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ABSTRACT

This paper presents a game-theoretical approach to provide a frame-
work for optimal template selection in image prediction. Image pre-
diction is an effective tool for coding still images and intra pictures
in videos. Template matching algorithms which use neighboring
blocks of the prediction target as templates have been widely used
for image prediction. The assumption of these approaches is that the
template has similar textural structures as the prediction target. Up
to now these approaches all use pre-fixed templates for all predic-
tion targets. However, in real images, these fixed templates are very
likely to contain textures that are not or are not significant in the
prediction targets and these insignificant textures introduce larger
prediction residues. In this paper, we propose a coalitional game in
which every pixel is treated as a player and tries to seek partners
to form a coalition to capture the textural structure. By forming a
coalition, every player in the coalition can obtain a gain of improv-
ing the ability of capturing the textural structure of coalition while
incurring a cost of introducing textural variance within the coali-
tion. Experimental results show that the proposed game-theoretical
approach outperforms the conventional pre-fixed template matching
prediction up to 2dB coding gain.

1. INTRODUCTION

Image prediction technique is an effective method for minimizing
the encoded information of an image or an intra frame in a video
sequence. Spatial domain intra prediction first appeared in [1] and
developments based on spatial domain prediction has been evolved
into the H.264/AVC standard [2]. H.264/AVC standard has two pre-
diction types: Intra-16x16 and Intra-4x4. The Intra-16x16 type sup-
ports four intra prediction modes while the Intra-4x4 type supports
DC mode and eight directional modes. Each 4x4 block is predicted
from prior encoded samples from spatially neighboring blocks (di-
rectional mode) or the mean of neighboring pixels (DC mode). The
directional prediction is done by simply propagating the pixel values
along the specified direction. Other enhancement methods based on
the same spatial prediction idea such as [3], [4] where more direc-
tions and modes were employed. These prediction approaches are
suitable in presence of contours, when the directional mode can be
chosen corresponding to the orientation of the contour. However, in
most cases, it fails in areas with more complex textures.

Template matching is a simple and effective method for texture
synthesis [5], and template matching has been used for combating
the difficulties of intra prediction with complex textures [6,7]. In
this method, the block to be predicted (can be 4x4 or 8x8 block)
is further divided into smaller sub-blocks. The blocks with known
value surrounding the prediction target sub-block are considered as
“template” for the sub-block. Then the encoder search all over the
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known areas of the image, i.e., the candidates, to match the template
blocks. The matching criteria is to minimize the sum of absolute dis-
tance between the template and the candidate. The same procedure
is repeated for all four target sub-blocks, and the four best match
candidate sub-blocks constitute the prediction of the prediction tar-
get block.

There are many improved methods based on template matching.
The work in [7] averaged multiple template matching predictors, in-
cluding larger and directional templates, resulting in more than 15%
coding efficiency in H.264/AVC codec. Sparse approximation such
as matching pursuit [8] and orthogonal matching pursuit [9] have
been proposed to change the matching between the template and can-
didate into the distance between template and the linear combination
of candidates. Also, other matching criterions such as residue cod-
ing cost combining with mean square error (MSE) have also been
used to replace the sum of absolute distance between template and
candidates [10].

The above existing work all based on fixed templates such as the
pixels surrounding the prediction target or just pixels at one direction
of the target. Even in some approaches the encoder can select from
the among several pre-defined templates, those templates are still
fixed for all prediction targets. However, how to adaptively choose
optimal neighborhoods is also very important since the optimal cod-
ing performance will be achieved if the template is consistent with
the prediction target in terms of textural structures. If the template
contains too less texture structures, the predicted block will be too
smooth. On the other hand, if the template contains too many tex-
tures that are not significant in the prediction target, the matching
will lead to candidates that are too different from the prediction tar-
get. And since every prediction target has different textures, the op-
timal template for each prediction target should be different. Also, if
both detector and the encoder adopt the same algorithm of searching
optimal template, the template type does not need to be transmitted
and hence reduce the coding rate.

In this paper, we propose a general game-theoretical model of
segmenting the neighboring area into similar-texture regions and use
the regions that are closest to the prediction target as the template.
In the game, every pixel is treated as a player, who tries to seek
partners to form a coalition to reduce the variance within a coalition
while paying the cost of increasing bias. The prediction and cod-
ing PSNR/bit-rate performance curves show a gain up to 2 dB when
compared with the pre-fixed template matching based prediction.

The rest of this paper is organized as follows. In Section 2, we
describe the spatial prediction problem. Then, we show in details
the proposed optimal template selection game and the procedure of
forming coalition based on local information in Section 3. Finally,
we show the experimental results in Section 4 and draw conclusions
in Section 5.
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Fig. 1: Illustration of the template matching problem

Fig. 2: Optimal template for different prediction target blocks of
Lena image

2. SYSTEM MODEL

Figure 1 illustrates the template-matching based spatial prediction
problem. All pixels in the casual search window W are known val-
ues, and the only unknown area is the NxN prediction target block.
As shown in Figure 1, an example of the pre-defined template is the
pixels surrounding the prediction target block, and the other example
template is composed of the pixels above the target block. The prin-
ciple of the template-matching prediction approach is to first search
within the search window W for the best approximation or recon-
struction for the template, and keep the same procedure to approxi-
mate the unknown pixel values in the prediction target. The search
window should be casual to ensure the decoder can follow the same
scheme to decode the predicted block.

However, the most-representing template of different prediction
target block will be different. For example, Figure 2 shows the tem-
plates yielding best prediction result for different target blocks, re-
spectively. We can see that from Figure 2, the best templates contain
same texture structures as the target block. If the template does not
have the most significant texture of the target block, the predicted
block will be too smooth. On the other hand, if the template con-
tains too many textures that are not significant in the prediction tar-
get, the matching will lead to candidates that are too different from
the prediction target.

Therefore, in order to optimally locate template for different pre-
diction targets, we propose to divide the template candidate area 7" as
shown in Figure 1 into segments containing structural similar pixels
and choose the most significant segments as the template for predic-
tion.
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3. GAME-THEORETICAL APPROACH OF TEMPLATE
SELECTION

As presented in the previous section, if the template has similar tex-
ture as in the prediction target, the template-matching-based predic-
tion schemes can achieve optimal performance. Due to the absence
of the prediction target, the best we can do is to predict the texture in
the prediction target based on neighboring pixels. Here we propose
to divide the neighboring pixels into segments where each segment
represents one type of texture. Then we will select the segments with
textures that are most likely to be in the prediction block, and use the
union of these segments as the template for prediction.

3.1. Utility function and solution to the coalitions

The first step of template selection is the divide the template candi-
date area 7" as in Figure 1 into partitions, i.e., T' = {11, T3, ..., T }.
Since the the number of partitions K is unknown, the traditional seg-
mentation and clustering methods may not work. The partition prob-
lem can be thought as each pixel trying to find the best partition so
that the texture within each partition is consistent. From each pixel’s
point of view, it has multiple choices of which partition to join, and
these partitions are composed of other pixels also. Therefore, each
pixel’s choice influence the decision of other pixels’ decisions and
performances, and such complex interactions and dynamics can be
modelled as a coalitional game [11-13].

By formulating the segmentation problem as a game, every pixel
is treated as a player, and each player tries to seek partners to form
coalitions which have consistent texture within each coalition. First,
the term texture is an aggregative term, i.e., if a coalition has more
pixels with the same pattern, it can represent a texture better. Also,
if the coalition already has enough number of pixels, adding in one
more pixel will have less improvement of representing a texture.
Therefore, the gain of joining a coalition is a concave function of
the size of the coalition. Here we use a simple reciprocal function

A
9(T3) ik ey
where |T;| denotes the size of the partition 75 and X is the balance
parameter between cost and reward.

On the other hand, the pixel aims to join the coalition which has
the most similar texture as the pixel and its neighborhood. There-
fore, the cost of a pixel joining the coalition can be considered as the
extra texture variation that the pixel introduces. Such a formulation
encourages 7; to be composed of pixels with the same texture. The
cost function of forming coalition 7 is

o(Ty) = |Ts| * oy, 2)

where o, is the variance within the coalition 7;. Note that the dis-
tance metric between two pixels (z;,y;) and (zx, yr) in T is cal-
culated based on the similarity between the patches centering each
pixel, respectively. The distance metric can be written as

A k) = Y (w(mi+m,y+n) —v(@+m, g +n)?, (3)

m,ncWp

where Wp is the patch window, and v(z,y) is the value of pixel

(z,y).
The utility function can then be defined as gain minus cost

A
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Fig. 3: Visual quality comparison of predicted Foreman image with MSE as matching criteria: (a) original image (b) static template (24.01
dB/0.90 bpp), (c)Dynamic template (25.46 dB/ 0.84 bpp), and (d)Optimal template(26.4dB/0.77bpp)

Note that given the above utility function, we can see that when the
size of the coalition |T;| increases, the existing players in the coali-
tion can obtain gains from having more pixels to represent the tex-
ture. On the other hand, this gain is limited by the cost which is the
increment of total variance within the coalition. Note that the gain is
independent of the texture of the joining pixel, therefore, each coali-
tion will always welcome new pixels with most-similar texture. The
problem now is to find the optimal coalition structures based on the
utility function in (4). This problem can be solved by merge and split
rule [11] but it is NP-complete. Since we are only searching within
the template candidate set 7" and not the whole image, the merge and
split rule can be applied to solve the unique solution.

3.2. Selecting most relevant segments

Now we have already divided the template candidate set 7" into seg-
ments 73, 1 < ¢ < K and each T; represents one specific texture.
The next step is to select a union of segments that contains textures
which are most likely to appear in the prediction target block.

The idea of selecting proper segments is as follows. First, the se-
lected segment 7; should be connected to the prediction target thus it
should contain the boundary pixels as indicated in Figure 1. Next, if
the prediction target cuts into the texture region of which the remain-
ing parts are in 7;, then adding some pixels of the prediction block
into 73 will reduce the variance of the locations of pixels in 75. Fi-
nally, if the extended boundary of T cuts into the prediction target,
then the prediction block is likely to contain the texture structure as
in Ti.

Our template selection procedure can be organized as follows.
First set the template to be empty, then:

e Let T be a subset of T" and each partition T; € T’ contains
at least one boundary pixel of the prediction target.

If there exists a pixel (z;,y;) in the prediction block such
that the location variance of T; € T’ is larger than that of
T; U (x5,y;), then T; is included in the template. Here the
location variance L7, is calculated as

((25,y5) = (pa, p1y))?

L,
T3]

>
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where iz = Z(ijyj)GTi a;j/|Ti], and py = Z(xjvyj)eTi yi/|Til

Extend the boundary of 7; according to the gradient near the
boundary pixels of the prediction target. If these boundaries
cross and form extensions of 7; within the prediction target,
then 7; is included in the template.
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Fig. 4: PSNR of the predicted signal

4. EXPERIMENTAL RESULTS

To evaluate the prediction performance of the optimal templates, we
first compare the visual qualities of our algorithm with static tem-
plate matching [6] and dynamic template matching [3] as in Figure
3. The test images are 512x512 Barbara and Foreman in QCIF for-
mat. To initialize image prediction, we first intra coded the top 3
rows and left 3 columns of blocks of size 8 8 are with JPEG. Then
for each block, the template candidate area is set to be 3 blocks wide
an 3 blocks tall surrounding the target block. After determining the
optimal template, we match the template with all candidates in the
search window which is 9 blocks wide and 5 blocks tall. The match
criteria is set to minimize MSE between the template and the match-
ing candidate. When a block has been predicted, the residue is quan-
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tized and encoded as JPEG with which a uniform quantization ma-
trix of step size 16 is weighted by a quality factor. The reconstructed
image is obtained by adding the quantized residue to the prediction.
Since for the decoder can follow the same algorithm to search for the
optimal template and then search for the best match, the only extra
information need to be transmit is the tradeoff parameter A which
is set to be 2.893 in our experiments. Since A is the same for the
whole image, the extra amount of information to be transmitted is
very small.

From Figure 3 we can clearly see that the proposed optimal tem-
plate selection outperforms the conventional pre-defined template
scheme, either static template or dynamic template, in visual quality,
PSNR and bit rate. Especially, Figure 3(d) preserve the textured area
such as the strong texture of the building above the foreman’s head
as well as the fine small textures on the face.

Next, we will show that our template selection algorithm can be
applied to other template-based prediction algorithms. Other than
template matching with MSE as the distance metric, we also apply
our template selection onto the orthogonal matching pursuit (OMP)
[9] algorithm. Since the residue-distortion dynamic template selec-
tion usually outperforms static template selection, here we only com-
pare our optimal template selection algorithm with residue-distortion
dynamic template selection. In this experiment, we test both Fore-
man and Barbara with quality factors from 10 to 90.

Figure 4 shows the prediction performance as in PSNR of the
predicted images. It is obvious that our proposed algorithm is a ba-
sic tool for template selection and when applied to both matching
schemes, the quality of the predicted signal is significantly improved
in both PSNR and bitrate. Our optimal template selection has at
least 1 dB improvement over the conventional pre-fixed template al-
gorithm. The coding performance of both images are demonstrated
in Figure 5. We can see that the coding gain of up to 2 dB can be
achieved for both images.

5. CONCLUSION

In this paper, we propose a game-theoretical framework to find op-
timal templates for template-based image intra prediction. The pro-
posed algorithm aims to locate the template with the most significant
textures in the prediction target’s pre-decoded neighborhood. Each
pixel in the neighborhood seeks to form coalitions to minimize the
textural difference within a coalition as well as maintaining the size
of the segment to better represent the texture. After segmenting the
neighboring pixels into single-structure segments, we then determine
the template by choosing the segments that are most likely to have
the same structure as the prediction target block. The experimental
results on real images demonstrate that the proposed template se-
lection can improve the prediction performance over conventional
pre-fixed templates in visual quality, PSNR, and bit rate. Also, when
combined with existing coding schemes, the our template selection
algorithm can provide up to 2 dB coding gain.
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