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Abstract:  The classic imaging geometry for computed tomography is for collection of 

un-truncated projections and reconstruction of a global image, with the Fourier transform 

as the theoretical foundation that is intrinsically non-local. Recently, interior tomography 

research has led to theoretically exact relationships between localities in the projection 

and image spaces and practically promising reconstruction algorithms. Initially, interior 

tomography was developed for x-ray computed tomography. Then, it has been elevated 

as a general imaging principle. Finally, a novel framework known as “omni-tomography” 

is being developed for grand fusion of multiple imaging modalities, allowing 

tomographic synchrony of diversified features. 
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I. Introduction 

The revolutionary work on x-ray computed tomography (CT) by Hounsfield [1] and 

Cormack [2] has produced a profound impact on the field of medical imaging. Over the 

past decade, the development of spiral fan-beam/multi-slice/cone-beam CT technologies 

has dramatically increased and continues increasing the number of CT scans [3, 4]. 
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Smith-Bindman and her colleagues estimated that the number of CT scans was nearly 

tripled in the USA over the past 15 years, from 52 scans per 1,000 patients in 1996 to 149 

scans per 1,000 patients in 2010 [5]. Now, there are about 100 million CT scans annually 

performed around the world (http://www.buzzle.com/articles/cat-scan-cost.html). 

 The mathematical twist of spiral cone-beam CT comes from longitudinal data 

truncation. Because of the beam divergence, spiral cone-beam CT cannot be simplified 

into fan-beam reconstruction through longitudinal data interpolation like what was done 

for spiral fan-beam CT [6]. The first spiral cone-beam CT algorithm was derived by 

Wang et al. [7] by extending the popular circular cone-beam CT algorithm by Feldkamp 

et al. [8]. It has taken CT reconstruction researchers about a decade to find theoretically 

exact solutions [9-13]. More details can be found in [3, 14]. 

 Encouraged by the impressive results from overcoming the longitudinal data 

truncation, we were very curious about what would happen with the transverse data 

truncation. This is actually the well-known “interior problem” [15], in which an internal 

region of interest (ROI) is irradiated with x-rays only through the ROI to recover the ROI 

image exactly. Unfortunately, it was already proven long time ago that the interior 

problem had no unique solution in general [15]. The historical fact that reliable image 

reconstruction cannot be performed from truncated projection data has contributed to the 

current CT architectures whereby the detectors are sufficiently wide to cover a transaxial 

section fully. When a traditional CT algorithm is applied for local reconstruction from 

truncated data, quantitative accuracy is lost in a reconstructed image, compromising its 

diagnostic value significantly. 

 To overcome the transverse data truncation innovatively, with our collaborators we 

have been developing interior tomography since 2007 [16-26]. Independent results in this 

area were also performed by peers [27-31]. By interior tomography we mean the 

theoretically exact yet numerically stable solution to the long-standing interior problem 

assuming appropriate yet practical a priori knowledge (Figure 1). In this sense, it is 

different from either traditional local tomography that settles with an approximate 

solution over an ROI [32] or well-known lambda tomography that only captures 

significant changes in an ROI [33]. Various kinds of a priori knowledge are possible to 
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enable interior tomography, such as a known sub-region inside an ROI [16, 27], outside 

an ROI [31, 34], or a sparsity model of an ROI [21, 24]. 

 A misconception is occasionally heard that approximate local reconstruction is only 

one constant away from the truth. According to page 169 of Natterer's classic textbook 

[15], the ambiguity is an infinitely differentiable function whose variation is relatively 

small well within an ROI but it increases rapidly towards the boundary of the ROI and is 

not bounded over the ROI. The magnitude estimates in Table 4.1 on page 170 of the same 

book [15] are ~2-13% for a sub-region of an ROI, which are considered rather significant 

because the CT number variation of soft tissues is in this range. Actually, we have proven 

that a non-zero constant ambiguity in an ROI is simply impossible[22], suggesting the 

non-trivialness of interior tomography. 

 As an emerging area, interior tomography brings research opportunities and promises 

practical applications. In this article, we will first review the literature on conventional 

local tomography that is theoretically approximate, and then discuss the essential 

meaning of interior tomography in both its special and general forms. The remaining 

parts of this paper are organized as follows. In section II, we will recall conventional 

local tomography techniques that can only produce approximate reconstruction from 

truncated projections. In Sections III and IV, we will respectively describe interior 

tomography for x-ray CT and other imaging modalities such as SPECT, MRI, and 

differential phase-contrast tomography. In Section V, we will focus on omni-tomography 

enabled by the general theory of interior tomography. In Section VI, we will discuss 

relevant issues and conclude the paper. 

II. Prior Art 

The interior problem and approximate solutions were extensively studied in the past 

decades. These results can be divided into two classes: (1) approximate algorithms for 

image reconstruction over an ROI [32, 35-42] and (2) lambda tomography algorithms for 

edge identification within an ROI [33, 43-56], either of which only assumes that local 

projection data are available. To put interior tomography in perspective, in this section 

we briefly touch upon these classes. 

II.1. Approximate Local Reconstruction 
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Since many applications involved the interior problem but it was believed that there 

would be no unique solution in such cases [15, 38], a number of researchers developed 

various approximate local reconstruction algorithms for this purpose. For example, Louis 

and Rieder derived the consistency conditions for the divergent beam transform and 

studied the singular value decomposition, which showed that the high angular frequency 

components can be well determined [40]. Sahiner and Yagle combined the non-uniform 

sampling and circular harmonic expansions for ROI reconstruction [41]. Using wavelets 

to localize the Radon transform, Rashid-Farrokhi et al. developed a multi-resolution 

method for ROI reconstruction from almost completely local projections [42]. Wiegert et 

al. extrapolated truncated ROI projections from forwarded projections of a previously 

acquired reference image and obtained excellent ROI images [39].  

   Our group published multiple papers in this regard. We studied the wavelet local 

tomography [57-59] for parallel and fan-beam geometries, and applied the results to 

cone-beam data [60]. Our wavelet filtering and local reconstruction techniques were 

applied to metal artifact reduction (MAR) [61, 62]. In a local ROI reconstruction scheme 

we proposed [63], a normal radiation dose is delivered to an ROI while a low radiation 

dose is applied outside the ROI. If both low and high quality datasets are acquired, we 

can combine them for excellent local image reconstruction such as for clinical micro-CT 

possibilities [64]. It is underlined that these local reconstruction algorithms we developed, 

along with similar algorithms other investigators developed [65-70], were approximate in 

principle. Hence, they have no theoretical basis to produce exact reconstruction results. 

II.2. Lambda Tomography 

 In contrast to approximate local reconstruction algorithms, lambda tomography 

techniques target boundaries only. Let x  and ξ  represent two-dimensional (2D) vectors, 

( )f x  a 2D bounded function, ˆ ( )f ξ  the corresponding Fourier transform, we have 
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where 2R  denotes the 2D space. Let Λ  be the Calderon operator defined as 
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                          ˆ( ) ( )f fΛ =ξ ξ ξ .                                                                                    (2.2.2) 

Lambda tomography is to reconstruct the gradient-like function ( )fΛ x  only from directly 

involved truncated projection data, which was first proposed in [43].  

        Despite its non-quantitative nature, lambda tomography has a major mathematical 

advantage over approximate local tomography. Thanks to the simplified reconstruction 

requirement, lambda tomography eliminates non-local filtering, and image reconstruction 

can be done with high computational efficiency [33]. Faridani  et al. studied the 

properties of the Calderon operator and its adjoint, whose linear combination was used 

for local reconstruction [45, 46].  Katsevich proposed an efficient numerical scheme to 

compute lambda tomography from a generalized Radon transform [47], and extended it 

for limited-angle [48], non-smooth attenuation [50], cone-beam [49] tomography. 

Furthermore, Katsevich proposed an improved version of cone-beam lambda tomography 

[54], updating his previous results [49].  

      Inspired by the results on exact CT reconstruction from data acquired along any 

smooth scanning curve [3, 71], a theoretically exact fan-beam lambda tomography 

formula was proved for data collected along a smooth trajectory in terms of the 2D 

Calderon operator [72]. It was also extended to cone-beam lambda tomography [73] and 

even with discontinuous trajectories [74]. Compared with the result in [54],  the major 

result in [73] is a special case of [54] with  a specific weighting function derived from the 

2D exact formula in [72]. Generally, it is impossible to reconstruct a 3D lambda 

tomography image exactly with a spiral cone-beam scan in terms of the 3D Calderon 

operator [74]. Hence, a skew cone-beam lambda tomography method was proposed [75]. 

Recently, Quinto et al. reported on electron lambda tomography [51, 76-78]. Katsevich 

studied motion compensated local tomography [52, 55, 56].   

III. Special Interior Tomography 
The development of CT theory is to use an increasingly smaller amount of data for 

theoretically exact image reconstruction. Examples include half-scan fan-beam 

reconstruction [79], 2D two-step Hilbert method [80, 81], and Tam-window-based cone-

beam reconstruction [9, 82]. Each relaxation of the data condition is a theoretical 

advancement. In the classic CT literature, a minimum dataset consists of transversely 
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non-truncated projections. Such a global dataset permits theoretically exact 

reconstruction of a cross-section or an entire volume. In contrast, interior tomography 

offers an exact inner vision over an ROI only from directly related local projection data, 

demonstrating in an essential sense and for the first time the uniqueness and stability of 

local reconstruction of reconstruction of an ROI only from data that directly involve the 

ROI (Figure 2). This decomposition has sharpened our understanding of the relationship 

between the image and projection domains, which shows the locality correspondence 

across these domains.  

This aforementioned relationship is fundamentally related to Gel’fand-Graev 

theory [14, 83]: Backprojection of differentiated projection data over a PI-line segment 

gives the truncated Hilbert transform over it. Here, the PI-line segment is defined as a 

line-segment connecting two different points on a scanning trajectory, and the 

backprojection is performed over the data acquired along the corresponding PI-arc (the 

portion of the scanning trajectory between the two points of the PI-line segment). Let 0H  

be a set of oriented 1D lines in the 3D real space 3  through the origin. Since an oriented 

line has a direction, 0H  can be viewed as the unit sphere 2S  in 3  and 2S∈α  defines 

the oriented line 0t H∈α , t∈ . Let us fix a 1D oriented curve γ , which can be 

represented as an oriented curve 2C S⊂γ . For a compactly supported smooth function 

( )f x , let us define an operator J γ  on the integral transform 

            2 3( , ) ( , ) ( ) , ,Rf f t dt Sϕ = = + ∈ ∈∫α β α β α β α β


 ,                              (3.0.1) 
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where  jα and jβ represent the thj component of α  and β , respectively. When Cγ  is a 

smooth curve on 2S  whose end points are diametrically opposite on 2S , it is called a 

quasicycle.  Gel’fand and Grave’s major results can be re-stated as follows. 



 7 

Theorem 3.0.1. [14, 83] If γ  is a quasicycle in 0H , then ( )2 2( )J R c E=γ γ  with E  

being the identity operator and 2( )c γ a constant. Thus, for the integral transform Rfϕ = , 

one has the inversion formula 

                                 2( )J RJ c fϕ =γ γ γ .                                                                  (3.0.3) 

In the CT field, J Rγ  is exactly the Hilbert transform relationship between the 

backprojection data and the original image on a PI-line, which was re-discovered 13 

years later [81]; see [14, 83] for more details. In contrast, special interior tomography 

means that a truncated Hilbert transform data can be uniquely and stably inverted under 

various quite general assumptions on an ROI, which is a step forward relative to 

inversion of the finite Hilbert transform and will be explained in the following two sub-

sections.  

III.1 Known Sub-region Based Interior Tomography 

The first working assumption for interior tomography is the availability of a known sub-

region in an ROI [16, 27, 84]. In many scenarios, a sub-region is indeed known in 

advance, such as air in airways, blood through vessels, or images from prior scans. Our 

work [16] was inspired by Defrise et al.’s work on the partial PI line based Hilbert 

transform inversion [85]. Initially, we struggled to perform exact local reconstruction 

assuming one known point in an ROI (Figure 3). This attempt was to solve a conjecture 

posed in our R01 proposal (EB002667) that Katsevich’ helical cone-beam reconstruction 

[9] can be done along a bundle of curves within the Tam window. We were not 

successful with interior tomography until a known point assumption was enhanced with a 

known sub-region of non-zero measure. By the analytic continuation, it was 

demonstrated that the interior problem can be exactly and stably solved if a sub-region in 

the ROI is known [16-18]. The key issue for exact interior reconstruction based on a 

known sub-region is the inversion of a truncated Hilbert transform. A projection onto 

convex sets (POCS) method and a singular value decomposition (SVD) method were 

respectively adapted to reconstruct interior images from truly truncated data, and 

produced excellent results [16, 23, 86]. Although the POCS method is computationally 
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expensive, it is easier to employ additional constraints. The SVD method is 

computationally much more efficient than the POCS method.  

 The major theoretical results can be summarized as follows: 

Theorem 3.1.1 [16]: Let 1 2 3 4 5, , , ,c c c c c  be five real numbers with 1 3 5 4 2c c c c c< < < < . A 

smooth function ( )f x  supported on 1 2[ , ]c c  can be exactly reconstructed on 5 4[ , )c c  if (i) 

( )f x  is known on 3 5( , )c c ; (ii) ( )g x  is known on 3 4( , )c c ,which is truncated data of the 

Hilbert transform of ( )f x  , and (iii) the constant fC  is known, which is the integral of 

( )f x .  

The statement of Theorem 3.1.1 is for a 1D PI-line in a 2D or 3D object through a known 

sub-region, where x represents the 1D coordinate along the PI-line, 1 2[ , ]c c  represents the 

intersection between the compact object support and the PI-line, 3 4[ , ]c c  denotes the 

intersection between the ROI/VOI and the PI-line, 3 5[ , ]c c  denotes the intersection 

between the known sub-region and the PI-line, ( )g x   can be calculated from projections 

collected along the corresponding PI-arc, and fC  can be obtained from the x-ray path 

containing the PI-line. With the analytic continuation of both ( )g x  and ( )f x , a more 

general result can be expressed as:  

Theorem 3.1.2 [27, 31]: Let 1 2 3 4 5 6, , , , ,c c c c c c  be six real numbers with 

1 3 5 6 4 2c c c c c c< < < < < . A smooth function ( )f x  supported on 1 2[ , ]c c can be exactly 

reconstructed on 6 4[ , )c c  if (i) ( )f x  is known on 3 6( , )c c ; (ii) ( )g x  is known on 3 5( , )c c  

and 6 4( , )c c , and (iii) the constant fC  is known.  

III.2. Sparsity-model-based Interior Tomography 

The known-sub-region-based interior tomography approach has serious limitations. There 

are situations where no precise information is available on any sub-region, especially in 

the scenario of contrast-enhanced CT studies. To address this challenge, the second 

working assumption we figured out is that an ROI is piecewise constant or piecewise 

polynomial [21, 22, 24-26, 87]. Then, the total variation (TV) minimization or high order 

TV (HOT) minimization can be coupled with the data discrepancy minimization to solve 

the interior problem uniquely and stably [26]. The heuristics behind the TV or HOT 
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minimization is that any “ghost” function invisible from measured local data would 

induce higher TV or HOT values. Hence, such a ghost cannot survive the TV or HOT 

minimization. Further extensions are possible, such as with a more effective transform 

based compressibility. Note that the piecewise parametric assumption is already a quite 

general image model [77], somehow comparable to the limited bandwidth for digital 

signal processing. 

        For piecewise constants or piecewise polynomial functions, it is natural to use the 

space of functions of bounded variation to capture the discontinuities. Mathematically, 

the total variation of an image 1 2( , )f x x  inside an ROI can be evaluated with 

 
1 2( , )

a

tvf f x x dx∇
Ω

= ∫ ,                                                                                   (3.2.1) 

where 1 2( , )f x x∇  represents a sparsifying transform of 1 2( , )f x x defined on the ROI aΩ  and 

a  denotes the radius of the ROI. For the commonly used gradient transform in the 

biomedical imaging field, we can use 

 

2 2

1 2 1 2
1 2

1 2

( , ) ( , )( , ) f x x f x xf x x
x x∇

   ∂ ∂
= +   ∂ ∂   

,                                                     (3.2.2) 

which is the gradient magnitude or the maximum directional derivation at 1 2( , )x x . When 

there exists an artifact image 1 2( , )af x x  due to missing data outside an ROI of radius a , the 

total variation becomes  
2 2

1 2 1 21 2 1 2

1 1 2 2

( , ) ( , )( , ) ( , )

a

a a
tv

f x x f x xf x x f x xf dx
x x x xΩ

   ∂ ∂∂ ∂
= + + +   ∂ ∂ ∂ ∂   
∫  ,                    (3.2.3)  

First, we have the following theorem: 

Theorem 3.2.1 [21, 22, 87]: Suppose that all the projections through an interior ROI of a 

compactly supported and square integrable nonzero function f  are available. The 

attenuation coefficient inside the ROI can be exactly determined by minimizing the total 

variation defined by Eq. (3.2.1) from the measured projections if f in the ROI can be 

decomposed into finitely many constant sub-regions.  

Then, we have the following more general theorem in terms of the high-order total 

variation (HOT) [24]:   
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Theorem 3.2.2[24]: Suppose that all the projections through an interior ROI of a 

compactly supported and square integrable nonzero function f  are available. The 

attenuation coefficient inside the ROI can be exactly determined by minimizing the high-

order total variation (HOT) from the measured projections if f in the ROI can be 

decomposed into finitely many sub-regions where the function can be modeled as a 

polynomial, with  the HOT being defined as 

,

2 2 211

1 1
1 , 0 1 2 1 2

HOT ( ) min ,
i i j a

nm n

n i j r n r
i j i j N r

f f ff f f ds dx
x x x x

++

+ + −
= > ∈ =Γ Ω

      ∂ ∂ ∂ = − + +      ∂ ∂ ∂ ∂       
∑ ∑ ∑∫ ∫ .     (3.2.4)  

In Eq. (3.2.4), 1 2( , )f x x  is a piecewise nth ( 1n ≥ ) order polynomial function in the ROI, m  

is the number of sub-regions, ,i jΓ represents piecewise smooth boundaries between thi and 

thj  sub-regions, and iN  is the neighborhood regions of the thi sub-region. 

III.3. Practical Performance 

To demonstrate the application of interior tomography, a cardiac CT study was 
performed on a state-of-the-art GE discovery CT750 HD scanner at Wake Forest 
University Health Sciences [88]. After appropriate pre-processing, we obtained a 64-slice 
fan-beam sinogram. The radius of the scanning trajectory was 53.852 cm. Over a 360° 
range, 2200 projections were evenly acquired. For each projection, 888 detector elements 
were equi-angularly distributed, which defined a field of view of 24.92 cm in radius. 
From each sinogram, an 800x800 image matrix was reconstructed using the filtered 
backprojection (FBP) method as a benchmark.  

To evaluate our sparsity-model-based interior tomography techniques, each 
projection was truncated by discarding 300 detector elements on each of its two sides to 
just cover an interior ROI of 8.70 cm in radius. This interior reconstruction process was 
implemented in a soft-threshold filtering framework, with a flowchart in Figure 4 [89]. 
The algorithm included two major steps. In the first step, the ordered-subset simultaneous 
algebraic reconstruction technique (OS-SART) [90] was used to reconstruct a digital 
image from all the truncated projections. The initial image was set to zero, and the 2200 
truncated projections were divided into 88 subsets, and each of them includes 25 
uniformly distributed projections. Let the subset index be as 1, 2,...., 88 sequentially. In 
each iteration, all the subsets were employed in the order of 1, 45, 2, 46, ..., 44, 88 to 
suppress artifacts. Then, the  total difference of an intermediate image was minimized 
using the fast iterative soft thresholding algorithm (FISTA) [91] and a pseudo-inverse 
discrete difference transform (DDT) [89]. To accelerate the converging speed, the 



 11 

projected gradient method [92] was used to determine an optimal threshold for the soft 
thresholding filtration. The two steps were alternated until the refinement in the 
projection domain became insignificant. The reconstructed image was also in an 800x800 
matrix covering a region of 44.86x44.86 cm2. It can be seen in Figure 5 that the 
difference between the interior reconstruction and global reconstruction became smaller 
and smaller with the increment of the iteration index, and should approach zero in the 
limiting case when scattering, beam-hardening and noise are negligible according to our 
theoretical analysis [21, 26, 87]. 

III.4. Advantages and Limitations 

Interior tomography allows exact reconstruction from less data. Naturally, there are major 

advantages from the less-is-more effect in this circumstance. At the beginning of this 

section, we have shown that less means a deeper theoretical understanding of the local 

reconstruction mechanism. In the following, we suggest that less means lower, larger, and 

faster, among other benefits. 

Less is lower – Less data is equivalent to lower radiation dose, because of not only a 

narrower beam but also a less angular sampling requirement in the longitudinal studies or 

multi-scale scenarios. The smaller an ROI is, the narrower the beam will be, and the less 

radiation gets involved. Because of the narrower beam, the number of scattered photons 

becomes less, which improves contrast resolution. Hence, one can reduce radiation dose 

further, given the same contrast resolution as that of the global reconstruction from a 

complete dataset. Interestingly, for a smaller ROI in a case of a known background 

outside the ROI, the spatial resolution of global reconstruction can be maintained for 

interior reconstruction at a less angular sampling rate. Our numerical results are 

consistent with the heuristics that only two projections (two independent readings per 

projection, which can be assured by choice of rays) are needed to reconstruct a 2 by 2 

ROI, three projections (three independent readings per projection) are sufficient to 

reconstruct a 3 by 3 ROI, and so on. In other words, the number of projections could be 

reduced with interior tomography in favorable cases (say, the region outside the ROI is 

roughly known), accordingly reduced is the radiation dose in this scenario. 
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Recently, compressive sensing has been a hot topic in the signal processing 

community. Inspired by this powerful theory, “few-view” interior tomography was 

studied with encouraging results [30, 93-96] (Figure 6). Another dimension towards dose 

reduction is to perform statistical interior tomography [97, 98], which is an adapted 

version of conventional statistical reconstruction [99]. There is no doubt that less data and 

less radiation mean lower cost and safer CT systems. Efforts in this direction will be 

significant for either “low-end” or “high-end” CT systems. 

Less is Larger – Acquisition of less projection data is achieved with a narrower beam, 

and an object larger than the beam width is not a concern anymore. In other words, 

interior tomography can handle objects larger than a field of view. This flexibility can 

certainly enhance the utility of a CT scanner. In nano-CT studies, one reduces a sample 

into a narrow x-ray beam for complete projection profiles. In this tedious process, 

morphological and functional damages may be induced. Supported by an NSF/MRI grant 

and in collaboration with Xradia, we are developing a next generation nano-CT system 

capable of focusing on an ROI and reconstructing it accurately within a large object 

(Figure 7). In a geo-science project, fossils from the Ediacaran Doushantuo Formation (ca. 

551-635 million years old) were investigated, which are too valuable to be broken, and 

demand interior tomography. Another example is the large patient problem, i.e., a patient 

is larger than the field of view of a CT scanner, which can now be solved using 

theoretically exact interior tomography, instead of using conventional approximate 

methods such as extrapolation for data completion. 

Less is faster – Interior tomography allows a smaller detector size, a faster frame rate, 

and more imaging chains in a gantry space, all of which contribute to an accelerated data 

acquisition process. Clearly, the evolution of the CT technology is for faster and faster 

scanning. Spiral CT is revolutionary [3] because it enables truly volumetric and dynamic 

tomographic x-ray imaging, utilizing a high-tech slip ring, a modern detector array, 

sophisticated reconstruction methods and system architectures. The scanning speed of 

more than 3 turns per second has reached the mechanical upper bound. While dual-source 

scanners are well received, the scanning speed is still not sufficient to handle challenging 

cases of rapid or irregular heart beating and other physiological processes. The physical 
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obstacle to use more sources and detectors is the rather limited gantry space where at 

most we can assemble a triple-source system [100]. An interior tomographic imaging 

chain is slimmer, weighs lighter, facilitates faster rotation, records less data, and transfers 

them more rapidly. Thus, multiple local imaging chains can be fitted into a gantry for 

simultaneous data acquisition and ultrafast interior reconstruction [20].  

      In 2009, our group proposed a multi-source interior tomography scheme to improve 

temporal resolution of CT [20] (Figure 8). For a CT scan of the heart, a field of view of 

~15cm in diameter is preferred (apart from some very special cases where only part of the 

heart or coronary artery would be of interest) and can be achieved using multi-source 

interior tomography by scanning the source-detector chains in a circular, saddle-curve or 

another trajectory. In the case of 2 1N +  sources, the radius of the field of view can be 

maximized by arranging the source-detector pairs equi-angularly, or re-configured for 

other purposes. This scheme promises to revitalize the dynamic spatial reconstructor 

(DSR) concept [101, 102], and in the limiting case allows instantaneous temporal 

resolution. However, the cross-scattering effects between image chains are challenging 

for the multi-source scheme, and must be managed such as with algorithmic 

compensation or beam multiplexing.   

In the CT field, “CT" and “scanning” have been together and inseparable. 

Nevertheless, with the many-source interior tomography scheme, taking a snapshot of an 

ROI is feasible without any scanning. When such a snapshot does not adequately cover 

features of interest, one can always take another snapshot. In other words, one can roam 

within an object without scanning. Although these snapshots are not taken at the same 

time, each of them is an instant reflection of the ROI at the corresponding moment, and 

could give critical information for medical and non-medical studies. 

Less is not always better – While compressive sensing inspired reconstruction 

algorithms produce visually pleasing images, diagnostically critical information may be 

hidden or lost [103]. This potential risk is substantial with interior tomography especially 

few views. In practice, the minimum amount of data can only be determined in a task 

specific fashion, through extensive tests, and with an optimized algorithm. Whenever the 

information carried by data is less than the number of degrees of freedom of the sparsest 
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model for an ROI, the solution will not be unique, and the promise of interior 

tomography cannot be hold. This pre-caution must be underlined to avoid any adverse 

effect. Even if sufficiently many views are available for interior tomography, the stability 

of interior reconstruction is not as good as that of global reconstruction for a well-known 

mathematical reason [26]. This weakness can be addressed with more prior knowledge, 

sparsely sampled more global data, or other means. 

IV. General Interior Tomography 
Interior tomography has been extended from the CT field to other tomographic imaging 

modalities, such as single-photon emission computed tomography (SPECT) [104-110], 

MRI [111, 112], differential phase-contrast tomography [113], and spectral CT [98]. 

Based on these established interior tomographic imaging modes, we have postulated the 

following abstraction that theoretically exact local tomography can be always done only 

from indirect measured data that directly involves a region of interest under rather 

general assumptions. This general interior tomography principle can be further 

appreciated in the following case studies. 

IV.1. Interior SPECT 
While the CT reconstruction algorithms are being advanced rapidly, SPECT techniques 

are being improved as well [114-118]. As a unique tomographic imaging modality, 

SPECT is to reconstruct a radioactive source distribution within a patient from data 

collected with a gamma camera at multiple orientations. Different from the line integral 

model for x-ray CT, a SPECT projection can be mathematically modeled as an 

exponentially attenuated Radon transform [118, 119]. Thus, the CT reconstruction is a 

special case of SPECT when the attenuation coefficients are set to zero, but CT 

reconstruction techniques cannot be used for SPECT in general.   

      Encouraged by excellent results from special interior tomography that was formulated 

for CT, interior SPECT was first developed assuming a constant attenuation background 

[104]. Based on interior tomography results in the CT field, we proved in 2008 that 

theoretically exact interior SPECT is feasible from uniformly attenuated local projection 

data, aided by a known sub-region in an ROI [104]. With total variation minimization 

http://en.wikipedia.org/wiki/Tomography
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techniques [21, 24], we further proved that if an ROI is piecewise polynomial, then it can 

be uniquely reconstructed from truncated SPECT data that go directly through the ROI 

[105]. Based on the above results, other researchers developed variants of interior SPECT 

for more flexibility [106-109].   

      Let (f x)  be a 2D smooth distribution function on a compact support Ω  with 

( , )x y= ∈Ωx . In a parallel-beam geometry, a SPECT projection of (f x)  is [118]: 

( )

( , ) ( ) t

s t dt

oP s f s t e dt
µ

θ

∞
⊥∞ − +

⊥

−∞

∫
= +∫

θ θ

θ θ
 

,                          (4.1.1) 

where the subscript “o” denotes original projection data, (cos ,sin( ))θ θ=θ , 

( sin ,cos( ))θ θ⊥ = −θ , and ( )µ x  the attenuation map on the whole support. A practical 

uniform attenuation map can be defined as 

                             

0( )
0
µ

µ
∈Ω

=  ∉Ω

x
x

x
,                                                         (4.1.2) 

where 0µ  is a constant. Since the object function is compactly supported, we can 

determine the length of the intersection between the support Ω  and the integral line 

for ( , )oP sθ . Without loss of generality, we denote this length as max ( , )t sθ , and Eq. (4.1.1) 

becomes 

 0 max 0( , )( , ) ( )t s t
oP s e f s t e dtµ θ µθ

∞
− ⊥

−∞

= +∫ θ θ .                             (4.1.3) 

Let us assume that the compact support Ω  and the constant coefficient 0µ  are known. By 

multiplying a weighting factor 0 max ( , )t seµ θ , the projection model for SPECT is reduced to 

 0 max 0( , )( , ) ( , ) ( )t s t
w oP s P s e f s t e dtµ θ µθ θ

∞
⊥

−∞

= = +∫ θ θ ,                    (4.1.4) 

where the subscript “w” indicates weighted projection data.  

             Let us denote a weighted backprojection of the differential projection data as  

                                       0

0
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In  2004, Rullgard proved a relationship linking an object image ( )f x  and the weighted 

backprojection ( )g x  as [118] 

                                      
0

( ) ( , ) 2 ( ) ( , )g g x y PV ch y y f x y dyµπ
+∞

−∞

= = − −∫x    ,                (4.1.6) 

where  “PV” represents the Cauchy principle value integral, and 
0

chµ  is defined as 

                                   
0 0

0
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y y

µ µ

µ
µ

π π

−+
= =  .                                        (4.1.7) 

When 0 0µ → , 
0

chµ  becomes the Hilbert transform kernel, in consistence with the results  

in the CT field [80]. Eq. (4.1.7) is called a generalized Hilbert transform.   

       We have two important theorems for interior SPECT, corresponding to the known-

sub-region-based and sparsity-model-based special interior tomography approaches 

respectively. 

Theorem 4.1.1 [104]: Let 1 2 3 4 5, , , ,c c c c c  be five real numbers with 1 3 5 4 2c c c c c< < < < . A 

smooth function ( )f x  supported on 1 2( , )c c  can be exactly reconstructed on 5 4( , )c c  if (i) 

( )f x  is known on 3 5( , )c c , (ii) ( )g x  is known on 3 4( , )c c , which is the truncated data of 

the generalized Hilbert transform, and (iii) the constant 0µ   and 
0

mµ are known, where 

   
2

0

1

0( ) cosh( )
c

c

m f x x dxµ µ= ∫ ,                                                   (4.1.5) 

and ( )g x can be computed using Eq. (4.1.5) proved by Rullgard [118].   

In Theorem 4.1.1, all the relevant notations have the same meanings as that in Theorem 

3.1.1, and Theorem 4.1.1 can reduce to Theorem 3.1.1 when 0 0µ = .  

Theorem 4.1.2 [105]: Suppose that 0 ( )f x  is a smooth function in AΩ  and 0 ( )f x  is a 

piecewise n-th ( 1n ≥ ) order polynomial function in an ROI a AΩ ⊂Ω ; that is, aΩ  can be 

decomposed into finitely many sub-domains { } 1

m
i i=

Ω  such that 

0 ( ) ( )if f=x x , for i∈Ωx , 1 i m≤ ≤ ,                                                  (4.1.6) 
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where ( )if x is an n-th order polynomial function, and each sub-domain iΩ  is adjacent to 

its neighboring sub-domains jΩ with piecewise smooth boundaries ,i jΓ , ij N∈ . All the 

attenuated projections defined by Eq. (4.1.1) through the ROI are available and the 

constant attenuation coefficient 0µ is known. If ( )h x is the reconstructed image from all 

the local attenuated projections, 
0 1

n+1 n+1HOT ( ) min HOT ( )
f f u

h f
= +

= where 1( )u x is an analytic 

function in aΩ  due to the missing data outside the ROI, and  

,

2 2 211

1 1
1 , 0 1 2 1 2
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++
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∑ ∑ ∑∫ ∫ ,   

 (4.1.7) 

then 0( ) ( )h f=x x  for a∈Ωx  [105].  

To demonstrate the utility of interior SPECT, we downloaded a SPECT cardiac 

perfusion image from Internet and modified it into a realistic 128 by 128 image phantom, 

covering an area of 128 by 128 mm2. It represents a radionuclide distribution in a human 

heart. In our simulation, we assumed a constant attenuating background 0 0.15µ =  cm-1 

on a compact support of a standard patient chest size. We used an equi-spatial detector 

array consisting of 78 detector elements, each of which was 1.0 mm in length. For a full-

scan, we acquired 128 equi-angular projections. Clearly, this image phantom does not 

satisfy the piecewise polynomial model in the case of n=1. To improve the stability of 

interior SPECT, two additional constraints were incorporated into the projection-onto-

convex-sets (POCS) framework: (1) non-negativity, which means that the radionuclide 

distribution should not be negative, and we kept making negative values zero during the 

iterative process; (2) compactness, which means that the radionuclide distribution should 

be inside the human body, and we made the pixels outside the body-contour zero. Our 

results (Figure 9) demonstrate that interior SPECT worked well, even if the piecewise 

polynomial model was not exactly satisfied. 

IV.2. Interior MRI 
A number of important magnetic resonance imaging (MRI) applications require high 

spatial and temporal resolutions. With technological advances in MRI hardware, multiple 

echo data acquisition and image reconstruction strategies, fast MRI is a hot topic. 
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However, the current achievable spatial and temporal resolutions are often insufficient, 

such as in cases of vulnerable plaque characterization that was attempted for carotid but 

is not feasible yet for coronary in vivo, imaging-guidance biopsies/intravascular 

procedures, study of brain function, extraction of cancer biomarkers, and etc. It is well 

known that the existing techniques for improving temporal resolution compromise spatial 

resolution, with image noise being fixed over a whole field of view. However, if one 

targets an ROI instead of the whole patient cross-section, both spatial and temporal 

resolutions can be significantly improved.  A key point is that such an interior MRI mode 

can be implemented with either a global or local background magnetic field. Needless to 

say, a local background magnetic field will greatly relax the engineering requirement and 

the system cost. 

 Given a locally homogeneous main field just enough to cover an ROI, to extract MR 

signals for this ROI we can use a time-varying gradient method. The idea is to keep a 

gradient field zero at an ROI slice and change the gradient rapidly off that level. As a result, iso-

regions of magnetic strength are incoherently excited outside the ROI, avoiding signals that 

complicate the ROI imaging. This idea can be extended for volume of interest imaging. Let us 

take 2D interior MRI as an example. While an ROI is selectively excited, standard linear 

x and y gradient fields can be applied with slopes Gx and Gy respectively for spatial 

encoding to produce the ROI signal as follows: 

 ∫
+=

ROI
ytGxtGi dxdyets yx ])()[()( γγρ ,  (4.2.1) 

where � represents a 2D MR image to be reconstructed, γ  is a constant, and t  is a 1D 

parameter for the measured data. Eq. (4.2.1) corresponds to one line through the origin in 

the k-space. If we rotate the magnetic field over a range of 180 , all the measured data 

will fully cover the whole k-space. This continuous model can be discretized and solved 

using a compressive sensing method [112] (Figure 10). While interior MRI as described 

here is mathematically the easiest, compressive sensing techniques can still be applied for 

various well-known benefits. 

IV.3. Interior Differential Phase Contrast Tomography 

The propagation of x-rays in a medium is characterized by the complex index of 

refraction βδ in +−= 1 , where n  is approximately 1, δ  and β  quantify phase shift and 
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attenuation magnitude respectively [120]. The cross section of x-ray phase shift is one 

thousand times larger than that of linear attenuation in the 20–100keV range. This 

suggests that phase-contrast imaging has higher sensitivity for light elements than 

attenuation-contrast imaging [121, 122]. The contrast-to-noise ratio of differential phase 

contrast CT images is superior to the attenuation-contrast CT counterpart [123]. 

Therefore, phase-contrast imaging can observe subtle but critical structures of soft 

biological tissues [124-129]. Moreover, the refractive index of tissues is inversely 

proportional to the square of the x-ray energy while the absorption coefficient decreases 

as the fourth power of the x-ray energy [120]. Hence, x-ray phase-contrast imaging is 

suitable to operate at higher energies (>30keV) for lower radiation dose than attenuation 

imaging [130, 131]. Higher energy x-ray imaging has an important potential for studies 

on large animals or patients [132]. Recent work shows that differential phase-contrast CT 

manifests a noise power spectrum (NPS) with a k1  trait, while conventional CT NPS 

goes with k . This is a significant difference in noise granularity, favoring differential 

phase-contrast CT [133-135].  

 Over the past year, interior differential phase-contrast tomography has been studied. 

It has been proved that the unique interior reconstruction is guaranteed from truncated 

differential projection data that only go through an ROI. The main theoretical results are 

as follows [25, 113]: 

Theorem 4.3.1 [25, 113]: If a refractive index image is known on a small sub-region 

inside an ROI, then the refractive index function on the ROI can be uniquely and stably 

determined from the truncated differential phase shift data through the ROI. 

Theorem 4.3.2 [25, 113]: If (1) a refractive index image of an object is piecewise 

polynomial in an ROI, (2) another refractive index image is also piecewise polynomial in 

the same ROI, and (3) both the images have the same differential phase shift data 

through the ROI, then the two images are identical. 

Theorem 4.3.3 [25, 113]: The high order total-variation (HOT) of a piecewise 

polynomial refractive index function in an ROI is smaller than that of another function, 

provided that they have the same differential phase shift through the ROI. 
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Theorem 4.3.2 shows that the interior reconstruction of a refractive index function from 

truncated differential phase shift data has a unique solution within the class of piecewise 

polynomial functions. Theorem 4.3.3 confirms that if the true refractive index distribution 

is indeed piecewise polynomial in an ROI, the differential phase-contrast interior 

reconstruction can be performed through the HOT minimization. Because a common 

diffractive index distribution can be approximated by a piecewise polynomial function, 

an ROI can be accurately reconstructed in principle using HOT minimization (Figure 11) 

subject to the data fidelity. 

V. Omni-Tomography 

Enabled by the general interior tomography principle, we recently proposed an omni-

tomographic imaging strategy, which is also referred to as omni-tomography [112] 

(Figure 12). The essential points of omni-tomography were highlighted in a talking point 

article: http://medicalphysicsweb.org/cws/article/opinion/51026. Our team is actively 

working along this direction, with potential targets including interior-CT-MRI and 

interior-CT-SPECT combinations. 

 Multimodality imaging with targeted agents such as multimodality probes holds great 

potential for early screening, accurate diagnosis, prognostic value, and interventional 

guidance. PET-CT, SPECT-CT, optical-CT, and PET-MRI are well-known examples of 

dual-modality successes. In 2009, Cherry with University of California–Davis asked an 

inspiring question on what would be "a more general trend towards harnessing the 

complementary nature of the different modalities on integrated imaging platforms" [136]. 

 Preclinical and clinical studies critically depend on in vivo tomography of diversified 

features that cannot be provided by a single modality in many cases. Software-based 

registration of different types of images has been widely reported but it has major 

limitations, especially when high spatial and temporal resolutions are needed for fast or 

transient physiological phenomena.  Hence, the seamless fusion of all needed imaging 

modalities would be the Holy Grail. However, such a grand fusion has been challenged 

by the physical conflicts of these scanners. 

 To address this grand challenge, omni-tomography lays the foundation for the 

integration of multiple major tomographic scanners into a single gantry [112]. As such, 

http://medicalphysicsweb.org/cws/article/opinion/51026
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each of tomographic scanners can be made thinner or smaller, and be fused together for 

comprehensive and simultaneous data acquisition from an ROI. We believe that this new 

thinking represents the next stage of multimodality fusion to optimally reveal 

spatiotemporal links in physiological, pathological and pharmaceutical studies. 

Additionally, omni-tomography could be cost-effective in terms of equipment space and 

patient throughput. 

 Omni-tomography has many potential clinical applications. For example, an interior-

CT-MRI system could be fabricated for cardiac and stroke imaging. An interior CT-MRI 

scanner can target the fast-beating heart for registration of functions and structures, 

delivery of drugs or stem cells, and guidance of complicated procedures such as heart 

valve replacement. In [112], we presented a unified interior CT-MRI reconstruction 

method. This has the potential to reduce radiation dose with MRI-aided interior CT 

reconstruction. Also, CT-aided interior MRI reconstruction can generate fine details with 

little motion blurring. It is recognized that the rotating x-ray source and detector can 

interfere with MRI. A solution is to use a stationary multi-source interior CT scheme [20]. 

Since interior CT components are now fixed, the electromagnetic shielding for interior 

MRI becomes much easier. A comprehensive cost-performance analysis will be needed 

for an interior-CT-MRI prototype, but we expect such a machine will come into reality 

sooner or later. 

VI. Discussions and Conclusion  

As mentioned earlier, interior tomography and compressive sensing can be combined for 

reconstruction from an even less amount of data, leading to attractive imaging options 

such as few-view CT. It is well known that few-view CT does not give a unique solution 

in general, and neither would interior few-view CT. Again, the key is to utilize prior 

knowledge as much as feasible and achieve a unique solution or at least minimize image 

artifacts or biases. In this regard, compressive sensing techniques such as dictionary 

learning could help [93, 137-139] (Figure 13). 

 It is appropriate to emphasize that less is not always more. While compressive 

sensing inspired reconstruction algorithms produce visually pleasing images, 

diagnostically critical information may be hidden or lost [103]. This potential risk is 
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substantial with interior tomography as well. In practice, the minimum amount of data 

can only be determined in a task specific fashion, through extensive tests, and with an 

optimized algorithm. Whenever the information carried by data is less than the number of 

degrees of freedom of the sparsest model for an ROI, the solution will not be unique, and 

the promise of interior tomography cannot be overly claimed. This pre-caution is 

necessary to avoid any adverse effect.  

 We run a multi-scale CT facility, which covers a six order of magnitude range in 

terms of object size and image resolution (http://www.imaging.sbes.vt.edu/research/sam-

ct). An interior imaging capability can be implemented for nano-, micro- and macro-CT 

to enhance the imaging performance significantly.  

 In the functional space the classic CT theory assumes [15], a theoretically exact local 

reconstruction does requires a global dataset in the form of integrals over hyper-planes. 

However, when the functional space is restricted by an appropriate constraint, such as a 

known sub-region, piece-wise constant or polynomial functions, a theoretically exact 

local reconstruction can be indeed performed from a purely local dataset. Generally 

speaking, types of indirect measurement can be more complicated than integrals over 

hyper-planes, and associated inverse problems can be similarly posed. Targeting exact 

and stable interior reconstruction would be a promising direction for research on inverse 

problems with new types of indirect measurement. 

  Omni-tomography would serve as the first-of-its-kind platform enabling multi-

physics/coupled-physics-based imaging. This type of physical coupling and instantaneous 

imaging could suggest new imaging modes for synergistic information. Examples are 

already available in the biomedical imaging field.  It has been illustrated that CT and 

MRI data are synergistic in the image domain [139] (Figure 14). It is underlined here that 

the intrinsic physical interaction would be more fundamental.  For example, 

photoacoustic imaging combines ultrasound resolution and optical contrast and has been 

widely used [140]. In this imaging mode, laser pulses are delivered into biological tissues 

and partially absorbed to generate transient thermo-elastic expansions and ultrasonic 

waves. This allows a combination of high spatial resolution of ultrasound imaging and 

high contract resolution of optical imaging, revealing unique physiologic and pathologic 

information. As another example, temperature-modulated bioluminescence tomography 

http://www.imaging.sbes.vt.edu/research/sam-ct
http://www.imaging.sbes.vt.edu/research/sam-ct


 23 

utilizes focused ultrasound to heat a small animal body, modulate bioluminescent light 

emission in vivo, and improve reconstructed image quality [141]. In the same spirit, 

temperature-modulated fluorescence tomography utilizes recently emerged temperature 

sensitive fluorescence contrast agents for better imaging performance [142]. Yet another 

example uses ultrasound and MRI simultaneously for temperature-change-based thermal 

tomography [143]. In light of omni-tomography, many inspiring questions can be asked. 

For example, when CT and MRI scans are performed at the same time, will the imaging 

contrast mechanisms interfere?  The Zeeman affect means splitting a spectral line into 

several components under a static magnetic field. Hence, it is not unreasonable to guess 

that x-ray linear attenuation characteristics, especially small-angle scattering coefficients, 

may be altered by a strong magnetic field. When x-rays go through a patient, three types 

of scattering happen, including coherent scattering, photoelectric absorption and 

Compton scattering. It is not impossible that these scattering interactions will make T1 

and T2 change slightly which are possibly measurable. It is hoped that the strengths of 

such modulations depend on tissue types and physiological statuses. If that is the case and 

measurable, we will be able to see new information that cannot be seen if CT and MRI 

are sequentially performed. In other words, coupled physics imaging could be the next 

focus of omni-tomographic research. 

       Very recently, Zeng and Gullberg pointed out that the non-negativity and piecewise-

constant constraints do not guarantee a unique solution to the interior problem if the 

number of views is finite [144]. This is not surprising since interior tomography theory, 

like traditional analytic tomography theory, was developed under the assumption of 

continuous angular sampling, despite the piecewise model introduced over an ROI. When 

the number of views is finite, the general non-uniqueness of tomographic problems 

follows [15]. For general tomographic reconstruction without data truncation, the 

Shannon sampling theorem is applied for practical reconstruction. However, this logic 

cannot be directly extended to interior tomography, and some additional conditioning 

should be needed, such as the number of views must be large enough so that the minimal 

polygon constructed in [144] becomes larger than the whole compact support of an object 

of interest, and hence can be excluded. The supportive point made in [144] is that even in 

a case of highly truncated projections down to 5.2% only 30 views are sufficient to 
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remove the polygonal bias [144]. In other words, in almost all the practical applications 

the polygonal bias does not affect image quality in principle. Clearly, interior tomography 

theory can be further developed to accommodate this and other constraints while 

maintaining the theoretical exactness aided by appropriate knowledge [145, 146].     

      Although interior tomography theory has been developed based on individual 

imaging modalities (e.g. CT, SPECT, phase-contrast tomography), we believe that the 

interior tomography principle can be refined for a rigorous unification. Let us consider a 

general weighted integral over a sub-domain of an object, where the sub-domain is 

compact with a smooth boundary, and controlled by two parameters. When the first 

parameter of the sub-domain is fixed, varying the second parameter will move the sub-

domain smoothly over an ROI in one direction specified by the first parameter. 

Specifically, let us assume that the measurement be in the form of a P transform of 

weighted integrals over sub-domains, where P is a polynomial of differential operators 

up to a finite order.  It is our hypothesis that theoretically exact and stable ROI 

reconstruction can be done from the generalized measures that directly involve an ROI; 

that is, (1) the intersection of each sub-domain and the ROI is non-empty, (2) all 

measures satisfying (1) are available, and (3) the ROI is sparse satisfying the piecewise 

constant/polynomial model or in another linear transform domain. 

  It is underlined that interior tomography is a general approach and is extremely 

attractive in numerous applications, wherever we need to handle large objects, minimize 

radiation dose, suppress scattering artifacts, enhance temporal resolution, reduce system 

cost, and increase scanner throughput, as summarized in Table 1. In table 1, Oto CT 

stands for otolaryngology-oriented CT, NDE for non-destructive examination, OCT for 

optical computed tomography, and TEM for transmission electron microscopy.  

     In conclusion, we have reviewed recent tomographic progress in overcoming data 

truncation, being it longitudinal or transverse and with the latter as the emphasis of this 

paper. By doing so, we have covered special and general versions of interior tomography. 

Finally, we have proposed the grand fusion concept leading to omni-tomography. We are 

excited by the bright future of interior tomography and omni-tomography, and very much 

interested in theoretical investigation, computational optimization, systematic prototyping, 

and biomedical applications through interdisciplinary collaboration.  
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Table 1. Potential of interior tomography, where "xxx" stands for necessary and/or significant important, 
"xx" for important, and "x" for useful.   
 Larger Object Less 

Radiation 
Lower 

Scattering 
Faster 

Acquisition 
Smaller 
Detector 

Higher 
Throughput 

Cardiac CT xx xxx xxx x x xx 
Lung CT xx xxx xxx xx xx xx 
Oto CT x xx x x xxx xx 

Dental CT x xx x x xxx xx 
O-arm CT x xxx x x x xxx 
Micro CT xxx xxx xx xxx xxx xxx 
Nano CT xxx xx xx xx xxx xx 

NDE xxx x xx x xx xxx 
MRI x NA NA xxx NA xxx 

SPECT xxx NA NA xxx xx xxx 
PET xxx NA NA xxx xx xxx 
OCT xxx xx NA xxx xx xxx 

Ultrasound xxx NA x xxx x xx 
TEM xxx x xx xxx xx xx 
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Figure 1. Interior tomography idea for theoretical exact and stable reconstruction of a region of interest (ROI) 
only from projective data associated with x-rays through the ROI. (a) Global reconstruction from complete 
projections (the classic imaging geometry), (b) internal ROI reconstruction from truncated projections (the 
interior problem) without a unique solution in a constrained setting, (c)  and (d) theoretically exact and stable 
interior reconstruction assuming a known subregion and a sparsity model respectively. This figure is modified 
from [88]. 
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Figure 2. Exact ROI reconstruction conditions in comparison. For a field of view (FOV, a dashed ellipse) 
through which all line integrals are measured, exactly and stably recoverable ROIs (in grey) allowed by 
different data completeness conditions are not the same. (a) A small ROI permitted by Noo et al. [80], (b) an 
enlarged ROI enabled by Defrise et al. [85], (c) with interior tomography an ROI is as large as an FOV [16]. 
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Figure 3. Conjecture for interior tomography – Can an internal ROI be exactly and stably reconstructed only 
from local data through the ROI assuming a known point? This conjecture led to known-subregion-based and 
sparsity-model-based interior tomography respectively. 
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Figure 4. Algorithmic flowchart for soft-threshold filtering based interior tomography. 



Figure 5. Interior CT demonstration from a clinical CT scan. (a) A volumetric image reconstructed using the 
filtered backprojection method, (b) a magnified interior cardiac ROI in a transverse slice in (a), and (c) the 
interior ROI reconstruction corresponding to (b) using sparsity-model-based interior tomography. This figure is  
reprint from [88].  
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Figure 6. Less is lower – Interior tomography reduces radiation dose [85]. (a) The image reconstructed  from a 
global scan using a CNT-based micro-CT system at University of North Carolina, with the white circle for a 
cardiac ROI, (b) the local magnification of the ROI in (a), and (c) a sparsity-model-based interior micro-CT 
reconstruction from 400 projections after 60 iterations (without precise knowledge of any subregion in the ROI), 
(d)-(f) images reconstructed from 200,  100  and 50 projections to reduce radiation dose to 50%, 25% and 
12.5% of that for (c), respectively. This figure is reprint from [95]. 
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Figure 7. Less is larger – Interior nano-CT promises to handle a sample larger than the 
x-ray beam. Current sample reduction into a fixed x-ray beam is tedious and error-prone. 
This is a collaborative project between Biomedical Imaging Division at Virginia Tech and 
Xradia (http://www.xradia.com). 
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Figure  8. Less is faster – Interior tomography accelerates data acquisition. Since 
interior tomography allows uses a small detector, a multi-source interior 
tomography scheme can be used for parallel data acquisition. In the limiting case, 
instantaneous tomographic imaging of a small ROI becomes feasible [20].  

ROI 



Figure 9. Interior SPECT demonstration with a numerical cardiac phantom image. (a) An SPECT cardiac ROI 
image of 128 by 128 pixels, and (b) an interior ROI reconstruction assuming the attenuation coefficient µ0=0.15 
after 40 iterations . 
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Figure 10. Interior MRI demonstration with a numerical cardiac phantom image. (a) A global 
image reconstructed using the inverse fast Fourier transform (IFFT) method from randomly 
under-sampled MRI data (25%) along the phase-encoding direction, (b) the counterpart of 
(a) using the total variation (TV) minimization method, and (c) an interior MRI reconstruction 
using the TV minimization method from interior MRI data. This figure is reprint from [112]. 
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Figure 11. Interior phase-contrast tomography demonstration with a numerical phantom. (a) The original 
numerical phantom, (b) a truncated differential phase-contrast sinogram simulated assuming a grating-based x-
ray interferometer setup, and (c) the reconstructed image using interior differential phase-contrast tomography. 

(a) (b) (c) 



SPECT 
Detector Pin-holes 

Magnet 

X-ray 
Source 

X-ray 
Detector 

Figure 12. Omni-tomography idea for grand fusion of multiple imaging modalities. (a) and (b) are 
cross-sectional and volumetric views respectively, where two donut-shaped magnets are paired to 
define a uniform background  field covering an intended ROI, while other modalities such as CT and 
SPECT can be arranged between the magnetic rings [99]. To facilitate electromagnetic shielding, 
CT and and/or SPECT subsystems can be made stationary with a multi-source and/or multi-camera 
interior imaging arrangement (patent pending). 
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Figure 13. Dictionary-learning-based reconstruction outperforming TV-minimization-based reconstruction [124]. 
The more knowledge we have, the less amount of data we need for satisfactory reconstruction. Dictionary 
learning promises to extract prior knowledge flexibly and effectively from training images, being more specific 
than a TV-based sparsifying constraint  or a generic wavelet transform. 



Figure 14. Idea for omni-tomographic reconstruction in a unified framework. (a) an MR image phantom, (b) a 
CT image phantom corresponding to (a), where six implanted calcified regions are embedded, (c) a traditional 
CT reconstruction using the filtered backprojection method from 17 projections, and (d) dual-dictionary-
learning-based CT reconstruction from the same 17 projections but aided by MRI data synthesized from (a) 
with 4-fold under-sampling. This figure is reprint from [139]. 

(b) (a) (c) (d) 
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