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Abstract

We describe k-MLE, a fast and efficient local search algorithm for learning finite statisti-
cal mixtures of exponential families such as Gaussian mixture models. Mixture models are
traditionally learned using the expectation-maximization (EM) soft clustering technique that
monotonically increases the incomplete (expected complete) likelihood. Given prescribed mix-
ture weights, the hard clustering k-MLE algorithm iteratively assigns data to the most likely
weighted component and update the component models using Maximum Likelihood Estimators
(MLEs). Using the duality between exponential families and Bregman divergences, we prove
that the local convergence of the complete likelihood of k-MLE follows directly from the con-
vergence of a dual additively weighted Bregman hard clustering. The inner loop of k-MLE can
be implemented using any k-means heuristic like the celebrated Lloyd’s batched or Hartigan’s
greedy swap updates. We then show how to update the mixture weights by minimizing a cross-
entropy criterion that implies to update weights by taking the relative proportion of cluster
points, and reiterate the mixture parameter update and mixture weight update processes until
convergence. Hard EM is interpreted as a special case of k-MLE when both the component up-
date and the weight update are performed successively in the inner loop. To initialize k-MLE,
we propose k-MLE++, a careful initialization of k-MLE guaranteeing probabilistically a global
bound on the best possible complete likelihood.

Keywords: exponential families, mixtures, Bregman divergences, expectation-maximization
(EM), k-means loss function, Lloyd’s k-means, Hartigan and Wong’s k-means, hard EM, sparse
EM.

1 Introduction

1.1 Statistical mixture models

A statistical mixture model [34]M ∼ m with k ∈ N weighted components has underlying probability
distribution:

∗Research performed during the January-June 2011 period. A preliminary shorter version appeared in IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2012.
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m(x|w, θ) =
k∑
i=1

wip(x|θi), (1)

with w = (w1, ..., wk) and θ = (θ1, ..., θk) denoting the mixture parameters: The wi’s are positive
weights summing up to one, and the θi’s denote the individual component parameters. (Appendix E
summarizes the notations used throughout the paper.)

Mixture models of d-dimensional Gaussians1 are the most often used statistical mixtures [34].
In that case, each component distribution N(µi,Σi) is parameterized by a mean vector µi ∈ Rd
and a covariance matrix Σi � 0 that is symmetric and positive definite. That is, θi = (µi,Σi). The
Gaussian distribution has the following probability density defined on the support X = Rd:

p(x;µi,Σi) =
1

(2π)
d
2

√
|Σi|

e
− 1

2
M

Σ−1
i

(x−µi,x−µi)
, (2)

where MQ denotes the squared Mahalanobis distance [12]

MQ(x, y) = (x− y)TQ(x− y), (3)

defined for a symmetric positive definite matrix Q � 0 (Qi = Σ−1
i , the precision matrix).

To draw a random variate from a Gaussian mixture model (GMM) with k components, we first
draw a multinomial variate z ∈ {1, ..., k}, and then sample a Gaussian variate from N(µz,Σz). A
multivariate normal variate x is drawn from the chosen component N(µ,Σ) as follows: First,
we consider the Cholesky decomposition of the covariance matrix: Σ = CCT , and take a d-
dimensional vector with coordinates being random standard normal variates: y = [y1 ... yd]

T with
yi =

√
−2 log u1 cos(2πu2) (for u1 and u2 uniform random variates in [0, 1)). Finally, we assemble

the Gaussian variate x as x = µ+Cy. This drawing process emphasizes that sampling a statistical
mixture is a doubly stochastic process by essence: First, we sample a multinomial law for choosing
the component, and then we sample the variate from the selected component.

Figure 1(b) shows a GMM with k = 32 components learned from a color image modeled as a
5D xyRGB point set (Figure 1(a)). Since a GMM is a generative model, we can sample the GMM
to create a “sample image” as shown in Figure 1(c). Observe that low frequency information of the
image is nicely modeled by GMMs. Figure 2(f) shows a GMM with k = 32 components learned
from a color image modeled as a high-dimensional point set. Each s×s color image patch anchored
at (x, y) is modeled as a point in dimension d = 2 + 3s2. GMM representations of images and
videos [21] provide a compact feature representation that can be used in many applications, like in
information retrieval (IR) engines [14].

In this paper, we consider the general case of mixtures of distributions belonging the same
exponential family [50], like Gaussian mixture models [24] (GMMs), Rayleigh mixture models [47]
(RMMs), Laplacian mixture models (LMMs)[4], Bernoulli mixture models [5] (BMMs), Multinomial
Mixture models [46] (MMMs), Poisson Mixture Models (PMMs) [28], Weibull Mixture Models [15]
(WeiMMs), Wishart Mixture Models [22] (WisMM), etc.

1.2 Contributions and prior work

Expectation-Maximization [18] (EM) is a traditional algorithm for learning finite mixtures [34].
Banerjee et al. [9] proved that EM for mixture of exponential families amounts to perform equiv-

1Also called MultiVariate Normals (MVNs) in software packages.
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(a) (b) (c)

Figure 1: A RGB color image (a) is interpreted as a 5D xyRGB point set on which a Gaussian
mixture model (GMM) with k = 32 components is trained (b). Drawing many random variates
from the generative GMM yields a sample image(c) that keeps low-frequency visual information.

(a) (b) (c)

(d) (e) (f)

Figure 2: Modeling a color image using a Gaussian mixture model (GMM): (a) Image Baboon source
image, (b) a 5D 32-GMM modeling depicted by its covariance ellipses, (c) hard segmentation using
the GMM, (d) sampling the 5D GMM, (e) Mean colors (8 × 8 patches) for GMM with patch size
s = 8, (f) patch mean µ for s = 8 patch size width.
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alently a soft Bregman clustering. Furthermore, this EM-Bregman soft clustering equivalence was
extended to total Bregman soft clustering for curved exponential families [29]. Although math-
ematically convenient, we should remember that mixture data should be hard clustered as each
observation should emanate from exactly one component.

It is well-known that k-means clustering technique can be interpreted as a limit case of EM for
isotropic Gaussian mixtures [37]. Kearns et al. [26] casted further light on the hard/soft relationship
using an information-theoretic analysis of hard k-means and soft expectation-mazimization assign-
ments in clustering. Banerjee et al [7] proved a mathematical equivalence between the estimation
of maximum likelihood of exponential family mixtures (MLME, Maximum Likelihood Mixture Es-
timation) and a rate distortion problem for Bregman divergences. Furthermore, Banerjee et al. [8]
proposed the hardened expectation for the special case of von Mises-Fisher mixtures (hard EM,
Section 4.2 of [8]) for computational efficiency.

In this paper, we build on the duality between Bregman divergences and exponential families [9]
to design k-MLE that iteratively (1) assigns data to mixture components, (2) update mixture
parameters à la k-means and repeat step (1) until local convergence, (3) update weights and reiterate
from (1) until local convergence (see Algorithm 1). We prove that k-MLE maximizes monotonically
the complete likelihood function. We also discuss several initialization strategies and describe a
probabilistic initialization k-MLE++ with guaranteed performance bounds.

The paper is organized as follows: Section 2 recall the basic notions of exponential families, Leg-
endre transform, Bregman divergences, and demonstrate the duality between Bregman divergences
and exponential families to study the Maximum Likelihood Estimator (MLE). Section 3 presents
the framework of k-MLE for mixtures with prescribed weights, based on the Bregman-exponential
family duality. The generic k-MLE algorithm is described in Section 4, and Section 5 discusses
on proximity location data-structures to speed up the assignment step of the algorithm. Section 6
presents k-MLE++, a probabilistic initialization of k-MLE. Finally, Section 7 concludes the paper
and discusses on avenues for future research.

2 Preliminaries

2.1 Exponential family

An exponential family [13] EF is a set of parametric probability distributions

EF = {pF (x; θ) | θ ∈ Θ} (4)

whose probability density2 can be decomposed canonically as

pF (x; θ) = e〈t(x),θ〉−F (θ)+k(x) (5)

where t(x) denotes the sufficient statistics, θ the natural parameter, F (θ) the log-normalizer,
and k(x) a term related to an optional auxiliary carrier measure. 〈x, y〉 denotes the inner product
(i.e., xT y for vectors tr(XTY ) for matrices, etc.). Let

Θ =

{
θ |

∫
pF (x; θ)dx <∞

}
(6)

2For sake of simplicity and brevity, we consider without loss of generality in the remainder continuous random
variables on Rd. We do not introduce the framework of probability measures nor Radon-Nikodym densities.
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denotes the natural parameter space. The dimension D of the natural parameter space is called the
order of the family. For the d-variate Gaussian distribution, the order is D = d+ d(d+1)

2 = d(d+3)
2 .

It can be proved using the Cauchy-Schwarz inequality [13] that the log-normalizer3 F is a strictly
convex and differentiable function on an open convex set Θ. The log-density of an exponential
family is

lF (x; θ) = 〈t(x), θ〉 − F (θ) + k(x) (7)

To build an exponential family, we need to choose a basic density measure on a support X ,
a sufficient statistic t(x), and an auxiliary carrier measure term k(x). Taking the log-Laplace
transform, we get

F (θ) =

∫
x∈X

e〈t(x),θ〉+k(x)dx, (8)

and define the natural parameter space as the θ values ensuring convergence of the integral.
In fact, many usual statistical distributions such as the Gaussian, Gamma, Beta, Dirichlet, Pois-

son, multinomial, Bernoulli, von Mises-Fisher, Wishart, Weibull are exponential families in disguise.
In that case, we start from their probability density or mass function to retrieve the canonical de-
composition of Eq. 5. See [36] for usual canonical decomposition examples of some distributions
that includes a bijective conversion function θ(λ) for going from the usual λ-parameterization of
the distribution to the θ-parametrization.

Furthermore, exponential families can be parameterized canonically either using the natural
coordinate system θ, or by using the dual moment parameterization η (also called mean value
parameterization) arising from the Legendre transform (see Appendix B for the case of Gaussians).

2.2 Legendre duality and convex conjugates

For a strictly convex and differentiable function F : N→ R, we define its convex conjugate by

F ∗(η) = sup
θ∈N
{〈η, θ〉 − F (θ)︸ ︷︷ ︸

lF (η;θ)

} (9)

The maximum is obtained for η = ∇F (θ) and is unique since F is convex ∇2
θlF (η; θ) =

−∇2F (θ) ≺ 0:

∇θlF (η; θ) = η −∇F (θ) = 0⇒ η = ∇F (θ) (10)

Thus strictly convex and differentiable functions come in pairs (F, F ∗) with gradients being
functional inverses of each other ∇F = (∇F ∗)−1 and ∇F ∗ = (∇F )−1. Legendre transform is an
involution: (F ∗)∗ = F for strictly convex and differentiable functions. In order to compute F ∗, we
only need to find the functional inverse (∇F )−1 of ∇F since

F ∗(η) = 〈(∇F )−1(η), η〉 − F ((∇F )−1(η)). (11)

However, this inversion may require numerical solving when no analytical expression of ∇F−1

is available. See for example the gradient of the log-normalizer of the Gamma distribution [36], the
Dirichlet or von Mises-Fisher distributions [8].

3Also called in the literature as the log-partition function, the cumulant function, or the log-Laplace function.
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2.3 Bregman divergence

A Bregman divergence BF is defined for a strictly convex and differentiable generator F as

BF (θ1 : θ2) = F (θ1)− F (θ2)− 〈θ1 − θ2,∇F (θ2)〉. (12)

The Kullback-Leibler divergence (relative entropy) between two members p1 = pF (x; θ1) and
p2 = pF (x; θ2) of the same exponential family amounts to compute a Bregman divergence on the
corresponding swapped natural parameters:

KL(p1 : p2) =

∫
x∈X

p1(x) log
p1(x)

p2(x)
dx, (13)

= BF (θ2 : θ1), (14)

= F (θ2)− F (θ1)− 〈θ2 − θ1,∇F (θ1)〉 (15)

The proof follows from the fact that E[t(X)] =
∫
x∈X t(x)pF (x; θ)dx = ∇F (θ) [39]. Using

Legendre transform, we further have the following equivalences of the relative entropy:

BF (θ2 : θ1) = BF∗(η1 : η2), (16)

= F (θ2) + F ∗(η1)− 〈θ2, η1〉︸ ︷︷ ︸
CF (θ2:η1)=CF∗ (η1:θ2)

, (17)

where η = ∇F (θ) is the dual moment parameter (and θ = ∇F ∗(η)). Information geometry [3]
often considers the canonical divergence CF of Eq. 17 that uses the mixed coordinate systems θ/η,
while computational geometry [12] tends to consider dual Bregman divergences, BF or BF ∗ , and
visualize structures in one of those two canonical coordinate systems. Those canonical coordinate
systems are dually orthogonal since ∇2F (θ)∇2F ∗(η) = I, the identity matrix.

2.4 Maximum Likelihood Estimator (MLE)

For exponential family mixtures with a single component M ∼ EF (θ1) (k = 1, w1 = 1), we easily
estimate the parameter θ1. Given n independent and identically distributed observations x1, ..., xn,
the Maximum Likelihood Estimator (MLE) is maximizing the likelihood function:

θ̂ = argmaxθ∈ΘL(θ;x1, ..., xn), (18)

= argmaxθ∈Θ

n∏
i=1

pF (xi; θ), (19)

= argmaxθ∈Θe
∑n
i=1〈t(xi),θ〉−F (θ)+k(xi) (20)

For exponential families, the MLE reports a unique maximum since the Hessian of F is positive
definite (X ∼ EF (θ)⇒ ∇2F = var[t(X)] � 0):

∇F (θ̂) =
1

n

n∑
i=1

t(xi) (21)

6



Exponential Family ⇔ Dual Bregman divergence
pF (x|θ) BF ∗

Spherical Gaussian ⇔ Squared Euclidean divergence
Multinomial ⇔ Kullback-Leibler divergence

Poisson ⇔ I-divergence
Geometric ⇔ Itakura-Saito divergence
Wishart ⇔ log-det/Burg matrix divergence

Table 1: Some examples illustrating the duality between exponential families and Bregman diver-
gences.

The MLE is consistent and efficient with asymptotic normal distribution:

θ̂ ∼ N
(
θ,

1

n
I−1
F (θ)

)
, (22)

where IF denotes the Fisher information matrix:

IF (θ) = var[t(X)] = ∇2F (θ) = (∇2G(η))−1 (23)

(This proves the convexity of F since the covariance matrix is necessarily positive definite.) Note
that the MLE may be biased (for example, normal distributions).

By using the Legendre transform, the log-density of an exponential family can be interpreted
as a Bregman divergence [9]:

log pF (x; θ) = −BF ∗(t(x) : η) + F ∗(t(x)) + k(x) (24)

Table 1 reports some illustrating examples of the Bregman divergence ↔ exponential family
duality. Let us use the Bregman divergence-exponential family duality to prove that

θ̂ = arg max
θ∈Θ

n∏
i=1

pF (xi; θ) = ∇F−1

(
n∑
i=1

t(xi)

)
. (25)

Maximizing the average log-likelihood l̄ = 1
n logL, we have:

maxθ∈N l̄(θ;x1, ..., xn) =
1

n

n∑
i=1

(〈t(xi), θ〉 − F (θ) + k(xi)) (26)

maxθ∈N
1

n

n∑
i=1

−BF ∗(t(xi) : η) + F ∗(t(xi)) + k(xi) (27)

≡ minη∈M
1

n

n∑
i=1

BF ∗(t(xi) : η) (28)

Since right-sided Bregman centroids defined as the minimum average divergence minimizers
coincide always with the center of mass [9] (independent of the generator F ), it follows that

η̂ =
1

n

n∑
i=1

t(xi) = ∇F (θ̂). (29)
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It follows that η̂ = (∇F )−1( 1
n

∑n
i=1 t(xi)).

In information geometry [3], the point P̂ with η-coordinate η̂ (and θ-coordinate ∇F−1(η̂) = θ̂)
is called the observed point. The best average log-likelihood reached by the MLE at η̂ is

l(θ̂;x1, ..., xn) =
1

n

n∑
i=1

(−BF ∗(t(xi) : η̂) + F ∗(t(xi)) + k(xi)), (30)

=
1

n

n∑
i=1

(−F ∗(t(xi)) + F ∗(η̂) + 〈t(xi)− η̂,∇F ∗(η̂)〉+ F ∗(t(xi)) + k(xi)), (31)

= F ∗(η̂) +
1

n

n∑
i=1

k(xi) +

〈
1

n

n∑
i=1

t(xi)− η̂︸ ︷︷ ︸
0

, θ̂

〉
, (32)

= F ∗(η̂) +
1

n

n∑
i=1

k(xi). (33)

The Shannon entropy HF (θ) of pF (x; θ) is HF (θ) = −F ∗(η) −
∫
k(x)pF (x; θ)dx [39]. Thus

the maximal likelihood is related to the minimum entropy (i.e., reducing the uncertainty) of the
empirical distribution.

Another proof follows from the Appendix A where it is recalled that the Bregman information [9]
(minimum of average right-centered Bregman divergence) obtained for the center of mass is a Jensen
diversity index. Thus we have

l̄ = −JF ∗(
n∑
i=1

t(xi)) +
1

n

n∑
i=1

F ∗(t(xi)) +
1

n

n∑
i=1

k(xi), (34)

= −

(
n∑
i=1

F ∗(t(xi))− F ∗(η̂)

)
+

1

n

n∑
i=1

F ∗(t(xi)) +
1

n

n∑
i=1

k(xi), (35)

= F ∗(η̂) +
1

n

n∑
i=1

k(xi) (36)

Appendix B reports the dual canonical parameterizations of the multivariate Gaussian distri-
bution family.

3 k-MLE: Learning mixtures with given prescribed weights

Let X = {x1, ..., xn} be a sample set of independently and identically distributed observations from
a finite mixture m(x|w, θ) with k components. The joint probability distribution of the observed
observations xi’s with the missing component labels zi’s is

p(x1, z1, ..., xn, zn|w, θ) =

n∏
i=1

p(zi|w)p(xi|zi, θ) (37)

8



To optimize the joint distribution, we could test (theoretically) all the kn labels, and choose the
best assignment. This is not tractable in practice since it is exponential in n for k > 1. Since we
do not observe the latent variables z1, ..., zn, we marginalize the hidden variables to get

p(x1, ..., xn|w, θ) =

n∏
i=1

k∑
j=1

p(zi = j|w)p(xi|zi = j, θj) (38)

The average log-likelihood function is

l̄(x1, ..., xn|w, θ) =
1

n
log p(x1, ..., xn|w, θ), (39)

=
1

n

n∑
i=1

log
k∑
j=1

p(zi = j|w)p(xi|zi = j, θj). (40)

Let δj(zi) = 1 if and only if xi has been sampled from the jth component, and 0 otherwise. We
have the complete average log-likelihood that is mathematically rewritten as

l̄(x1, z1, ..., xn, zn|w, θ) =
1

n

n∑
i=1

log

k∏
j=1

(wjpF (xi|θj))δj(zi) (41)

=
1

n

n∑
i=1

k∑
j=1

δj(zi)(log pF (xi|θj) + logwj) (42)

Using the bijection between exponential families and dual Bregman divergences [9], we have the
mathematical equivalence log pF (x|θj) = −BF ∗(t(x) : ηj) + F ∗(t(x)) + k(x), where ηj = ∇F (θj)
is the moment parameterization of the j-th component exponential family distribution. It follows
that the complete average log-likelihood function is written as

l̄(x1, ..., xn|w, θ) =
1

n

n∑
i=1

k∑
j=1

δj(zi)(−BF ∗(t(xi) : ηj) + F ∗(t(xi)) + k(xi) + logwj) (43)

=

 1

n

n∑
i=1

k∑
j=1

δj(zi)(−BF ∗(t(xi) : ηj) + logwj)

+
1

n

n∑
i=1

F ∗(t(xi)) + k(xi).(44)

By removing the constant terms 1
n

∑n
i=1(F ∗(t(xi))+k(xi)) independent of the mixture moment

parameters (the η’s), maximizing the complete average log-likelihood amounts to equivalently min-
imize the following loss function:

l̄′ =
1

n

n∑
i=1

k∑
j=1

δj(zi)(BF ∗(t(xi) : ηj)− logwj), (45)

=
1

n

n∑
i=1

k
min
j=1

(BF ∗(yi : ηj)− logwj), (46)

= kmeansF ∗,logw(Y : H), (47)

9



where Y = {y1 = t(x1), ..., yn = t(xn(} and H = {η1, ..., ηk}.

Remark 1 This is the argmin of Eq. 46 that gives the hidden component labels for the xi’s.

Remark 2 Observe that since ∀i ∈ {1, ..., k},− logwi ≥ 0 (since wi ≤ 1), we have the following
additive dual Bregman divergence BF ∗(yi : ηj) − logwj > 0 per cluster. Depending on the weights
(e.g., w → 0), we may have some empty clusters. In that case, the weight of a cluster is set to
zero (and the component parameter is set to ∅ by convention). Note that it makes sense to consider
(≤ k)-means instead of k-means in the sense that we would rather like to upper bound the maximum
complexity of the model rather than precisely fixing it.

Eq. 46 is precisely the loss function of a per-cluster additive Bregman k-means (see the ap-
pendix A) defined for the Legendre convex conjugate F ∗ of the log-normalizer F of the exponen-
tial family for the sufficient statistic points Y = {yi = t(xi)}ni=1. It follows that any Bregman
k-means heuristic decreases monotonically the loss function and reaches a local minimum (cor-
responding to a local maximum for the equivalent complete likelihood function). We can either
use the batched Bregman Lloyd’s k-means [9], the Bregman Hartigan and Wong’s greedy cluster
swap heuristic [23, 52], or the Kanungo et al. [25] (9+ ε)-approximation global swap approximation
algorithm.

Remark 3 The likelihood function L is equal to enl̄. The average likelihood function L̄ is defined
by taking the geometric mean L̄ = L

1
n .

The following section shows how to update the weights once the local convergence of the
assignment-η of the k-MLE loop has been reached.

4 General k-MLE including mixture weight updates

When k-MLE with prescribed weights reaches a local minimum (see Eq. 44 and Eq. 46 and the
appendix A), the current loss function is equal to

l̄ =
1

n

n∑
i=1

k∑
j=1

δj(zi)(BF ∗(t(xi) : ηj)− logwj)︸ ︷︷ ︸
Minimized by additive Bregman k-means, see Appendix

−

(
1

n

n∑
i=1

F ∗(t(xi)) + k(xi)

)
,(48)

l̄ =

k∑
j=1

αjJF ∗(Cj)− αj logwj −

(
1

n

n∑
i=1

F ∗(t(xi)) + k(xi)

)
,(49)

where αi = |Ci|
n denotes the proportion of points assigned to the i-th cluster Ci, and αiJF ∗(Ci) is

the weighted Jensen diversity divergence of the cluster. In order to further minimize the average
complete likelihood of Eq. 49, we update the mixture weights wi’s by minimizing the criterion:

min
w∈∆k

k∑
j=1

−αj logwj (50)

= min
w∈∆k

H×(α : w), (51)

10



where H×(p : q) = −
∑k

i=1 pi log qi denotes the Shannon cross-entropy, and ∆k the (k − 1)-
dimensional probability simplex. The cross-entropy H×(p : q) is minimized for p = q, and yields
H×(p, p) = H(p) = −

∑k
i=1 pi log pi, the Shannon entropy. Thus we update the weights by taking

the relative proportion of points falling into the clusters:

∀i ∈ {1, ..., k}, wi ← αi. (52)

After updated the weights, the average complete log-likelihood is

l̄ =
k∑
i=1

wiJF ∗(Ci) +H(w)−

(
1

n

n∑
i=1

F ∗(t(xi)) + k(xi)

)
. (53)

We summarize the k-MLE algorithm in the boxed Algorithm 1.

Algorithm 1 Generic k-MLE for learning an exponential family mixture model.

Input:

X : a set of n identically and independently distributed observations: X = {x1, ..., xn}
F : log-normalizer of the exponential family, characterizing EF
∇F : gradient of F for moment η-parameterization: η = ∇F (θ)
∇F−1 : functional inverse of the gradient of F for θ-parameterization: θ = ∇F−1(η)
t(x) : the sufficient statistic of the exponential family
k : number of clusters

• 0. Initialization: ∀i ∈ {1, ..., k}, let wi = 1
k and ηi = t(xi)

(Proper initialization is further discussed later on).

• 1. Assignment: ∀i ∈ {1, ..., n}, zi = argminkj=1BF ∗(t(xi) : ηj)− logwj .

Let ∀i ∈ {1, ..., k} Ci = {xj |zj = i} be the cluster partition: X = ∪ki=1Ci.
(some clusters may become empty depending on the weight distribution)

• 2. Update the η-parameters: ∀i ∈ {1, ..., k}, ηi = 1
|Ci|
∑

x∈Ci t(x).

(By convention, ηi = ∅ if |Ci| = 0) Goto step 1 unless local convergence of the complete
likelihood is reached.

• 3. Update the mixture weights: ∀i ∈ {1, ..., k}, wi = 1
n |Ci|.

Goto step 1 unless local convergence of the complete likelihood is reached.

Output: An exponential family mixture model m(x) (EFMM) parameterized in the natural coor-
dinate system: ∀i ∈ {1, ..., k}, θi = (∇F )−1(ηi) = ∇F ∗(ηi):

m(x) =

k∑
i=1

wipF (x|θi)

Remark 4 Note that we can also do after the assignment step of data to clusters both (i) the
mixture η-parameter update and (ii) the mixture w-weight update consecutively in a single iteration
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of the k-MLE loop. This corresponds to the Bregman hard expectation-maximization (Bregman
Hard EM) algorithm described in boxed Algorithm 2. This Hard EM algorithm is straightforwardly
implemented in legacy source codes by hardening the weight membership in the E-step of the EM.
Hard EM was shown computationally efficient when learning mixtures of von-Mises Fisher (vMF)
distributions [8]. Indeed, the log-normalizer F (used when computing densities) of vMF distribu-
tions requires to compute a modified Bessel function of the first kind [49], that is only invertible
approximately using numerical schemes.

Algorithm 2 Hard EM for learning an exponential family mixture model.

• 0. Initialization: ∀i ∈ {1, ..., k}, let wi = 1
k and ηi = t(xi)

(Proper initialization is further discussed later on).

• 1. Assignment: ∀i ∈ {1, ..., n}, zi = argminkj=1BF ∗(t(xi) : ηj)− logwj .

Let ∀i ∈ {1, ..., k} Ci = {xj |zj = i} be the cluster partition: X = ∪ki=1Ci.

• 2. Update the η-parameters: ∀i ∈ {1, ..., k}, ηi = 1
|Ci|
∑

x∈Ci t(x).

• 3. Update the mixture weights: ∀i ∈ {1, ..., k}, wi = |Ci|
n .

• Goto step 1 unless local convergence of the complete likelihood is reached.

We can also sparsify EM by truncating to the first D entries on each row (thus, we obtain
a well-defined centroid per cluster for non-degenerate input). This is related to the sparse EM
proposed in [35]. Degeneraties of the EM GMM is identified and discussed in [6]. Asymptotic
convergence rate of the EM GMM is analyzed in [32].

There are many ways to initialize k-means [42]. Initialization shall be discussed in Section 6.

5 Speeding up k-MLE and Hard EM using Bregman NN queries

The proximity cells {V1, ...,Vk} induced by the cluster centers C = {c1, ..., ck} (in the η-coordinate
system) are defined by:

Vj = {x ∈ X | BF ∗(t(x) : ηj)− logwj ≤ BF ∗(t(x) : ηl)− logwl,∀l ∈ {1, ..., k}\{j}} (54)

partitions the support X into a Voronoi diagram. It is precisely equivalent to the intersection
of a Bregman Voronoi diagram for the dual log-normalizer F ∗ with additive weights [12] on the
expectation parameter space M = {η = ∇F (θ) | θ ∈ N} with the hypersurface4 T = {t(x) | x ∈ X}.
For the case of Gaussian mixtures, the log-density of the joint distribution wipF (x;µi,Σi) induces a
partition of the space into an anisotropic weighted Voronoi diagram [27]. This is easily understood
by taking minus the log-density of the Gaussian distribution (see Eq. 2):

− log p(x;µi,Σi) =
1

2
DΣ−1

i
(x− µi, x− µi) +

1

2
log |Σi|+

d

2
log 2π, (55)

4Note that there is only one global minimum for the distance BF∗(y : η) with y ∈ T.
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(a) (b)

Figure 3: From the source color image (a), we buid a 5D GMM with k = 32 components, and color
each pixel with the mean color of the anisotropic Voronoi cell it belongs to.

with MQ the squared Mahalanobis distance MQ(x, y) = (x − y)TQ(x − y). This is an additively
weighted Bregman divergence with mass mi = 1

2 log |Σi|+ d
2 log 2π and generator Fi(x) = 〈x,Σ−1

i x〉,
the precision matrix (see the Appendix). Figure 3 displays the anisotropic Voronoi diagram [27]
of a 5D xyRGB GMM restricted to the xy plane. We color each pixel with the mean color of the
anisotropic Voronoi cell it belongs to.

When the order of the exponential family (i.e., number of parameters) is small (say, D ≤ 3),
we can compute explicitly this additively weighted Bregman Voronoi diagrams in the moment
parameter space M, and use proximity location data-structures designed for geometric partitions
bounded by planar walls. Otherwise, we speed up the assignment step of k-MLE/Hard EM by
using proximity location data-structures such as Bregman ball trees [45] or Bregman vantage point
trees [40]. See also [1].

Besides Lloyd’s batched k-means heuristic [31, 33, 19], we can also implement other k-means
heuristic like the greedy Hartigan and Wong’s swap [23, 52] in k-MLE that selects a point and
optimally reassign it, or Kanungo et al. [25] global swap optimization, etc.

Remark 5 The MLE equation η̂ = ∇F (θ̂) = 1
n

∑n
i=1 t(xi) may yield a transcendental equation.

That is, when (∇F )−1 is not available analytically (e.g., von Mises-Fisher family [8]), the convex
conjutate F ∗ needs to be approximated by computing numerically the reciprocal gradient ∇F−1

(see Eq. 11). Sra [49] focuses on solving efficiently the MLE equation5 for the von Mises-Fisher
distributions.

5See also, software R package movMF
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6 Initializing k-MLE using k-MLE++

To complete the description of k-MLE of boxed Algorithm 1, it remains the problem to properly
initializing k-MLE (step 0). One way to perform this initialization is to compute the global MLE
parameter for the full set X :

η̂ = ∇F−1

(
1

n

n∑
i=1

t(xi)

)
, (56)

and then consider the restricted exponential family of order d ≤ D with restricted sufficient statistic
the first d components of full family statistic (t1(x), ..., td(x)). We initialize the i-th cluster with

η
(0)
i = (t1(xi), ..., td(xi), η̂d+1, ..., η̂D). For the case of multivariate Gaussians with D = d(d+3)

2 , this

amounts to compute the covariance matrix Σ̂ of the full set and then set the translation parameter to

xi: η
(0)
i = (xi,−1

2(Σ̂ +xix
T
i )) (see appendix B). This initialization is a heuristic with no guaranteed

performance on the initial average complete log-likelihood l̄ compared to the best one l̄∗. Note that
when D = d (e.g., Poisson, Weibull, Rayleigh, isotropic Gaussian, etc.), we need to have distinct
initializations so that instead of taking the global MLE, we rather split the data set into k groups
of size n

k , and take the MLE of each group for initialization. A good geometric split is given by
using a Voronoi partition diagram as follows: We run Bregman k-means on Y for the dual convex
conjugate F ∗ and set the mixture parameters as the MLEs of clusters and the weights as the relative
proportion of data in clusters. This corroborates an experimental observation by Banerjee et al. [9]
that observes that clustering works experimentally best if we choose the dual Bregman divergence
associated with the exponential family mixture sample set.

Let us further use the dual Bregman k-means interpretation of EM to perform this initialization
efficiently. Assume uniform weighting of the mixtures. That is, ∀i ∈ {1, ..., k}, wi = 1

k .
Maximizing the average complete log-likelihood amounts to minimize (see Eq. 46):

l̄′′ =
1

n

k∑
i=1

k
min
j=1

BF ∗(yi = t(xi) : ηj). (57)

The likelihood function L(x1, ..., xn|θ, w) is

L = e−nkmeansF∗ (C)+n log k+
∑n
i=1(F ∗(xi)+k(xi)). (58)

Thus for uniform mixture weights, the ratio between two different k-means optimization with
respective cluster centers C and C′ is:

L

L′
= e−n(kmeansF∗ (C)−kmeansF∗ (C′)) (59)

We can use the standard Bregman k-means++ initialization [2] on the convex conjugate F ∗

that gives probabilistically a guaranteed O(µ−2 log k) performance, where µ is a constant factor to
be explained below. The Bregman k-means++ algorithm is recalled in boxed Algorithm 3.

Let kmeans∗F denote the optimal Bregman k-means average loss function for generator F . Breg-
man k-means++ [2] described in Algorithm 3 ensures that

kmeansF
∗(Y : C) ≤ kmeansF (Y : C) ≤ 8

µ2
(2 + log k)kmeansF

∗(Y : C) (60)

14



Algorithm 3 Bregman k-means++: probabilistically guarantees a good initialization.

• Choose first seed C = {yl}, for l uniformly random in {1, ..., n}.

• For i← 2 to k

– Choose ci ∈ {y1, ..., yn} with probability

pi =
BF (ci : C)∑n
i=1BF (yi : C)

=
BF (Y : C)

kmeansF (Y : C)
,

where BF (c : C) = minp∈C BF (c : p).

– Add selected seed to the initialization seed set: C ← C ∪{ci}, and reiterate until |C| = k.

The factor µ in the upper bound is related to the notion of µ-similarity that we now concisely
explain. Observe that the squared Mahalanobis distance MQ(p, q) = (p− q)TQ(p− q) satisfies the
double triangle inequality:

MQ(p, q) ≤ 2(MQ(p, r) +MQ(r, q)). (61)

A Bregman divergence is said to have the µ-similarity on a domain Y if there exists a positive
definite matrix Q � 0 on Y = conv(y1, ..., yn) and a real 0 < µ ≤ 1 such that

µMQ(p, q) ≤ BF (p : q) ≤MQ(p, q) (62)

Since a Bregman divergence can also be interpreted as the remainder of a Taylor expansion
using the Lagrange error term:

BF (p : q) = (p− q)T ∇
2F (εpq)

2
(p− q), (63)

with εpq being a point on the line segment [pq]. It follows that by considering the Hessian ∇2F on
a compact subset Y = conv(y1, ..., yn), we get a bound [41] for µ as follows:

µ = min
p,q∈Y

miny∈Y(p− q)T∇2F (y)(p− q)
maxy∈Y(p− q)T∇2F (y)(p− q)

. (64)

By considering a hyperrectangle bounding the convex hull Y = conv(y1, ..., yn), it is usually
easy to compute bounds for µ. See [2] for some examples.

The notion of µ-similarity also allows one to design fast proximity queries [1] based on the
following two properties:

Approximately symmetric.

BF (p : q) ≤ 1

µ
BF (q, p) (65)

Deficient triangle inequality.

BF (p : q) ≤ 2

µ
(BF (p : r) +BF (q : r)) (66)
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For mixtures with prescribed but different non-zero weighting, we can bound the likelihood
ratio using w+ = maxiwi ≥ 1

k and w− = miniwi. When mixture weights are unknown, we
can further discretize weights by increments of size δ (O(1/δk) such weight combinations, where
each combination gives rise to a fixed weighting) and choose the initialization that yields the best
likelihood.

7 Concluding remarks and discussion

Banerjee et al. [9] proved that EM for learning exponential family mixtures amount to perform
a dual Bregman soft clustering. Based on the duality between exponential families and Bregman
divergences, we proposed k-MLE, a Bregman hard clustering in disguise. While k-MLE decreases
monotonically the complete likelihood until it converges to a local minimum after a finite number of
steps, EM monotonically decreases the expected complete likelihood and requires necessarily a pre-
scribed stopping criterion. Because k-MLE uses hard membership of observations, it fits the doubly
stochastic process of sampling mixtures (for which soft EM brings mathematical convenience).

Both k-MLE and EM are local search algorithm that requires to properly initialize the mixture
parameters. We described k-MLE++, a simple initialization procedure that builds on Bregman
k-means++ [2] to probabilistically guarantee an initialization not too far from the global optimum
(in case of known weights). While we use Lloyd k-means [31] heuristic for minimizing the k-means
loss, we can also choose other k-means heuristic to design a corresponding k-MLE. One possible
choice is Hartigan’s greedy swap [52] that can further improve the loss function when Lloyd’s k-
means is trapped into a local minimum. A local search technique such as Kanungo et al. swap [25]
also guarantees a global (9 + ε)-approximation.

The MLE may yield degenerate situations when, say, one observation point is assigned to one
component with weight close to one. For example, the MLE of one point for the normal distribution
is degenerate as σ → 0 (and w → 1)), and the likelihood function tends to infinity. That is the
unboundedness drawback of the MLE. See [48, 11] for further discussions on this topic including a
penalization of the MLE to ensure boundedness.

Statistical mixtures with k components are generative models of overall complexity k − 1 +
kD, where D is the order of the exponential family. An interesting future direction would be to
compare mixture models versus a single multi-modal exponential family [16] (with implicit log-
normalizer F ). We did not address the model selection problem that consists in determining the
appropriate number of components, nor the type of distribution family. Although there exists many
criteria like the Akaike Information Criterion (AIC), model selection is a difficult problem since
some distributions exhibit the indivisibility property that makes the selection process unstable.
For example, a normal distribution can be interpreted as a sum of normal distributions: ∀k ∈
N, N(µ, σ2) =

∑k
i=1N

(
µ
k ,

σ2

k

)
. From the practical point of view, it is better to overestimate

k, and then perform mixture simplification using entropic clustering [20]. Belkin and Sinha [10]
studied the polynomial complexity of learning a Gaussian mixture model.

We conclude by mentioning that it is still an active research topic to find good GMM learning
algorithms in practice (e.g., see the recent entropy-based algorithm [43]).
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A k-Means with per-cluster additively weighted Bregman diver-
gence

k-Means clustering asks to minimize the cost function kmeans(X : C) by partitioning input set
X = {x1, ..., xn} into k clusters using centers C = {c1, ..., ck}, where

kmeans(X : C) =
1

n

n∑
i=1

k
min
j=1
‖xi − cj‖2. (67)

There are several popular heuristics to minimize Eq. 67 like Lloyd’s batched method [30] or
Hartigan and Wong’s swap technique [23]. Those iterative heuristics guarantee to decrease mono-
tonically the k-means loss but can be trapped into a local minimum. In fact, solving for the
global minimum kmeans∗(X : C) is NP-hard for general k (even on the plane) and for k = 2 and
arbitrary dimension of datasets. Kanungo et al. [25] swap optimization technique guarantees a
(9 + ε)-approximation factor, for any ε > 0.

Let us consider an additively weighted Bregman divergence BFi,mi per cluster as follows:

BFi,mi(p : q) = BFi(p : q) +mi, (68)

with mi denoting the additive mass attached to a cluster center6, and BFi the Bregman divergence
induced by the Bregman generator Fi defined by

BFi(p : q) = Fi(p)− Fi(q)− 〈p− q,∇Fi(q)〉, (69)

Remark 6 For k-MLE, we consider all component distributions of the same exponential family
EF , and therefore all Fi = F ∗’s are identical. We could have also considered different expo-
nential families for the components but this would have burdened the paper with additional no-
tations although it is of practical interest. For example, for the case of the multivariate Gaus-
sian family, we can split the vector parameter part from the matrix parameter part, and write
F (θvi, θMi) = FθMi

(θvi) = Fi(θvi).

Let us extend the Bregman batched Lloyd’s k-means clustering [9] by considering the generalized
k-means clustering loss function for a data set Y = {y1, ..., yn} and a set C of k cluster centers
C = {c1, ..., ck}:

kmeans(Y, C) = min
c1,...,ck

1

n

n∑
i=1

k
min
j=1

Di(yi : cj). (70)

Let us prove that the center-based Lloyd’s k-means clustering algorithm monotonically decreases
this loss function, and terminates after a finite number of iterations into a local optimum.

6In this paper, we have mi ≥ 0 by choosing mi = − logwi for wi < 1, but this is not required.
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• When k = 1, the minimizer of kmeans(Y, C = {c1}) is the center of mass (always independent
of the Bregman generator):

c1 =
1

n

n∑
i=1

yi = ȳ, (71)

and the Bregman information [9] is defined as the minimal 1-means loss function:

kmeansF1,m1(Y, {c1}) = IF1(Y) (72)

=
1

n

n∑
i=1

F1(yi)− F1(ȳ) +m1, (73)

= m1 + JF1(Y), (74)

where ȳ = 1
n

∑n
i=1 yi and

JF1(y1, ..., yn) =
1

n

n∑
i=1

F1(yi)− F1(ȳ) ≥ 0, (75)

denotes the Jensen diversity index [38].

• When k ≥ 2, let c
(t)
i denote the cluster center of the i-th cluster C(t)

i ⊂ Y of the partition

Y = ∪ki=1C
(t)
i at the tth iteration. The generalized additively weighted Bregman k-means loss

function can be rewritten as

kmeansF,m(C(t)
1 , ..., C(t)

k : c
(t)
1 , ..., c

(t)
k ) =

1

n

k∑
i=1

∑
y∈C(t)

i

BFi,mi(y : ci). (76)

Since the assignment step allocates yi to their closest cluster center argminkj=1BFi,mi(yi : cj),
we have

kmeansF,m(C(t+1)
1 , ..., C(t+1)

k : c
(t)
1 , ..., c

(t)
k ) ≤ kmeansF,m(C(t)

1 , ..., C(t)
k : c

(t)
1 , ..., c

(t)
k ). (77)

Since the center relocation minimizes the average additively weighted divergence, we have

kmeansF,m(C(t+1)
1 , ..., C(t+1)

k : c
(t+1)
1 , ..., c

(t+1)
k ) ≤ kmeansF,m(C(t+1)

1 , ..., C(t+1)
k ; c

(t)
1 , ..., c

(t)
k ).

(78)

By iterating the assignment-relocation steps of k-means, and cascading the inequalities by
transitivity, we get

kmeansF,m(C(t+1)
1 , ..., C(t+1)

k : c
(t+1)
1 , ..., c

(t+1)
k ) ≤ kmeansF,m(C(t)

1 , ..., C(t)
k : c

(t)
1 , ..., c

(t)
k ) (79)

Since the loss function is trivially lower bounded by 1
n minki=1mi (and therefore always positive

when all mi ≥ 0), we conclude that the generalized Bregman k-means converge to a local
optimum, after a finite number7 of iterations.

7We cannot repeat twice a partition.

18



Furthermore, the loss function can be expressed as

kmeansF,m(C1, ..., Ck : c1, ..., ck) =
1

n

k∑
i=1

∑
y∈Ci

BFi,mi(y : ci), (80)

=
k∑
i=1

wiJFi(Ci) +
k∑
i=1

wimi, (81)

with JFi(Ci) = 1
|Ci|
∑n

y∈Ci Fi(y) − Fi(ci) ≥ 0 (and ci =

∑
y∈Ci

y

|Ci| ), and wi = |Ci|
n for all i ∈

{1, ..., k}, the cluster relative weights.

When all Fi are identical to some generator F , we have the following loss function:

kmeansF,m =
k∑
i=1

wiJF (Ci) +

k∑
i=1

wimi (82)

The celebrated k-means of Lloyd [30] minimizes the weighted within-cluster variances (for the
Bregman quadratic generator F (x) = 〈x, x〉 inducing the squared Euclidean distance error) as
shown in Eq. 81, with Bregman information:

JF (Y) =
∑
y∈Y

1

|Y|
‖y − ȳ‖2, (83)

=
∑
y∈Y

1

|Y|
〈y − ȳ, y − ȳ〉, (84)

=
∑
y∈Y

1

|Y|
(〈y, y〉 − 2〈ȳ, y〉 − 〈ȳ, ȳ〉), (85)

=
∑
y∈Y

1

|Y|
〈y, y〉 − 2

〈
ȳ,
∑
y∈Y

1

|Y|
y︸ ︷︷ ︸

ȳ

〉
− 〈ȳ, ȳ〉, (86)

=
1

|Y|
∑
y∈Y
〈y, y〉 − 〈ȳ, ȳ〉 = JF (Y), (87)

the variance. When all cluster generators are identical and have no mass, it is shown by Banerjee
et al. [9] that the loss function can be equivalently rewritten as:

kmeansF (P : C) = JF (P)− JF (C) =
k∑
i=1

wiJF (Ci), (88)

= IF (P)− IF (C) (89)

Remark 7 Note that we always have c̄ = ȳ. That is, the centroid ȳ of set Y is equal to the
barycenter c̄ of the cluster centers C (with weights taken as the relative proportion of points falling
within the clusters.
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Remark 8 A multiplicatively weighted Bregman divergence miBFi is mathematically equivalent to
a Bregman divergence BmiFi for generator miFi, provided that mi > 0.

As underlined in this proof, Lloyd’s k-means [30] assignment-center relocation loop is a generic
algorithm that extends to arbitrary divergences Di guaranteeing unique average divergence min-
imizers, and the assignment/relocation process ensures that the associated k-means loss function
decreases monotonically. Teboulle studied [51] generic center-based clustering optimization meth-
ods. It is however difficult to reach the global minimum since k-means is NP-hard, even when data
set Y lies on the plane [53] for arbitrary k. In the worst case, k-means may take an exponential
number of iterations to converge [53], even on the plane.

B Dual parameterization of the multivariate Gaussian (MVN)
family

Let us explicit the dual θ-natural and η-moment parameterizations of the family of multivariate
Gaussians. Consider the multivariate Gaussian probability density parameterized by a mean vector
λv = µ and a covariance matrix λM = Σ.

p(x;λ) =
1

(2π)
d
2

√
|λM |

e−
1
2

(x−λv)Tλ−1
M (x−λv), (90)

= exp

(
−1

2
xTλ−1

M x+ λTv λ
−1
M x− 1

2
λTv λ

−1
M λv −

d

2
log 2π − 1

2
log |λM |

)
, (91)

where the usual parameter is λ = (λv, λM ) = (µ,Σ). Using the matrix cyclic trace property
−1

2x
Tλ−1

M x = tr(−1
2xx

Tλ−1
M ) and the fact that (λ−1

M )T = λ−1
M , we rewrite the density as follows:

p(x;λ) = exp

(
〈x, λ−1

M λv〉+ 〈−1

2
xxT , λ−1

M 〉 −
(

1

2
λTv λ

−1
M λv +

d

2
log 2π +

1

2
log |λM |

))
, (92)

where the inner product of vector is 〈v1, v2〉 = vT1 v2 and the inner product of matrices is 〈M1,M2〉 =
tr(MT

1 M2). Thus we define the following canonical terms:

• sufficient statistics: t(x) = (x,−1
2xx

T ),

• auxiliary carrier measure: k(x) = 0,

• natural parameter: θ = (θv, θM ) = (λ−1
M λv, λ

−1
M ).

• log-normalizer expressed in the λ-coordinate system:

F (λ) =
1

2
λTv λ

−1
M λv +

d

2
log 2π +

1

2
log |λM | (93)

Since λv = θ−1
M θv (and λTv = θTv θ

−1
M ) and log |λM | = − log |θM |, we express the log-normalizer

in the θ-coordinate system as follows:

F (θ) =
1

2
θTv θ

−1
M θv −

1

2
log |θM |+

d

2
log 2π (94)
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Since the derivative of the log determinant of a symmetric matrix is ∇X log |X| = X−1 and the
derivative of an inverse matrix trace [44]:

∇Xtr(AX−1B) = −(X−1BAX−1)T (95)

(applied to 1
2tr(θTv θ

−1
M θv) = −1

2(θ−1
M θvθ

T
v θ
−1
M )), we calculate the gradient ∇F of the log-normalizer

as

∇F (θ) = (∇θvF (θ),∇θMF (θ)) (96)

with

ηv = ∇θvF (θ) = θ−1
M θv, (97)

= E[x] = µ, (98)

ηM = ∇θMF (θ) = −1

2
(θ−1
M θv)(θ

−1
M θv)

T − 1

2
θ−1
M , (99)

= E

[
−1

2
xxT

]
= −1

2
(µµT + Σ), (100)

where η = ∇F (θ) = (ηv, ηM ) denotes the dual moment parameterization of the Gaussian.
It follows that the Kullback-Leibler divergence of two multivariate Gaussians is

KL(p(x;λ1) : p(x;λ2)) = BF (θ2 : θ1), (101)

=
1

2

(
tr(Σ−1

2 Σ1)− log |Σ1Σ−1
2 |+ (µ2 − µ1)TΣ−1

2 (µ2 − µ1)
)
. (102)

Note that the Kullback-Leibler divergence of multivariate Gaussian distributions [17] can be
decomposed as the sum of a Burg matrix divergence (Eq. 106) with a squared Mahalanobis distance
(Eq. 106) (both being Bregman divergences):

KL(pF (x|µ1,Σ1) : pF (x|µ2,Σ2) =
1

2

(
tr(Σ−1

2 Σ1)− log |Σ1Σ−1
2 |+ (µ2 − µ1)TΣ−1

2 (µ2 − µ1)
)

(103)

=
1

2
B(Σ1,Σ2) +

1

2
MΣ−1

2
(µ1, µ2), (104)

with

B(Σ1 : Σ2) = tr(Σ1Σ−1
2 )− log |Σ1Σ−1

2 | − d, (105)

MΣ−1
2

(µ1, µ2) = (µ1 − µ2)TΣ−1
2 (µ1 − µ2). (106)

To compute the functional inverse of the gradient, we write:

θ = ∇F−1(η) = ∇F ∗(η). (107)

Since ηM = −1
2(ηvη

T
v + θ−1

M ), we have:
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θM = (−2ηM − ηvηTv )−1, (108)

θv = (−2ηM − ηvηTv )−1ηv. (109)

Finally, we get the Legendre convex conjugate F ∗(η) as:

F ∗(η) = 〈∇F ∗(η), η〉 − F (∇F ∗(η)), (110)

= −1

2
log(1 + 2ηTv η

−1
M ηv)−

1

2
log | − ηM | −

d

2
log(πe). (111)

C k-MLE for Gaussian Mixture Models (GMMs)

We explicit k-MLE for Gaussian mixture models on the usual (µ,Σ) parameters in Algorithm 4.
The k-MLE++ initialization for the GMM is reported in Algorithm 5.

D Rayleigh Mixture Models (RMMs)

We instantiate the soft Bregman EM, hard EM, k-MLE, and k-MLE++ for the Rayleigh distribu-
tions, a sub-family of Weibull distributions.

A Rayleigh distribution has probability density x
σ2 e
− x2

2σ2 where σ ∈ R+ denotes the mode of the
distribution, and x ∈ X = R+ the support. The Rayleigh distributions form a 1-order univariate

exponential family (D = d = 1). Re-writing the density in the canonical form e−
x2

2σ2 +log x−2 log σ, we
deduce that t(x) = x2, θ = − 1

2σ2 , k(x) = log x, and F (σ2) = log σ2 = log− 1
2θ = − log(−2θ) = F (θ).

Thus ∇F (θ) = −1
θ = η and F ∗(η) = 〈θ, η〉 − F (θ) = −1 + log 2

η . The natural parameter space is

N = R− and the moment parameter space is M = R+ (with η = 2σ2). We check that conjugate
gradients are reciprocal of each other since ∇F ∗(η) = − 1

η = θ, and we have ∇2F (θ)∇2G(η) =
1
θ2

1
η2 = 1 (i.e, dually orthogonal coordinate system) with ∇2F (θ) = 1

θ2 and ∇2F ∗(η) = 1
η2 .

Rayleigh mixtures are often used in ultrasound imageries [47].

D.1 EM as a Soft Bregman clustering algorithm

Following Banerjee et al. [9], we instantiate the Bregman soft clustering for the convex conju-
gate F ∗(η) = −1 + log 2

η , t(x) = x2 and η = 2σ2. The Rayleigh density expressed in the η-

parameterization yields p(x;σ) = p(x; η) = 2x
η e
− 2x2

η .

Expectation. Soft membership for all observations x1, ..., xn:

∀1 ≤ i ≤ n, 1 ≤ j ≤ k, wi,j =
wjp(xi; θj)∑k
l=1wlp(xi; θl)

, (112)

(We can use any of the equivalent σ, θ or η parameterizations for calculating the densities.)
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Algorithm 4 k-MLE for learning a GMM.

Input:

X : a set of n independent and identically distributed distinct observations: X = {x1, ..., xn}
k : number of clusters

• 0. Initialization:

– Calculate global mean µ̄ and global covariance matrix Σ̄:

µ̄ =
1

n

k∑
i=1

xi,

Σ̄ =
1

n

k∑
i=1

xix
T
i − µ̄µ̄T

– ∀i ∈ {1, ..., k}, initialize the ith seed as (µi = xi,Σi = Σ̄).

• 1. Assignment:

∀i ∈ {1, ..., n}, zi = argminkj=1MΣ−1
i

(x− µi, x− µi) + log |Σi| − 2 logwi

with MΣ−1
i

(x− µi, x− µi) the squared Mahalanobis distance: MQ(x, y) = (x− y)TQ(x− y).

Let Ci = {xj |zj = i}, ∀i ∈ {1, ..., k} be the cluster partition: X = ∪ki=1Ci.
(Anisotropic Voronoi diagram [27])

• 2. Update the parameters:

∀i ∈ {1, ..., k}, µi =
1

|Ci|
∑
x∈Ci

x,Σi =
1

|Ci|
∑
x∈Ci

xxT − µiµTi

Goto step 1 unless local convergence of the complete likelihood is reached.

• 3. Update the mixture weights: ∀i ∈ {1, ..., k}, wi = 1
n |Ci|.

Goto step 1 unless local convergence of the complete likelihood is reached.

23



Algorithm 5 k-MLE for GMM:

• Choose first seed C = {yl}, for l uniformly random in {1, ..., n}.

• For i← 2 to k

– Choose ci = (µi,Σi) with probability

BF∗(ci : C)∑n
i=1BF∗(yi : C)

=
BF ∗(Y : C)

kmeansF ∗(Y : C)
,

where BF ∗(c : P) = minp∈P BF ∗(c : p).

F ∗(µ,Σ) = −1

2
log
(
1− µT (µµT + Σ)−1µ

)
− 1

2
log |µTµ+ Σ| − d

2
log 2π − d

– Add selected seed to the initialization seed set: C ← C ∪ {ci}.

Maximization. Barycenter in the moment parameterization:

∀1 ≤ j ≤ k, ηj =

∑n
i=1wi,jt(xi)∑n

l=1wl,j
, (113)

σj =

√
1

2

∑n
i=1wi,jx

2
i∑n

l=1wl,j
(114)

D.2 k-Maximum Likelihood Estimators

The associated Bregman divergence for the convex conjugate generator of the Rayleigh distribution
log-normalizer is

BF ∗(η1 : η2) = F ∗(η1)− F ∗(η2)− 〈η1 − η2,∇F ∗(η2)〉, (115)

= −1 + log
2

η1
+ 1− log

2

η2
− (η1 − η2)(−1/η2), (116)

=
η1

η2
+ log

η2

η1
− 1, (117)

= IS(η1 : η2) (118)

This is the Itakura-Saito divergence IS (indeed, F ∗ is equivalent modulo affine terms to − log η,
the Burg entropy).

1. Hard assignment.

∀1 ≤ i ≤ n, zi = argmin1≤j≤kIS(x2
i : ηj)− logwj

Voronoi partition into clusters:

∀1 ≤ j ≤ k, Cj = {xi | IS(x2
i : ηj)− logwj ≤ IS(x2

i : ηl)− logwl∀l 6= j}
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2. η-parameter update.

∀1 ≤ j ≤ k, ηj ←
1

|Cj |
∑
x∈Cj

x2

∀1 ≤ j ≤ k, σj =

√
1

2
ηj

Go to 1. until (local) convergence is met.

weight update.

∀1 ≤ j ≤ k,wj =
|Cj |
n

Go to 1. until (local) convergence is met.

Note that k-MLE does also model selection as it may decrease the number of clusters in order to
improve the complete log-likelihood. If initialization is performed using random point and uniform
weighting, the first iteration ensures that all Voronoi cells are non-empty.

D.3 k-MLE++

A good initialization for Rayleigh mixture models is done as follows: Compute the order statistics
for the n

k ,
2n
k ,

(k−1)n
k -th elements (in overall O(n log k)-time). Those pivot elements split the set X

into k groups X1, ...,Xk of size n
k , on which we estimate the MLEs.

The k-MLE++ initialization is built from the Itakura-Saito divergence:

IS(η1 : η2) =
η1

η2
+ log

η2

η1
− 1

k-MLE++:

• Choose first seed C = {yl}, for l uniformly random in {1, ..., n}.

• For i← 2 to k

– Choose ci ∈ y1 = x2
1, ..., yn = x2

n with probability

IS(ci : C)∑n
i=1 IS(yi : C)

– Add selected seed to the initialization seed set: C ← C ∪ {ci}.
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E Notations

Exponential family:

〈x, y〉 inner product (e.g., x>y for vectors, tr(Y >X) for matrices)

pF (x; θ) = e〈t(x),θ〉−F (θ)+k(x) Exponential distribution parameterized using the θ-coordinate system
X support of the distribution family ({x | pF (x; θ) > 0})
d dimension of the support X (univariate versus multivariate)
D dimension of the natural parameter space

(uniparameter versus multiparameter)
t(x) sufficient statistic (η̂ = 1

n

∑n
i=1 t(xi))

k(x) auxiliary carrier term
F log-normalizer, log-Laplace, cumulant function (F : N→ R)
∇F gradient of the log-normalizer (for moment η-parameterization)
∇2F Hessian of the log-normalizer

(Fisher information matrix, SPD: ∇2F (θ) � 0)
F ∗ Legendre convex conjugate
Distribution parameterization:

θ canonical natural parameter
N natural parameter space
η canonical moment parameter
M moment parameter space
λ usual parameter
L usual parameter space
pF (x;λ) density or mass function using the usual λ-parameterization
pF (x; η) density or mass function using the usual moment parameterization
Mixture:
m mixture model
∆k closed probability (d− 1)-dimensional simplex

H(w) Shannon entropy −
∑d

i=1wi logwi (with 0 log 0 = 0 by convention)

H×(p : q) Shannon cross-entropy −
∑d

i=1 p log q

wi mixture weights (positive such that
∑k

i=1wi = 1)
θi mixture component natural parameters
ηi mixture component moment parameters
m̃ estimated mixture
k number of mixture components
Ω mixture parameters
Clustering:

X = {x1, ..., xn} sample (observation) set
|X |, |C| cardinality of sets: n for the observations, k for the cluster centers
z1, ..., zn Hidden component labels
Y = {y1 = t(x1), ..., yn = t(xn)} sample sufficient statistic set
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L(x1, ..., xn; θ) likelihood function

θ̂, η̂, λ̂ maximum likelihood estimates
wi,j soft weight for xi in cluster/component Cj (wj , θj)
i index on the sample set x1, ..., xi, ..., xn
j index on the mixture parameter set θ1, ..., θj , ..., θk
C cluster partition
c1, ..., ck cluster centers
α1, ..., αk cluster proportion size
BF Bregman divergence with generator F :

BF (θ2, θ1) = KL(pF (x : θ1) : pF (x : θ2))

= BF ∗(η1, η2)

= F (θ2) + F ∗(η1)− 〈η1, θ2〉
JF Jensen diversity index:

JF (p1, ..., pn;w1, ..., wn) =
∑n

i=1wiF (pi)− F (
∑n

i=1wipi) ≥ 0
Evaluation criteria:
l̄F average incomplete log-likelihood:

l̄F (x1, ..., xn) = 1
n

∑n
i=1 log

∑k
j=1wjpF (xi; θj)

l̄′F average complete log-likelihood
l̄′F (x1, ..., xn) = 1

n

∑n
i=1 logwzipF (xi; θzi)

L̄F geometric average incomplete likelihood:

L̄F (x1, ..., xn) = el̄F (x1,...,xn)

L̄′F geometric average complete likelihood:

L̄′F (x1, ..., xn) = el̄
′
F (x1,...,xn)

kmeansF average k-means loss function (average divergence to the closest center)

kmeansF (X , C) =
1

n

n∑
i=1

BF (xi : C)

=
1

n

k∑
j=1

∑
x∈Cj

BF (x : cj)

=
k∑
j=1

wjJF (Cj)

= JF (X )− JF (C)
kmeansF,m average k-means loss function with respect to additive Bregman divergences
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