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ABSTRACT

Sparse representations have previously been applied to the
automatic music transcription (AMT) problem. Structured
sparsity, such as group and molecular sparsity allows the
introduction of prior knowledge to sparse representations.
Molecular sparsity has previously been proposed for AMT,
however the use of greedy group sparsity has not previously
been proposed for this problem. We propose a greedy sparse
pursuit based on nearest subspace classification for groups
with coherent blocks, based in a non-negative framework, and
apply this to AMT. Further to this, we propose an enhanced
molecular variant of this group sparse algorithm and demon-
strate the effectiveness of this approach.

Index Terms— Transcription, non-negative, structured
sparsity

1. INTRODUCTION

Sparse coding is the attempt to derive a representation vector,
t, predominated by zero coefficients, or sparse, of a signal s
from a given dictionary D, where s ≈ Dt. In this work, we
consider sparse approximation in a non-negative framework.
Formally stated, for the noisy case, the non-negative sparse
representation problem seeks the minimisation:

min
t

1

2
‖s−Dt‖22 + λ‖t‖0 s.t . t ≥ 0. (1)

Many algorithms have been proposed for performing sparse
approximation, the most popular families of which are greedy
methods, which typically add the atom most correlated with
the residual signal at each iteration, and global optimisation
methods, which relax the `0 norm sparse penalty for a `1
norm sparse penalty, allowing the problem to be solved with
convex optimisation methods.

Structured sparsity allows the introduction of prior
knowledge to sparse approximation algorithms. This knowl-
edge can be general as in block, or group sparsity [1][2],
where the assumption is made that groups of atoms tend
to be supported coincidentally, or application specific, such
as molecular pursuits [3] which have been applied to audio
signals selecting time-related atoms at each iteration.

Musical signals can be seen as inherently sparse in that
only a small subset of notes are seen to be active at a given
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time. Automatic music transcription is the attempt to pro-
duce a mid-level pitch-time representation, often called a
piano roll, which relates the note events in a musical piece.
Resarch in AMT is often delineated into methods which
use either offline training or online training. For instance,
a state-of-the art online method using Bayesian NMF with
time-smoothness and harmonic constraints is proposed in [4].
There exists several works in the literature which aim to use
sparse representation methods with dictionaries learnt offline
to tackle the AMT problem. For example, Abdallah and
Plumbley [5] used a non-negative sparse coding algorithm
based on a Bayesian formulation of sparsity to produce a
piano roll using a dictionary of full-spectrum basis atoms.
Leveau et al. [6] proposed using Matching Pursuit (MP)
with instrument and note specific dictionaries of harmonic
atoms for instrument recognition, and also used a molecular
representation for polyphonic transcription.

We are currently developing a non-negative sparse dictio-
nary learning based AMT system, and the work presented
here considers the sparse approximation step of the proposed
system. It was observed in [5] that transcription is improved
using several atoms per note, better capturing the spectral
dynamics of a note. To this end we propose using group spar-
sity, with groups of pitch-related atoms. A variant of Non-
Negative Basis Pursuit (NN-BP) which outputs group coeffi-
cients is considered. We propose a non-negative group greedy
pursuit tailored for the coherent groups we use, which we
term Non-negative Nearest Subspace OMP (NN-NS-OMP).
We also propose a molecular version of NN-NS-OMP, promot-
ing time persistence in the sparse representation. We demon-
strate improved transcription performance using these struc-
tured approaches on a dataset of polyphonic piano pieces.

2. BACKGROUND

2.1. Non-negative sparse representations

In [7], Hoyer proposed a non-negative sparse coding (NNSC)
algorithm, based on a multiplicative update,

tk,n ←− tk,n
[DTS]k,n

[DTDT]k,n + λ

which seeks to minimise the cost function

min
T

1

2
‖S−DT‖2F + λ‖T‖1,1 s.t .T ≥ 0 (2)

which is seen to be similar to the `1 relaxation of the sparse
representation problem with an added non-negativity con-



straint. In [8], NN-BP was proposed, using several iterations
of NNSC, followed by a hard thresholding.

A non-negative variant of OMP (NN-OMP), outlined in
Algorithm 1 is proposed in [9] which differs from OMP by
constraining the atom selection to positive coefficients, and
by using non-negative least squares(NNLS) to calculate the
coefficients of the supported atoms at each iteration.

Algorithm 1 NN-OMP [9]

Input
D ∈ <M×K+ ; s ∈ <M

+

Initialise
i = 0; r0 = S; t0 = 0; Γ0 = {};

repeat
i = i+ 1
k̂ = arg maxk〈dk , r

i−1〉
Γi = Γi−1 ∪ k̂
tΓ i = minz ‖DΓ i z− s‖22; z ≥ 0
ri = s−Dti

until stopping condition met

2.2. Structured Sparsity

Group sparsity assumes that groups of atoms tend to be ac-
tive at the same time. Usually it is assumed that the groups
are of the same size and adjacent in a given dictionary, D
∈ <M×K with K = L × P where L is the number of groups
and P is the amount of atoms per group, allowing us to define
the set of group indices:

G = {Gl|Gl = {P × (l − 1) + 1, ..., P × l}∀l ∈ {1, ...., L}}.

Several variants of OMP, such as Block-OMP (B-OMP) [1]
and Subspace Matching Pursuit (SMP) [2] have been pro-
posed which incorporate the group assumption. These al-
gorithms differ from OMP by using group selection criteria
and by adding all members of a elected group to the sparse
support at each iteration. In B-OMP the group selection cri-
terion is given by

l̂ = arg max
l
‖DT

Gl
ri−1‖2 (3)

while the SMP selection criterion is given by

l̂ = arg min
l
‖ri−1 − πl(r

i−1)‖2 (4)

where πl(y) is the projection operator of the signal y onto
the subspace DGl .

Daudet [3] proposed Molecular Matching Pursuit (MMP)
for separation of transient, tonal and noise elements of an
audio signal. A modified matching pursuit selects transient
molecules consisting of wavelet trees, or tonal molecules con-
sisting of time-persisting fourier atoms. To isolate spurious
noise in the Fourier domain, tonal atoms were selected from
a time-smoothed spectrogram with coefficents based on the
values of several time related atoms. When a tonal atom
is selected, a molecule is “grown” by tracking in both time
directions until the coefficient values in the original spectro-
gram disappeared below a threshold. Subsequently all atoms
in the molecule are added to the sparse support.

3. METHOD

3.1. Dictionary Training

We use a simple dictionary training method, learning subdic-
tionaries each of size P atoms using NMF[10] on STFTs of
isolated notes from the MAPS [11] database. We learn a sub-
dictionary for each of L = 88 notes corresponding to MIDI
notes 21 to 108, composing our block-based dictionaries from
the note-specific subdictionaries. An alternative viewpoint is
to regard each subdictionary as a subspace and the dictionary
as a union of subspaces.

3.2. Non-negative structured sparse approximation

We modify slightly the NN-BP algorithm, imposing group
structure post-hoc by deriving a group coefficient matrix,
GC ∈ <M×L by summing the group coefficients. A hard
threshold is then determined by a parameter δ and the largest
entry in GC, to which it is then applied elementwise.

Algorithm 2 NN-BP(GC)

Input
D∈ <M×K+ , S∈ <M×N+ , δ, T0 = DTS

repeat

tk,n ←− tk,n
[DTS]k,n

[DTDT]k,n + λ
until stopping condition met

GCl,n =
∑

TGl ,n ∀(l, n)
GCl′,n′ = 0 ∀{l′, n′} s.t. GCl′,n′ < δ‖GC‖∞,∞

Our subdictionaries tend to display high inner-group co-
herence, or sub-coherence [1] due to both non-negativity and
harmonic relationship. For this reason, the B-OMP [1] selec-
tion criteria (3) is unsuitable for this problem. Due to the lack
of a explicit projection operator, such as π(y) in (4), in the
non-negative framework used in these experiments the SMP
[2] selection criteria (4) is also unsuitable. We propose a sim-
ilar greedy group sparse algorithm, NN-NS-OMP, outlined
in Algorithm 3 which seeks the group containing the nearest
subspace with non-negative coefficients at each iteration.

Algorithm 3 NN-NS-OMP

Input
D ∈ <M×K+ , s ∈ <M+

Initialise
Γ = {} r0 = s i = 0

repeat
i = i+ 1
l̂ = arg minl ‖ri − DGl Θ‖

2
2 s.t. Θ ≥ 0 ∀l = {1, ...., L}

Γi = Γi−1 ∪DG
l̂

tΓi = arg minz ‖s−DΓi z‖22
ri = s−Dti

until stopping condition met

We also propose a molecular version of this algorithm,
M-NN-NS-OMP, outlined in Algorithm 4, which accepts an
input binary atom support, Γ derived from GC output from
NN-BP(GC). The reasons for inputting Γ are twofold; afford-
ing cheaper computation, as we need only calculate NNLS for
atoms supported in Γ at each iteration, instead of all atoms



as in NN-NS-OMP. Also we no longer rely on a threshold, as
in MMP, to stop growing the molecule, instead using discon-
tinuities in Γ to delineate the endpoints of a molecule.

This algorithm perfoms sparse approximation on the ma-
trix as a whole, in which it differs from NN-NS-OMP which
operates on vectors. In this case we do not select a nearest
subspace per se, but derive a group coefficient Θ from the sum
of the NNLS coefficient vector x for the group at each time
bin supported in Γ. Similar to tonal elements in MMP[3],
a smoothed coeffcient matrix Θ̄ is derived with a rectangu-
lar window, of size α. We select the largest atom coefficient
from Θ̄, from which we grow a molecule using Γ to define the
endpoints, as mentioned above.

Algorithm 4 M-NN-NS-OMP

Input
D ∈ <M×K+ , S ∈ <M×N+ , Γ ∈ {0, 1}L×N , G, α
Initialise
i = 0; Φ = 0L×N ; B = {βn|βn = {}∀n ∈ {1, .., N}}
repeat
i = i+ 1
Get group coefs Θ and smoothed coefs Θ̄
xGl ,n = arg minx ‖ri

n −DGl x‖
2
2 s.t. x ≥ 0 ∀l ∈ Γn

Θl,n = ‖xGl ,n‖ ; Θ̄l,n =

n+α−1∑
n′=n

Θl,n′/α

Select initial atom and grow molecule
{l̂, n̂} = arg maxl,n Θ̄l,n

nmin = min n̄ s.t. Γl̂,Ξ = 1, Ξ = {n̄, ..., n̂}
nmax = max n̄ s.t. Γl̂,Ξ = 1, Ξ = {n̂, ..., n̄}
βn = βn ∪ l̂ ∀n ∈ Ξ = {nmin, ..., nmax}
Calculate current coefficients and residual
tGβn ,n

= mint ‖sn −DGβn
t‖22 ∀n ∈ Ξ

ri+1
n = sn −DGβn

tGβn
∀n ∈ Ξ

until stopping condition met

4. EXPERIMENTS

We perform transcription on a subset of MAPS [11], a
database of midi-aligned piano pieces, also used in [4]. The
database contains many sets of piano pieces, most recorded
using high quality samples, and all pieces come with a stan-
dardised ground truth. The subset we used was recorded
live on a Disklavier, and, similar to [4] we use the first thirty
seconds of each piece. We downsampled each piece in the
subset to 22.05kHz, and used the STFT with a window
size of 90ms with a 50% overlap to produce a magnitude
spectrogram.

MAPS also contains samples of isolated chords and notes,
from which we trained our subdictionaries. We trained dictio-
naries for various sizes of P = 1 to 5 in order to investigate
the possible effect on performance of group size. We note
that when P = 1, the algorithms revert to non-group sparse
implementations.

We performed sparse approximation on the spectrograms
using NN-BP(GC), NN-NS-OMP and M-NN-NS-OMP. We
set NN-BP(GC) to run for 100 iterations. For NN-NS-OMP,
we set three stopping conditions; at each time bin we allowed
no more than 7 atoms to be selected; once the residual error
norm dropped below 5% of the original signal norm; we also

Onset based Frame based
Acc Rec F Acc Rec F

NN-BP 79.9 71.8 75.6 61.2 76.0 67.8
NN-BP (GC) 76.8 73.1 74.9 50.3 82.6 62.5

NN-OMP 75.8 72.9 74.3 73.8 60.7 66.6
NN-NS-OMP 73.2 73.6 73.4 77.9 61.4 68.7

M-OMP 78.3 74.3 76.3 69.1 73.6 71.3
M-NN-NS-OMP 78.8 77.3 78.1 71.8 79.3 75.3

Marolt[13] 63.7 53.6 58.0 - - -
B-NMF[4] 46.6 45.3 45.0 - - -

Table 1. Transcription results comparing group sparse meth-
ods (P = 3) with non-group sparse methods. Results for
Marolt method and B-NMF from [4] shown for comparision

stopped when adding a new atom would reduce the residual
norm by less than 2% of the original signal norm. For the
NN-BP and NN-NS-OMP, we perform some post-processing
on GC. We assume a minimum note length of 3 time bins
and threshold out atoms which are continuously supported
in the time domain for a lesser duration. We stopped the
M-NN-NS-OMP, when ‖Θ̄‖∞,∞ dropped below a threshold
of 2, and a persistence factor α = 5 was used.

We used both onset-based and a frame based measures
to compare the performance of the algorithms. We detect
onsets using a simple threshold-based method similar to [4].
An onset is detected when a threshold is exceeded and subse-
quently sustained for a minimum duration of three time bins.
We set the threshold to an amplitude of 5.5, noting that bet-
ter results can be obtained with other thresholds with respect
to P . We register a true positive, tp when we find an onset
for a note within 1 time bin of the ground truth, as ascer-
tained from the aligned onset files supplied in MAPS. A false
positive, fp is registered when the system detects an onset
which is not present in the ground truth. False negatives, fn
are recorded for each note in the ground truth which is not
detected by the system.

We also record the frame-based performance, in which
we compare the midi ground truth with the output from the
sparse algorithms at each frame. Here we register a tp when
a point in the time-frequency domain is supported by the
ground truth and the transcription results. Similarly, points
supported only in the ground truth, and transcription results
register tn and fn respectively.

The following metrics are then used to measure perfor-
mance; accuracy Acc = tp×100

tp+fp
%; recall Rec = tp×100

tp+fn
% and

the F -measure F = 2×(Acc×Rec)
Acc+Rec

.

5. RESULTS

In Table 1, we compare results for the group methods against
their corresponding non-group methods. We note that the
molecluar methods show the best results for F -value for both
types of transcription, and that M-NN-NS-OMP improves
upon the M-NN-OMP.

NN-BP(GC) performs worse with group coefficients for
all measures except recall, with very poor accuracy for frame
based metrics. This can be explained by the fact that the
algorithm does not exploit the group structure in the mul-
tiplicative update, but uses a post hoc summation of group



P BP(GC) NN-NS-OMP M-NN-NS-OMP

2
Acc 78.9 75.7 78.8
Rec 72.2 73.1 76.2
F 75.4 74.1 77.5

5
Acc 76.3 73.3 78.6
Rec 73.2 74.2 77.8
F 74.7 73.8 78.2

Table 2. Onset based metrics for group methods (abbrevi-
ated names) relative to group size P .

P BP(GC) NN-NS-OMP M-NN-NS-OMP

2
Acc 53.5 75.0 69.0
Rec 79.4 60.9 76.4
F 63.9 67.2 72.5

5
Acc 48.8 78.7 72.9
Rec 83.5 61.8 80.0
F 61.6 69.2 76.3

Table 3. Frame Onset based metrics for group methods
(abbreviated names) relative to group size P .

coefficients. However the recall is high, which prompts good
results from the molecular approaches which input Γ from
NN-BP(GC). In this way the M-NN-NS-OMP can be seen as
a denoising step on the NN-BP(GC), capturing the salient
parts of the signal.

The NN-NS-OMP shows slightly poorer performance in
the onset detection task, but an improvement in the frame
based detection. Informal experiments suggest that results
are superior to other group versions of OMP we have tried,
but that is not described here.

Finally a comparision is made with the results described
for onset detection in [4]. Our results compare favourably
with the neural network-based method proposed by Marolt in
[13]. The results for the Bayesian NMF method are state-of-
the-art for a signal decomposition based method, and direct
comparision with offline-learning based methods is unfair, ex-
cept to show the relative difficulty of the problems.

In Tables 2 & 3, we show results for different values of P ,
which indicate the effects of group size on performance. In
particular we note the increase in almost all metrics for the
molecular approach with group size.

6. CONCLUSIONS AND FURTHER WORK

We have a presented a structured non-negative sparse music
transcription system, with promising results, demonstrating
that group and molecular sparsity may enhance transcription
performance. We intend to test the proposed method with
datasets and metrics used by other researchers in AMT to
allow a full comparision to be made.
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