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ABSTRACT

Features generated by Non-Negative Matrix Factorization (NMF)
have successfully been introduced into robust speech processing,
including noise-robust speech recognition and detection of non-
linguistic vocalizations. In this study, we introduce a novel tandem
approach by integrating likelihood features derived from NMF into
Bidirectional Long Short-Term Memory Recurrent Neural Networks
(BLSTM-RNNs) in order to dynamically localize non-linguistic
events, i. e., laughter, vocal, and non-vocal noise, in highly spon-
taneous speech. We compare our tandem architecture to a baseline
conventional phoneme-HMM-based speech recognizer, and achieve a
relative reduction of the frame error rate by 37.5 % in the discrimina-
tion of speech and different non-speech segments.

Index Terms— Non-Linguistic Vocalizations, Recurrent Neural
Networks, Non-Negative Matrix Factorization

1. INTRODUCTION

Automatic recognition of spontaneous speech in real-life situations,
as in dialog systems or transcription of meetings, is still a challenging
application: apart from background noise and linguistic irregularities,
spontaneous speech is likely to contain a variety of non-speech seg-
ments, such as non-linguistic vocalizations (laughter, breathing, filled
pauses) or other types of noise. A system that can detect these seg-
ments in the speech signal is immediately useful in two respects: first,
it can provide hints to an automatic speech recognition (ASR) system
about which parts of an utterance should be decoded and which not,
thereby reducing word errors that result from erroneous decoding of
non-speech parts; second, by distinguishing non-speech segments
from one another, non-linguistic information can be gained, which
can be vital for interpretation of human conversations especially in
‘emotionally capable’ technical systems.

A straightforward method to recognize non-speech parts is to
integrate them as additional acoustic models into a state-of-the-art
ASR system based on phoneme Hidden Markov Models (HMMs).
This method can be generalized to any type of non-speech event;
in contrast, approaches specialized in detecting one certain kind of
non-speech event, such as laughter [1], seem to detect them more
accurately. To unite both these approaches, and in line with our previ-
ous studies [2, 3], we aim at a general, purely data-based approach
for discrimination of speech, noise, and non-linguistic vocalizations,
which however operates outside the ASR framework and can hence
be used for a two-stage decoding process as in [2]. To this end, we
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employ a Bidirectional Long Short-Term Memory Recurrent Neural
Network (BLSTM-RNN) classifier, and features generated by Non-
Negative Matrix Factorization (NMF), which we have successfully
introduced to the non-linguistic vocalization domain in [3]. Building
on this study, where we performed segment-wise classification using
feature functionals, we now move forward to dynamic localization
of non-speech parts, disposing of the need to first segment the signal
into non-overlapping speech and non-speech segments, which is a
challenging task by itself. On the other hand, the BLSTM-RNN
appears well suited to this task, as it is a context-sensitive sequence
classifier that automatically learns the required amount of context.
In [1], context was shown to be beneficial for laughter detection;
furthermore, the BLSTM-RNN has delivered significant performance
gains for phoneme prediction in spontaneous speech [4]. Thus, we
now unite the benefits of both approaches by directly connecting the
output of the NMF algorithm to a BLSTM – for the first time, to our
knowledge.

Starting from this broad picture, we present the technical details
of our study as follows: in Sec. 2, we describe the general NMF
feature extraction paradigm, extending it to dynamic classification;
in Sec. 3, we shortly introduce the BLSTM classifier; in Sec. 4, we
describe in detail our experimental results with BLSTM and NMF,
which are evaluated in comparison to a state-of-the-art ASR system
on the Buckeye corpus of spontaneous speech [5]. Our conclusions
are drawn in Sec. 5. To increase clarity of the following section, we
introduce a convenient notation: for a matrix A, [A]ij shall denote
the element at row i and column j.

2. FEATURE EXTRACTION BY NMF

2.1. NMF Likelihood Features

Our concept of NMF-based feature extraction is based on super-
vised NMF and follows the principles of our previous study [3].
Considering the non-negative factorization of a spectrogram matrix
V ∈ R

M×N
+ of a speech signal,

V = WH, W ∈ R
M×R
+ ,H ∈ R

R×N
+ , (1)

our general feature extraction paradigm is to predefine the matrix
W, then performing gradient descent on a distance function be-
tween V and WH, such as the β-divergence dβ(V|WH) [6].
Gradient descent is implemented as a multiplicative update algo-
rithm for H. W is a predefined matrix of spectral vectors that are
concatenated column-wisely, W = [w(1); · · · ;w(R)], where each

w(j), j = 1, . . . , R is a characteristic spectrum of an acoustic event
that should be detected in the signal. In turn, these characteristic
spectra are extracted from training material by the NMF algorithm,
as presented in [3]. Naturally, in the context of our application, this
training material consists of speech and non-speech segments.
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As a result, the supervised NMF algorithm finds an optimal
modeling of the speech signal with a set of given spectra, and the
matrix H contains the information about which speech or non-speech
spectra contribute the most to the short-time spectra of the signal
frames. To ensure that the event spectra w(j) have equal power, W
is normalized column-wisely such that ||w(j)|| = 1, j = 1, . . . , R.
After obtaining H from supervised NMF, a normalization is applied
such that every column of H sums to unity:

[L]jt = [H]jt/
R∑

j=1

[H]jt. (2)

This makes the features independent of the power of the signal frames,
and allows interpreting the feature [L]jt as the likelihood that the spec-

trum w(j) is active in time frame t. Note that a similar normalization
was applied to the segment-wise functionals of the NMF activation
features in [3].

2.2. Choice of Distance Function

In the context of this paper, the d1 and d0 divergences are used, which
are equivalent to the generalized Kullback-Leibler (KL) divergence
and the Itakura-Saito (IS) divergence, respectively:

d1(V|WH) =
∑

i,j

[V]ij log
[V]ij

[WH]ij
− [V −WH]ij , (3)

d0(V|WH) = −MN +
∑

i,j

[V]ij
[WH]ij

− log
[V]ij

[WH]ij
. (4)

From (3) and (4), it can be immediately seen that d0 is scale-
invariant, i. e., d0(αV|αWH) = d0(V|WH) for any α > 0, and
that this is not the case for d1. Hence, d0 forces low-power com-
ponents of the signal to be estimated with the same accuracy as
high-power components, while d1 weighs errors in low-power com-
ponents less than errors in high-power components. As in [3] we
found the d1 divergence to be superior to the d2 divergence (squared
Euclidean distance) for classification of speech and non-linguistic vo-
calizations by NMF features, we will now compare the performance
of the d1 and d0 divergences.

Denoting the complex short-time spectrogram of the signal by
X, we will subsequently assume that V = |X| whenever the d1
divergence is used, and V = |X|2 for d0. Then, minimizing d1
corresponds to maximum likelihood (ML) estimation of H from
Poisson noise, while minimizing d0 is equivalent to ML estimation
from a sum of Gaussian components [7]. In the remainder of this
paper, we write ‘NMF-KL’ and ‘NMF-IS’ for the NMF algorithms
minimizing d1, respectively d0.

3. BIDIRECTIONAL LONG SHORT-TERM MEMORY
RECURRENT NEURAL NETWORKS

Since we will evaluate different types of RNNs, including uni-
and bidirectional RNNs and RNNs with Long Short-Term Memory
(LSTM), on the task of localizing non-speech segments in sponta-
neous speech, we briefly address theoretical differences between
those types of networks, and especially motivate the use of LSTM for
the task. For a detailed discussion, we refer to [8].

In contrast to basic feedforward neural networks, recurrent con-
nections from the output to the input provide an RNN with a kind of
memory, which may influence the network output in the future. Next,
BRNNs use two separate hidden layers to simultaneously process the

input sequence forwards and backwards, giving the network access
to the complete past and the future context in a symmetrical way.
BRNNs can be used whenever the decoding result is required at the
end of a speaker turn, as in typical ASR systems.

Although (B)RNNs have access to past (and future) information,
the range of context is limited to a few frames due to the vanishing
gradient problem: the partial derivative of the output with respect to
a single input value in the past, and thus the influence of previous
inputs on the outputs in general, decays or blows up exponentially
over time. This problem is circumvented by extending the nonlinear
units to LSTM memory blocks. Each block contains a linear memory
unit, whose internal state is maintained by a recurrent connection
with constant weight 1.0, enabling the unit to store information over
arbitrary periods of time. The input, output, and internal state of
the memory units are controlled by multiplicative gate units, which
correspond to ‘write’, ‘read’, and ‘reset’ operations. During network
training, the weights for all connections, including the gate units, are
optimized such that the network automatically learns when to store,
use, or discard information acquired from previous inputs or outputs.
This makes (B)LSTM-RNNs useful for the task considered in this
study, as the required amount of context is unknown a priori and
would otherwise have to be determined experimentally for each of the
classes to discriminate. BLSTM-RNNs have been successfully used
for a great variety of applications, particularly robust recognition of
spontaneous conversational speech [4], thereby outperforming more
traditional sequence classifiers such as Hidden Markov Models.

4. EXPERIMENTS

4.1. Evaluation Database and Baseline ASR

We evaluated our feature extraction method and the BLSTM-RNN
classifier on the Buckeye corpus [5]. The corpus contains recordings
of interviews with 40 subjects, who were told that they were in a
linguistic study on how people express their opinions. The corpus
was originally intended to study phonetic variation among speakers,
and has been used for a variety of phonetic studies, but – to our
knowledge – for only few, if any, studies on ASR. Yet, we believe
that it is very well suited to the evaluation of ASR systems, and
in particular to the task at hand: The speech is highly spontaneous
and contains a variety of non-linguistic vocalizations and other non-
speech segments. More precisely, in the context of our evaluation, we
considered the 4-class problem to discriminate between speech (SP,
including silence), laughter (LA), vocal noise (VN, mostly breathing),
and other noise (ON, including environmental and microphone noise).
To enforce realism, we used the automatic, not the manual, phonetic
alignment delivered with the corpus. As the authors of the corpus
do not define an experimental setup for ASR, we divided the corpus
into a training, validation, and test set. The corpus is stratified by
gender (male / female) and age (young / old) of the speakers, thus
it contains 10 speakers of each combination of age and gender. To
ensure straightforward reproducibility while preserving speaker in-
dependence and stratification, we assigned the first eight speakers
(ordered by speaker number) of each combination of age and gender
to the training set, the ninth to the validation set, and the tenth to
the test set. For the purpose of ASR and network training, we sub-
divided the 255 recording sessions, each of which is approximately
10 min long, into turns by cutting whenever the subject’s speech was
interrupted by the interviewer, or by a silence segment of more than
0.5 s length. This yields the recording lengths and class distributions
shown in Tab. 1. The signal frames that will be referred to in the
subsequent discussion are shifted in 10 ms intervals.
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[sec] train valid test Σ
SP 62 974 7 050 7 960 77 983
LA 1 562 252 104 1 918
VN 9 444 1 336 1 087 11 867
ON 398 94 30 522

Σ 74 378 8 732 9 181 92 290

Table 1: Total lengths of speech (SP), laughter (LA), vocal noise
(VN), and other noise (ON) segments in the train(ing), valid(ation),
and test set of the Buckeye corpus. One second equals 100 frames.

As a baseline system, we used a state-of-the-art HMM-based
ASR architecture where the non-speech segments are modeled by
HMMs besides the phoneme models. Hence, we had 39 phoneme
models (CMU set) and a silence model for speech decoding, as well
as models for the LA, ON, and VN classes. The models for the
non-speech segments had six emitting states, while the phoneme and
silence models had three. From all those models, state-clustered
cross-word triphones were built, and Gaussian mixtures were split
until each model had 16 Gaussian mixtures (32 for silence). A back-
off bi-gram language model (LM) with 9.1 K words was built on the
training set, which particularly includes estimation of the a-priori
probabilities of the non-speech segments. As acoustic features, the
first 12 Perceptual Linear Prediction (PLP) coefficients along with
energy and their first and second order regression coefficients were
used (39 features), which will be subsequently referred to as ‘PLP
features’. The models were trained on the union of training and
validation set. Using a Viterbi stack decoder, the system achieves a
word accuracy of 49.99 % on the test set, which is in line with typical
results on highly spontaneous speech [4].

4.2. Extraction of NMF Features

The characteristic spectra used for extraction of NMF likelihood
features by supervised NMF were computed as follows: for each
of the LA, ON, VN, and SP classes, the corresponding signal seg-
ments in the training and validation set were concatenated, and the
spectrograms of the concatenated signals were reduced to 20 char-
acteristic spectra using NMF. All spectrograms consisted of 40 Mel
frequency bands. By supervised NMF with these spectra, and normal-
ization according to 2, we obtained 80 NMF likelihood features per
frame. To conserve information about the power of the original signal
frames, we added energy and its first and second order regression
coefficients, yielding a 83-dimensional feature set. Both the NMF-KL
and NMF-IS algorithms were considered and evaluated.

4.3. Neural Network Topologies and Training

In a first experiment, we compared BLSTM-RNNs to other types
of neural networks: traditional RNNs (with sigmoid units), BRNNs,
and unidirectional LSTM-RNNs, trained on 39 PLP features, which
were standardized to zero mean and unit variance. The networks
had one hidden layer of 80 units, or one for each direction in the
bidirectional case. The size of the input layer was equal to the number
of features, while the network had four outputs (one for each of the LA,
ON, VN, and SP classes) whose activations were restricted to [0; 1],
and their sum was forced to unity by normalizing with the softmax
function. Thus, the normalized outputs represent the posterior class
probabilities. To achieve a more uniform class distribution, and to
reduce computational complexity of the training, we only presented
the network the turns in the training set where at least one of the ‘rare’
LA or ON classes occurs. Note that in our previous study [3], which
classified entire signal segments based on functionals, the training

set was upsampled; this is however not straightforward to extend
to sequence classification. In a second experiment, we evaluated
networks with hidden layer(s) of 80 or 120 units for both PLP features
and NMF likelihood features (plus energy, as above).

To improve generalization, the order of the input sequences was
determined randomly, and Gaussian noise (μ = 0) was added to
the input activations. Thereby the standard deviation reflected the
different ranges of feature values: σ = 0.1 for the (standardized)
PLP features, and σ = 0.01 for the NMF likelihood features. We
initialized the network weights randomly from a Gaussian distribution
(μ = 0, σ = 0.1). Then, we iteratively updated the network weights
using resilient propagation, applying a supervised learning strategy
with early stopping to prevent over-fitting: the performance (in terms
of classification error) on the validation set was evaluated after each
training iteration (epoch). Once no improvement over 20 epochs had
been observed, the training was stopped and the network with the best
performance on the validation set was used as the final network. To
avoid optimization on the majority class (SP), the validation set was
downsampled as well, using the aforementioned procedure. Finally,
for evaluation of the network, the turns in the test set were presented
frame by frame to the network, and each frame was assigned to the
class with the highest probability as indicated by the output layer.

4.4. Results

The results of our first experiment, where we compared different
types of RNNs with 120 hidden units and PLP features on the 4-class
task described above, are shown in Fig. 1. Performance is evaluated in
terms of framewise F1 measure averaged over the 4 classes, weighted
(WAF) or unweighted (UAF) by class frequencies. As expected, the
BLSTM-RNN performs best both in terms of UAF (65.10 %) and
WAF (93.38 %), while the (unidirectional) RNN exhibits the lowest
WAF (91.94 %), and the unidirectional LSTM-RNN the lowest UAF
(59.66 %). For LA, the BLSTM-RNN outperforms the RNN by 12 %
absolute; however, the basic RNN outperforms all other variants
for the ON class. Since the BRNN outperforms the (unidirectional)
LSTM-RNN for the LA, ON, and VN classes, there is evidence that
future context is more important for our classification task than long-
term context.

Motivated by the best overall performance of the BLSTM-RNN,
we present the evaluation of different feature sets and sizes of the
hidden layer in Tab. 2. First, it can be observed that for PLP and
NMF-KL features, networks with 120 hidden units seem to capture
the complexity of the task better than networks with 80 hidden units.
This is especially true for the noise and laughter classes: for PLP
features, the F1 measure of noise increases by almost 6 % absolute
for 120 vs. 80 hidden units; the gain is over 11 % absolute for the
noise class and NMF-KL features. It can be argued that in a smaller
network, there are not enough units to discriminate well between all
of the four classes, so that these two ‘small’ classes are neglected
in the optimization in favor of the ‘bigger’ classes. Second, when
used in a BLSTM-RNN with 120 hidden units, the NMF-KL features
significantly (p < 0.1%) outperform the PLP features both in terms
of UAF and WAF, according to a one-tailed z-test1. These results
motivated us to consider the union of PLP and NMF-KL features;
however, we could not achieve a further improvement: the UAF
and WAF were 61.89 % and 93.04 % with 120 hidden units, and
62.04 % / 93.37 % when further increasing the network size to 160
hidden units. Naturally, a different network topology might be better
suited to this kind of feature set, which will be an interesting topic

1Note that significance results have to be interpreted carefully, since frame-
wise predictions are not necessarily independent.
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Fig. 1: Framewise F1 measures for speech (SP) and non-speech
(LA, VN, ON), using different types of RNNs (39 PLP features, 120
hidden units). UA / WA denote (un)weighted average.

F1 [%] PLP NMF-IS NMF-KL
# units 80 120 80 120 80 120

SP 96.69 96.67 96.77 96.81 96.80 96.96
LA 44.54 44.53 37.59 35.83 40.01 45.95
VN 75.08 75.07 73.54 72.41 72.64 75.79
ON 38.29 44.12 39.31 32.54 39.09 50.76
UA 63.65 65.10 61.80 59.40 62.14 67.37
WA 93.39 93.38 93.26 93.16 93.28 93.82

Table 2: Framewise F1 measures for speech (SP) and non-speech
(LA, VN, ON), achieved by BLSTM-RNNs with 80 or 120 units and
PLP or NMF features, which were computed by either the NMF-IS
or NMF-KL algorithm. UA / WA denote (un)weighted average.

for further research. On the other hand, the NMF-IS features were
considerably inferior to the NMF-KL as well as the baseline PLP
features, especially at detecting noise and laughter, which is contrary
to recent findings in music analysis [7].

Finally, Tab. 3 compares the performance of the BLSTM-RNN
(with NMF-KL features) and 120 hidden units to the baseline
phoneme-HMM based ASR system in terms of framewise recall,
precision, and F1 measure. To evaluate the ASR system, we con-
sidered the time-aligned model-level output of the decoder, which
directly gives the frames where LA, ON, or VN were detected; further-
more, we assigned the SP class if and only if a phoneme or silence
model were active in a frame. It can be seen that for three of four
classes, the BLSTM-RNN outperformed the HMM-ASR baseline
in terms of F1 measure; notably, the HMM-ASR system failed at
recognizing noise with reasonable precision (14.78 % vs. 51.56 % for
the BLSTM-RNN), which cannot be simply explained by inadequate
LM likelihoods. For laughter, the BLSTM-RNN achieved a higher
recall, while the HMM-ASR system delivered a significantly better
F1 measure (p < 0.5%). Yet, on average the BLSTM-RNN delivers
higher recall as well as precision (p < 0.1%) than the baseline;
in other words, the frame error rate in the 4-class discrimination is
decreased from 8.65 % (HMM-ASR) to 6.29 % (BLSTM-RNN).

5. CONCLUSIONS

We presented a data-based approach for detecting non-speech seg-
ments in spontaneous speech with a BLSTM-RNN, which overall
delivered a higher recognition performance than an HMM-based ASR
system. Most notably, the BLSTM-RNN performed best with fea-

[%] HMM-ASR (PLP) BLSTM (NMF-KL)
REC PR F1 REC PR F1

SP 93.85 97.68 95.72 97.62 96.31 96.96
LA 50.63 45.47 47.91 61.70 36.61 45.95
VN 78.41 63.84 70.38 69.58 83.22 75.79
ON 39.92 14.78 21.57 49.98 51.56 50.76
UA 65.70 55.44 58.90 69.72 66.92 67.37
WA 91.35 92.79 92.06 93.71 93.92 93.82

Table 3: Framewise recall (REC), precision (PR), and F1 mea-
sures for speech (SP) and non-speech (LA, VN, ON), achieved by
a phoneme-HMM based ASR system, as opposed to the best per-
forming BLSTM-RNN from Tab. 2 (NMF-KL features, 120 units).
UA / WA denote (un)weighted average. The best F1 measure per class
is highlighted.

tures generated by NMF, as opposed to our previous study on static
classification of non-linguistic vocalizations, where NMF features
lagged behind conventional (MFCC) features [3], indicating that
NMF features are particularly well suited to sequence labeling.

On the other hand, our results show that the detection of non-
linguistic events in speech remains considerably challenging. While
we have experimentally shown that past and future context is relevant
for this task, we will strive for further improvement in this respect,
e. g. by investigating the ‘sliding window’ technique proposed in [1]
which might be integrated into the (NMF) feature extraction as well as
the recognition step. Besides, we will focus our efforts on the crucial
issue how to integrate our BLSTM system into the ASR framework
to optimize word accuracy.
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