagonal
matrix of coil sensitivities.

Applying FISTA (Λλ = λI and Λτ = ‖s‖−2
∞ I) re-

sults in a gradient step of the form xn+‖s‖−2
∞ ΛT

s Λs(xorig−
xn) + ‖s‖−2

∞ ΛT
s F Tb. The latter tends to be ineffective

for the pixels whose locations correspond to a relatively
small sensitivities, this fact being measured by the con-
dition number of Λs; i.e., the product ‖s‖∞ ‖1/s‖∞.
In regard to the convergence result in Proposition 1,
we see that the constant term of the upper bound
for FISTA is proportional to ‖s‖2

∞ as it amounts to
‖s‖2

∞
∑

i |(x0)i − x�
i |2.

FWISTA, by contrast, can take advantage of step
sizes (gradient and threshold) that are tailored to the
individual pixel sensitivities. In our simple example, we
apply FWISTA with Λλ = λI and Λ−1

τ = τΛT
s Λs. This

results into the simplified gradient step xn + τ(xorig −
xn) + F Tb. For the convergence bound, we achieve a
constant that is

∑
i |si|2|(x0)i − x�

i |2 and tends be sig-
nificantly smaller than the one obtained with FISTA,
especially if the range of si is large.

3. EXPERIMENTS

To assess the performance of FWISTA in practical sit-
uations, we ran simulations for two biomedical imaging
modalities. The two related inverse problems are both
notorious for their ill-conditioning.

3.1. Parallel MRI

We considered a 2-D brain imaging setup. The data
are recorded by four head coils with known sensitiv-
ity maps distributed around the sample. Meanwhile,
a radial k-space trajectory with 90 lines that supports
a 176 × 176 reconstruction is imposed. Our simulation
is achieved with a 704 × 704 rasterized version of the

Fig. 2. PMRI simulation. C(xk) − C(x�).

Shepp-Logan phantom. We are also using realistic coil
sensitivities computed using Biot-Savart’s law. The 2-
levels Haar wavelet basis is chosen to impose the sparsity
constraints. The sum-of-squares sensitivity is considered
for the weights of FWISTA. We exploit the localization
properties of the wavelets to impose the weights on the
wavelet coefficients. The wavelet regularization matrix
Λλ is chosen with a constant value λ on its diagonal ex-
cept for the entries concerning coarse coefficients where
the value 0 was imposed. The value λ is optimized for
MSE performance. The initial estimate is x0 = 0.

We compare the convergence speed of ISTA, FISTA,
and FWISTA in the reconstruction task described above.
The reference minimizer was determined by running
FISTA for 100 000 iterations. Results are shown on Fig.
1 and Fig. 2. We observe that FWISTA yields nearly
three-fold acceleration over FISTA in terms of cost func-
tional. The asymptotic rates of FISTA and FWISTA
both on the cost functional value and the distance to the
minimizer are similar and the speedup of FWISTA seems
primarily due to a better constant, which is consistent
with our theoretical prediction.

3.2. Bioluminescence Tomography

In bioluminescence tomography (BLT), the spatial distri-
bution of a luminescing dye buried inside tissue is recon-
structed from boundary light measurements [6, 7]. Due
to the high scattering and absorption characterizing liv-
ing tissue, the propagation of light in tissue is well de-
scribed by a diffusion process. The BLT imaging kernel
therefore contains a smoothing component, which leads
to a severely ill-conditioned inverse problem. In 3-D, the
free-space Green’s function of the propagation equation
is:

G(r, r0) =
exp

(
− μa‖r−r0‖

D

)
‖r − r0‖ ,
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Fig. 3. BLT simulation. C(xk) − C(x�).

where μa is the absorption coefficient, and D the dif-
fusion coefficient of the considered medium. The ill-
posedness results from the rapid decay of the Green’s
function which causes the detectors to have highly inho-
mogeneous sensitivities. In this example, we employ the
sensitivities of the detectors to build a problem-specific
diagonal approximation Λτ of HT H, where H denotes
the BLT system matrix. The entry (Λτ )ii correspond-
ing to pixel i, is the sum of the sensitivities for that pixel
squared.

We simulate a 2-D BLT system composed of a
50mm × 20mm slab, with 28 detectors disposed on the
periphery. The optical coefficients are μs = 1.5mm−1

and μa = 0.02mm−1, which corresponds to realistic
tissue values. The reconstruction grid is 50 × 20, and
therefore we have a highly underdetermined system with
a 28×1000 system matrix. Two point sources are placed
inside the medium. The sensitivities of the detectors are
again used in the regularization matrix Λλ by posing
(Λλ)ii equal to the sum of the sensitivities. Note the
double role of the sensitivities in this example. They are
employed to determine the FWISTA steps and thresh-
olds, as well as penalty in the regularization.

Convergence speed of ISTA, FISTA and FWISTA on
the BLT problem is illustrated on Fig. 3 and Fig. 4.
Again, we observe that the asymptotic convergence rate
of FISTA and FWISTA are comparable while FWISTA
appears to exhibit a much better constant. On this case,
we observe a ten-fold acceleration.

4. CONCLUSIONS

Modern sparsity-based image reconstructions tend to
yield better image quality compared to linear solvers
but they are typically much slower. Our study suggests
that there is still potential for speed improvement by
taking into account the problem’s specific structure.

Fig. 4. BLT simulation. ‖xk − x�‖2.

The method proposed here adapts FISTA and tailors it
to two biomedical imaging modalities. The simulations
of pMRI and BLT setups resulted in promising speedups
in reconstruction. Further works should validate the ac-
celeration capabilities of the method with experimental
data.
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