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In this letter, we propose a new message-passing algorithm for quadratic
optimization. The design of the new algorithm is based on linear coor-
dinate descent between neighboring nodes. The updating messages are
in a form of linear functions as compared to the min-sum algorithm of
which the messages are in a form of quadratic functions. As a result, the
linear coordinate-descent (LiCD) algorithm transmits only one parame-
ter per message as opposed to the min-sum algorithm, which transmits
two parameters per message. We show that when the quadratic matrix
is walk-summable, the LiCD algorithm converges. By taking the LiCD
algorithm as a subroutine, we also fix the convergence issue for a general
quadratic matrix. The LiCD algorithm works in either a synchronous or
asynchronous message-passing manner. Experimental results show that
for a general graph with multiple cycles, the LiCD algorithm has com-
parable convergence speed to the min-sum algorithm, thereby reduc-
ing the number of parameters to be transmitted and the computational
complexity.

1 Introduction

We consider solving the quadratic optimization problem in a distributed
fashion, namely,

. I B
mmf(x)_?;ﬁ%r} <§x Jx—h x) (1.1)

xeR"

where the quadratic matrix ] is symmetric positive definite and x is a real
vector in n-dimensional space. Without loss of generality, we assume that
] has unit-diagonal. It is known that the optimal solution x* satisfies the
linear equation [x* = h. By exploiting the sparsity of the quadratic matrix J,
we can decompose f(x) in a pairwise fashion according to a graphic model
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G = (V, E) (Lauritzen, 1996),

f@O = Y fix)+ Y fix). (1.2)

(i,j)eE ieV

That is, every variable x; in the problem is associated with a node i € V
and takes values over the real line R. The variables contribute to the over-
all function by interacting with their neighboring ones. To compute the
optimal solution, the research challenge is how to spread the global infor-
mation of (J,h) in equation 1.1 over the graph efficiently by exchanging
local information between neighboring nodes.

Our motivation for solving equation 1.1 in a distributed manner stems
from problems originating from wireless sensor networks. One such exam-
ple is distributed speech enhancement in wireless microphone networks
(Bertrand & Moonen, 2012; Heusdens, Zhang, Hendriks, Zeng, & Kleijn,
forthcoming), where solving a quadratic optimization problem is an es-
sential step. In such networks, due to the absence of a central processing
point (fusion center), sensor nodes use their own processing ability to lo-
cally carry out simple computations and transmit only the required and
partially processed data to neighboring nodes. In general, the sensor nodes
have limitations on computational capacity, storage space, and transmis-
sion power. As a consequence, the applicability of an iterative algorithm in
such networks depends on its computational complexity and the number
of parameters to be stored or transmitted.

In the literature, the Jacobi algorithm is a natural approach to solving
the quadratic problem, equation 1.1 (Bertsekas & Tsitsiklis, 1997). The Jacobi
algorithm updates the estimate of x* synchronously. Due to its simplicity, the
convergence condition of the Jacobi algorithm is well established in terms
of J. In contrast to the Jacobi algorithm, the Gauss-Seidel algorithm updates
the estimate of x* asynchronously (or sequentially) (Bertsekas & Tsitsiklis,
1997). Unlike the Jacobi algorithm, the Gauss-Seidel algorithm converges
to the optimal solution for any symmetric positive-definite matrix J. For the
two algorithms, once the node estimate is updated, this estimate is broadcast
to all of its neighbors. Broadcast transmission scheme is favorable in sensor
networks. But because the information transmitted is general and not edge
specific, both the Jacobi and Gauss-Seidel algorithms are known to converge
slowly (Bertsekas & Tsitsiklis, 1997). The conjugate gradient algorithm is a
more advanced iterative approach for the quadratic problem (Wolfe, 1978).
However, the computation of the updating step size requires a distributed
gossip algorithm for averaging consensus (Boyd, Ghosh, Prabhakar, & Shah,
2006), which makes the algorithm less practical in wireless sensor networks.

An alternative scheme for solving the quadratic problem, equation 1.1,
is by using the framework of probability theory (Lauritzen, 1996). The
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optimal solution x* is viewed as the mean value of a random vector x € R”
with gaussian distribution

p(x) o< exp <—%xT]x + th> .

Asapopular distributed algorithm, the min-sum message passing estimates
not only the mean value x* = J~! but also the individual variances (Pearl,
1988; Johnson, Malioutov, & Willsky, 2006). For the min-sum algorithm,
each node computes and transmits edge-specific information instead of
broadcasting some common parameters to all its neighbors. This edge-
specific operation helps to spread the global information of (J, i) over the
graph more effectively. Due to the fact that each message is a quadratic
function, the min-sum algorithm has to transmit two specific parameters
for each message.

The convergence condition of the min-sum algorithm has received con-
siderable attention in the past. It is well known that if the graph has a tree
structure (i.e., no loops involved), the min-sum algorithm converges to the
true mean and individual variances in finite steps (Pearl, 1988; Weiss &
Freeman, 2001). The question of convergence for loopy graph models has
been proven difficult. Weiss and Freeman (2001) and Rusmevichientong
and Roy (2001), have shown that if the min-sum algorithm converges for
general graphs, it computes the mean value x*. In particular, Weiss and Free-
man (2001) established a convergence condition where the quadratic matrix
] is required to be diagonally dominant.! Later, Johnson et al. (2006) discov-
ered a more general convergence condition (Malioutov, Johnson, & Willsky,
2006). They found that if the matrix | is walk-summable, the min-sum
algorithm always converges.? Recent work by Moallemi and Roy (2009)
provided a geometrical meaning to the walk-summability of J. Johnson,
Bickson, and Dolev (2009) proposed a double-loop algorithm to compute
the optimal solution for a general matrix |, where the min-sum algorithm
is used as a subroutine.

We note that we are interested only in the optimal solution x* of equa-
tion 1.1 in our work. One natural question is if an efficient algorithm exists
that combines the advantages of the Jacobi, Gauss-Seidel, and min-sum al-
gorithms. That is, each node transmits only one specialized parameter to
each of its neighbors, while the convergence speed is comparable to that of
the min-sum algorithm in general. To achieve this goal, the messages of the
new algorithm have to be in a form of linear functions. Linear-functional

1The matrix J is diagonally dominant if |J;| > Z#i |]ij| for all 7.

2See section 3.1 for the definition of walk-summability. It can be shown by algebra that
if a matrix is diagonal dominant, then it is also walk-summable, the converse not always
being true.
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messages have significant importance to sensor network-related problems,
where computation capacity and transmission power are limited.

In this letter, we design a new algorithm with linear-functional messages
for the quadratic problem. The messages are updated by performing lin-
ear coordinate-descent (LiCD) between neighboring nodes in the graph.
The design of the LiCD algorithm is inspired by the block coordinate-
descent (BCD) algorithms developed for discrete graph models (Globerson
& Jaakkola, 2008; Sontag, Globerson, & Jaakkola, 2011). While BCD algo-
rithms require that the messages are updated on a block basis (block by
block), the messages of the LiCD algorithm, can be updated either syn-
chronously or on a block basis.

We will show that when the matrix | is walk-summable, the LiCD al-
gorithm converges to the optimal solution. We emphasize that the walk-
summability of ] is only a sufficient condition for the algorithm convergence.
When the matrix | is not walk-summable, we design a double-loop algo-
rithm by following the work of Johnson et al. (2009). Unlike the algorithm
in Johnson et al. (2009), we take the LiCD algorithm as a subroutine in the
double-loop algorithm.

We conduct several experiments with synthetic data to evaluate the per-
formance of the LiCD algorithm. Also, we consider the application of the
LiCD algorithm to the distributed speech enhancment in wireless micro-
phone networks. We implement the Jacobi and min-sum algorithms for
performance comparison. Experiments show that for a general graph with
multicycles, the LiCD algorithm is comparable to the min-sum algorithm
with regard to convergence speed but has a lower computational complex-
ity and fewer transmission parameters. Also we find empirically that for
an arbitrary graph, the LiCD algorithm converges significantly faster than
the Jacobi algorithm, even though the two algorithms transmit the same
number of parameters per iteration.

The reminder of the letter is organized as follows. In section 2, we present
the LiCD algorithm for the synchronous message-passing scenario. In
section 3, we establish the convergence of the LiCD algorithm for both
the synchronous and asynchronous message-passing scenarios. Section 4
addresses the convergence issue of the LiCD algorithm for a general matrix
J. In section 5 and 6, we present the experimental results in detail. Finally
we draw conclusions in section 7.

2 Linear Coordinate-Descent Algorithm

In this section, we present the LiCD algorithm in detail for the synchronous
message-passing scenario. We note that in general, if an algorithm works
for the synchronous scenario, it also works for the asynchronous scenario
(e.g., the min-sum and Jacobi algorithms). We consider the LiCD algorithm
for the asynchronous scenario in section 3.2.
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We first describe the general framework for synchronous message-
passing algorithms. We then design the LiCD algorithm within this
framework by deriving the updating expressions of the linear-functional
messages. We also consider parameter transmissions between neighbor-
ing nodes to update the messages. After that, we analyze the computa-
tional complexity of the LiCD algorithm. Finally, we consider algorithm
implementation.

2.1 Synchronous Message-Passing Framework. Consider the quadra-
tic objective function, equation 1.1. We construct the local functions to be

fl](xl’ ] ]1] i ] (15 ]) €E7 (21)

fitx) = Exf —hx; ieV. (22)

The local functions f; and f; are often called self-potentials and edge poten-
tials, respectively. f; captures the interaction between nodes i and j. For the
quadratic problem, an edge between nodes i and j exists in the graph only if
Jij = I # 0. We use N (i) to denote the set of all neighbors of node i. The set
N(i)\j excludes the node j from N(i). We denote the degree of node i as d;,
where d; = IN(i)|. For each edge (i, j) € E, we use [}, 7] and [i, j] to denote
its two directed edges. Correspondingly, we use E to denote the set of all
directed edges.

A message-passing algorithm exchanges information between neighbor-
ing nodes iteratively until reaching consensus. In particular, at time ¢, each
node i collects a set of messages {m,;(x;)|u € N (i)} by cooperating with its
neighbors We note that for a directed edge [u, i] € E, the associated message
m®; (x;) is a function of x; obtained by combining the local information of
node u and i at time t — 1. G1ven the messages at time ¢, one can define new
self and edge potentials at time ¢ as

f<t)(xp X, )_]1] X = jil(x) - 1(2](96 ) (i, )) €E, (2.3)
1 .
O = Ex’z — hx + Z m .(x) ieV. (2.4)
ueN (i)

It is straightforward that

fo =3 fP@xp+) ] 2@, (2.5)

(i,j)eE ieV

Thus, the overall objective function remains the same. The new potentials,
equations 2.3 and 2.4 can be viewed as a reformulation of the objective
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function. The Jacobi and min-sum algorithms fit into the above function
reformulation of equations 2.3 and 2.4. The messages of the min-sum algo-
rithm are in the form of quadratic functions, while the messages of Jacobi
algorithms are in the form of linear functions (see section 2.3 for a detailed
analysis). The key part of a message-passing algorithm is the derivation of
the updating expressions for {mjt_f i“(xl-), [j,i] € E}, given the messages at
time .

At time t, each node i computes an estimate £ of the optimal solution
x} by minimizing the self-potential:

£ =argmin fO(x;) ieV. (2.6)
X.

If the algorithm converges to the optimal solution x*, we have

lim £ = x*,

t—o00

(t) A(t) )T

X)) is the estimation vector.

where ) = (%]

2.2 Updating Expressions and Parameter Transmissions. The LiCD
algorithm performs pairwise minimization between neighboring nodes in
computing new messages. In this subsection, we first compute the updating
expressions for the messages. After that, we consider parameter transmis-
sion between neighboring nodes to update the messages.

In order to derive the updating expressions for the quadratic problem,
we first specify the functional forms of the messages and the potential
functions. Suppose that the messages {m§2 .(x), [j.i] € E} at time t take a
linear form, that is,

m® (x)=—-2Px, [j.i]€E. (2.7)

]%1 ]1 i

By inserting equation 2.7 into equations 2.3 and 2.4, we obtain the potential
functions at time t as

£ Gx ) =Jxx; +25% + 20, G ) € E, (2.8)
1
fl-(t)(xi)=§x,.2— hi+ Y 20 |x ieV. (29)
ueN(i)

Note that the potential functions involve the change of only the linear terms
instead of the quadratic terms, which is fundamentally different from that
of the min-sum algorithm.
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Without loss generality, we focus on deriving the expressions for zjtﬂ)

@D (i, j) € E, given the potential functions at time t. Before going
into detail, we present the basic idea of linear coordinate descent. Note that
only three potential functions involve zf;) or zj.? (or both), which are " (x,),

f ® (x; ), and fl(t) ,X -) We build a joint function ij) (x;, x j) from the three
(t+1)

and z;

potentlal functlons in computing z;;
the joint function to be

and zf;H). In particular, we define

L) = [P0 + £ 0 + £

This particular form of the joint function is motivated by the fact that the

expression for Lf;) (x;, x;) is a sub-summation of equation 2.5 for the objec-
tive function f(x). As a result, L( )(x X; ) no longer involves z<]” and z;t)

In the block coordinate-descent algorlthms (Sontag et al., 2011; Glober-
son & Jaakkola, 2008), a similar construction for a joint function was
used.

In the computation of {z (Hl) (Hl)},

we first minimize L(j)(x x.) over
{x;, ]} Denote the resultmg 0pt1ma1 solution as {x(tH) A%fl)}, which is
in fact the estimate of {x}, x ]} The subscript i|j (or ]|1) indicates that the

estimate x(t]“) (or x(1+1) ) is computed by utilizing the information from
node j (or node 7). After obtaining {%; “H) ;'“H)

E:“) such that

}, we then choose z<;+l) and

1
J?Elt]ﬂ) —argmm Ex - (h + Z Z(t)+2(t+1)> il (2.10)
ueN(@)\j
1
J?y‘;rl) = argmm Ex? - (h + Z z(” +Z([+1))x] . (2.11)
veN(j\i

Compared to equation 2.9, the right-hand sides of equations 2.10 and 2.11
update the messages associated with the edge (i, j). Correspondingly, the

estimate x(‘tfl) is different from %" in equation 2.6. The parameter ZEH—D

A(t+1)

brings sufficient information about x; ;" that is contained in node j to node

i. The algorithm converges if for every i € V, all the estimates {%"’, fltbf ue
N (i)} converge to the same optimal solution x;. Since we operate only on the
linear terms of the potential functions, this is how the term linear coordinate

descent arose.
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(t+1) A(t+1)}
ij o Xji
From equations 2.8 and 2.9, the expression for LE j) (x;, x;) is given by

1 LoJi ] (i
Lf;)(xi’xf)=§(xf x]’)|:]i], 1J}<x]-)

_<hj+ Yooz hi+ Y 2 m)( ) 2.12)
X
j

Based on these computation guidelines we now compute {X;

ueN(@)\j veN(j)\i

Because the 2 x 2 quadratic matrix of L(t )(x X ) is positive definite, the
(t+1) A(t+1)

optimal solution {%;;

} is finite. Mmlmlzmg L (x,., x;) produces

*) 0)
A(t+1) 1' + ZueN(i)\j Zui — ]ij (h] + ZveN(j)\izv]')

2.13)
i 2 : (
1] 1— ]ij
(t)
A(f+l) j + ZveN(])\z u] L] (h + ZveN(z)\] Zui )
X = 1 _]2 (2.14)

The optimal solution is independent of z(j) and z(”

Given the optimal solution {A(Hl) A%l“)}, the expressions for 2(5“) and

z;iﬂ) can then be derived by combmmg equations 2.10 and 2.11 and

equations 2.13 and 2.14:

T2 I
t+1) __ij Z *) ij Z (t)
Zji ﬁ hi + Z,i _7]2 h + s (215)
ij ueN(i)\j ij veN(j)\i
T2 I
¢+ i (f) 2 (t
il RSP INC TS kvl LRSDIIC T BECEY
ij veN(j)\i ij ueN(@)\j

We later explain the geometrical meaning of ],.2]/ (1- ]12]) and —J;/(1 - ]12]
The updating expressions for other parameters {z”H) (;CH) (k,1) € E} take
similar forms as in equations 2.15 and 2.16. The 1nformat1on flow for com-
puting Z<t+1) (t+1)
Next we con51der parameter transmission between neighboring nodes
to update the messages for the LiCD algorithm. Again, without loss of
generality, we consider the edge (i, j) € E. Expressions 2.15 and 2.16 for

'(;H) and z(t“) share some common terms. We reformulate the expressions

and z ;" is illustrated in Figure 1.
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Figure 1: The information-flow for computing z“ *D and z(t“)
as
(t+1) (t) (t)
_]7]'31\] ]\1 (2.17)
(t+1) t) ()
zij =Py — B (2.18)
where
Q) ]ii (t)
By =1 (Mt 2 2l (2.19)
] ueN(@)\j
() ]i/ (t)
B =1 7 h+ Yy 2| (2.20)
if veN(j)\i

We note that the two parameters ﬂ(\t]) and B; ) can be computed alone by

node i and j, respectively. Thus, in order for node i to update z; at time ¢,

node jneeds to send the parameter Bi Y ; only tonode i. The other parameters
Z,,» [, v] € E} can be updated in a smular way.

To briefly summarize, as the LiCD algorithm evolves, each node i € V
keeps track of the most recent parameters {z,;, u € N(7)}. In order to update
the parameters {z,,, [, v] € E}, each node i € V computes and transmits
By, to each neighboring node u, u € N(i). Finally, each node i € V updates
{z,;, u € N(i)} by using its own computed parameters {8, ,,# € N(i)} and
received ones {,3”\7-, u € N(i)} from neighbors.

i\u’

2.3 Computational Complexity. In this section, we study the compu-
tational complexity of the LiCD algorithm. In addition, we briefly analyze
the computational complexities of the Jacobi and min-sum algorithms for
comparison.
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We note from equations 2.17-2.20 that the computational complexity of
the LiCD algorithm is node specific. A node with a larger degree (number
of neighbors) requires more computations. Without loss of generality, we
consider node j in the graph. The computation of new parameters for time
t + 1 at node j is summarized as

(t) Z Z(t)—l—h
veN(j)
I
# _ 2 () (*) ; s 2.21
By =1 =) ieNG) —
1
i =l =By TENG)

)

where we assume that {Baj»

As the facto

i € N(j)} are directly received from neighbors.

tion for z requires d +1 additions The computation for {,3](2, ie N(j)}
requires d additions and d; multiplications. Finally, the computation for

{zf;“), i€ N (j)} requires d]- multiplications and dj additions. In total, node j
performs 3d; + 1 additions and 24; multiplications at each iteration.

Next we consider the Jacobi algorithm. At each iteration, the Jacobi
algorithm estimates the optimal solution x* directly. Denote the estimate
vector at time t as ). The algorithm computes the new estimate X‘*1 by
(Bertsekas & Tsitsiklis, 1997),

¥HD = R¥® 4 h, (2.22)

where R = — | (I is the identity matrix). With equation 2.22, the updating

~(t4+1)

expression for each component 5 j € V, can be expressed as

~(t+1) (t)
M =h, - > Al (2.23)

ieN(j)

With equations 2.22 and 2.23, one can easily work out the message form
of the Jacobi algorithm, that is, for [i, j] € E at time t, m" () ==, ]JE,(t)xj.
¥+ is computed, node j broadcasts xEHD to all its neighbors. We note
that for the LiCD algorithm, node j transmits a particular parameter g ; t
each neighbor i € N(j), thus speeding up the information flow over the
graph. Considering the computational complexity of the Jacobi algorithm,
it is immediate from equation 2.23 that node j performs d; 4+ 1 additions

and d; multiplications in computing x(t“)

Once X',
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We now consider the min-sum algorithm. Unlike the LiCD and Jacobi
algorithms, which transmit only one parameter over each directed edge at
each iteration, the min-sum algorithm transmits two parameters over each
directed edge. Specifically, the message m?t_)) ;(x;) at time ¢ takes a quadratic
form (Moallemi & Roy, 2009),

1
m;‘li(xi) = —5H; (t) x? +z(t)x (2.24)

)

where {1 i 2@} are the two parameters to be transmitted from node j to i.

The updating expressions for { u(tH) “H)} are expressed as (Moallemi &
Roy, 2009)
2
(t+1) Y
ni = ———— (2.25)
I 1- ZueN(]’)\i /*1(;]‘)
J..
S(t+1) _ ij 50
Zji = 1-% ., ® hy = Z vi |- (2.26)
- Zvel\l(j)\i”“vj veN(H\i

With equations 2.25 and 2.26, the computation of the new parameters for
time t + 1 at node j is summarized as

t t
<> Z M()
veN(j)
=t _ g F0)
Z=n- )
veN(j)
Jii . .
U;It) =0 . 0 eV -
Wi+ )
t+D) _ 1 0 : .
H’ji if ]1 Le V(])
20 =vPE 2y iev()

The computation of ;L;t) and Z&” requires 2d; + 2 additions. The compu-
tation of {v(t) i € V} requires d; additions and d; divisions. The computa-

tion of {,uj.i,“), i € V} requries d; multiplications. Finally, the computation

of {Z(Hl) i € V} requires d]. additions and dj multiplications. In total, node j
performs 4d; + 2 additions, 24; multiplications, and d; divisions. We point

out that in practice, a division is more expensive than a multiplication.
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Table 1: LiCD Message-Passing for Computing x* = arg min, 1x"Jx — h'x.

Stage Operation
1 Initialize zf/p) eR,V[i,jl e E
2 Iterate Forall [i, j] € E
Update z; using equation 2.18.
End
3 Check If {%;} or {e®} have converged,
go to stage 4; else, return to stage 2.
4 Output Return £;, Vi.

From a computational point of view, it is now clear that for each itera-
tion, the min-sum algorithm is the most expensive for implementation. The
Jacobi algorithm is the cheapest of the three algorithms. From the transmis-
sion point of view, both the Jacobi and LiCD algorithms transmit only one
parameter per directed edge, while the min-sum algorithm has to trans-
mit two parameters. On the other hand, the Jacobi algorithm performs a
broadcast transmission scheme, while the LiCD and min-sum algorithms
have to perform edge-specific transmission scheme. The remaining work is
to find the convergence rates of the three algorithms. We demonstrate by
experiments in section 5 and 6 that the LiCD and min-sum algorithms have
comparable convergence rates for a general graph with multiple cycles.
Also, the LiCD algorithm significantly outperforms the Jacobi algorithm
with regard to convergence speed.

2.4 Algorithm Implementation. In implementating of the LiCD algo-
rithm, we let zﬁ?) € Rforall[}],i] € E. Because the algorithm evolves accord-
ing to equations 2.17 to 2.20) over time, each node i € V keeps track of the
most recent parameters {z,;, u € N(i)}. At each time, a node computes an

estimate for its variable by applying equation 2.6:

R0 =n+ Y 2zl viev.it=01,... (2.27)
ueN (i)

If the algorithm converges, the parameters {z;;} and the estimates {x;} would
be stable after some time. Thus, one can terminate the iteration by examining
{z;} or {£;}, or both. For the experimental evaluation of the algorithm, one
can alternatively define a termination criterion by involving £ and x*. In
particular, one can check the error € = ||#) — x*|| _ at the end of iteration
t,t =1,2,.... We briefly summarize the algorithm in Table 1.



3352 G. Zhang and R. Heusdens

3 Convergence of the LiCD Algorithm

In this section, we first study the convergence of the LiCD algorithm for
the synchronous message-updating scenario as discussed in section 2. In
particular, we derive a sufficient condition for the algorithm convergence.
With the result for the synchronous message-updating scenario, we then
consider the asynchronous convergence of the LiCD algorithm.

3.1 Synchronous Convergence. The walk summability of | was origi-
nally discovered as a sufficient condition for the convergence of the min-
sum algorithm (Johnson et al., 2006; Malioutov et al., 2006; Moallemi & Roy,
2009). We show in the following that the walk summability of ] is also a
sufficient condition for the LiCD algorithm to converge. For completeness,
we provide the definition of walk summability.

Definition 1 (Johnson et al., 2006; Malioutov et al., 2006). A positive-definite
matrix | € R™", with all ones on its diagonal, is walk-summable if the spectral
radius of the matrix R, where R=1— ] and R = [|R,-]-| ;'7,;‘:1/ is less than 1 (i.e.,
p(R) < 1).

Next we describe how the walk summability of | is connected to the
optimal solution of the quadratic problem (see Johnson et al., 2006, and
Malioutov et al., 2006, for detailed information). First, note that the optimal
solution for the quadratic optimization problem 1.1 is given by

x*=J]"h=(J-R)'h

If we assume that the matrix R has a spectral radius less than 1, then the
spectral radius of R is also less than 1 (i.e., p(R) < 1). Under the condition
p(R) < 1, we express the solution x* by the infinite series

x* =Y "R, (3.1)

where the components of R are R; = 0 and Rij = —]i]-, if i # j. The condi-
tion p(R) < 1 guarantees that the series > ;) R is absolutely convergent.
In other words, the convergence of > ;2 R" does not depend on how its
components are arranged in the summation.

With equation 3.1 at hand, each component x} can be expressed as

xp =Y [R'h]; ieV. (3.2)
t=0
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For a particular t > 1 in equation 3.2, the component [R'/]; can be further
expressed as a summation of some elementary quantities where each quan-
tity is a product of t elements of R and one element of /. Intuitively such an
elementary quantity can be associated with a walk (or path) on the graph.
Formally, we define a walk of length k on the graph to be a sequence of
nodes w = [wy, ..., w;] such that [w;, w; ;] € E, for all 0 < i < k. We refer
to w, and [w,_q, w] in w = [wy, ..., w] as the end node and end edge,
respectively. Given a walk w of length |w|, we define a weight of w by the
product y(w) =h,, Ryw R . For the special case that [w| = 0, we

Wy Wy W1 W|

define y (w) = wo leen a set W; of walks with the common end node i,
we define a weight of the set to be

y (W)=Y vw.

weW,

To simplify the analysis, we let y V) = Y_, .y, |y (w)]. That is, y (W) rep-
resents the summation of absolute weights for a set. From equation 3.2, it
is obvious that y (W) is an estimate of x7, that is, £; = y (W)). Define W} to
be the (infinite) set of all walks terminating at node i. Similarly, define W;;
as the (infinite) set of all walks with the end edge [u, i]. Under condition
p(R) <1, we have

W* —h—i—Z m'

ueN((i)

Upon introducing the properties of the walk summability of ], we are
ready to study the convergence of the LiCD algorithm. In the following,
we first establish the algorithm convergence for the special initialization
{z 1(]0) = 0}. With the convergence result for the special initialization, we then
consider a general initialization for the algorithm.

0 _ (0)

3.1.1 Initialization {z = 0}. Under the initialization {z = 0}, we use

the walk-sum concept to estabhsh the equivalence between equations {2.15-
2.16,2.27} and equations 3.1 and 3.2. More specifically, we first interpret the
parameter z;; as the weight of walks that have the same end edge [}, i]. We

then show that when p(R) < 1, there is

=hi+ > vy Wy =h+ Y 2. (3.3)

ueN (i) ueN (i)
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Consider the updating expression 2.15 for z%“) ,V[}j, ] € E. By using the
equality R = I — ], we can rewrite the expression as

R R..
(t+1) _ 1 (t) ] (t)
Zi = [t > 2D+ |t )
1] ueN(@)\j 1] veN(j)\i

(a)ZRzk b+ Z foi) _,_iR’?]k—l h].+ Z thj) , (3.4)

ueN(@i)\j k=1 veN(j)\i

where in step 2, we use the equality ﬁ =310 R.ZI.‘ .

Next we study the geometrical meaning of the parameters {z (t) il e
E t>1). Using the fact that Z(O) 0 for all [u, k] € E, we have

53) ZR%%,JFZR% 'y, lj.il € E.
k=1

z(ll.) can be taken as the the weight of all walks that travel only between

node i and j and have the same end edge [ j, 7]. By induction, using equation
3.4, z(t) can be taken as the weight of a subset of W}; with the same end
edge [ j. i]. We denote the set of all walks contrlbuted to the weight z(t)
Wj(f) Each element w € W](f) has[j, /] asits end edge and length |w| > 1 For
the special case that t = 0, we let W;?) = {J, where ¥ denotes the empty set.
When t > 1, it can be easily shown that each element w € W](lt) is used only
once in computing z;? , that is, z;i.) =y (W](.f)). It should be noted that there
exist elements of length greater than t (may be even infinite) in W{'. Based
on the analysis, we obtain the following lemma about z(t)

Lemma 1. When ] is walk-summable (p(R) < 1) and Z(O =0 for all [i jle E,
the sequence {z(t) = y(W(t )Nt =1, ..., 00} converges for any [j.i] e E. Further,
the sequence {y(W NE=1,. oo} also converges for any [j,i] € E.

Next we characterize the relation between W](f ) and W;fﬂ) forany [}, 1] €

E. We present the result in lemma 2:

Lemma 2.

W Wit vljile E, t=0,1,... (3.5)
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Proof. Using the fact that W](.?) = (J, we have
mﬁ>ngy v[j.i] €E. (3.6)

By induction using equations 3.4 and 3.6, it is immediate that equation 3.5
holds.

From equation 3.5, we know that the set W( ) grows along with t. This
implies that the estimate £{" in equation 2.27 i 1s increasingly accurate with
t. The remaining task is to show if equation 3.3) holds for ¢ = co. To achieve
this goal, we have to show that for each [}, 1] € E, the set W](loo) is complete.
That is, W](IOO) includes all the walks with end edge [, i]]. We define V;f) to
be the set of all walks of length t > 1 with the common end edge (j,1).
That is, for any w € V;f), there are |w| =t and [w,_;, w;] =[], 1]. We let
v = Usena) VI where t > 1. The weight of the set v is equal to the
quantity [R'h],, that is, y (V") = [R'h],, t > 1. We characterize the relation
between W](f ) and V](.f,) in lemma 3:

Lemma 3. For any directed edge [, i] € E, there is

ﬁguw)h,mm. (3.7)

Proof. We use an induction argument to prove the lemma. When t =1,
V](Il ) has only one element [}, i]. It is straightforward from equation 3.4
that W;il) 2> V;,.l). Next we assume that equation 3.7 holds for t = m. When
t =m+1, we have from equation 3.5 that W](.?’H) 2 Uiy, V;f) . Thus, we
need to show only that

W(m+1) ) V(m+1)
ji

Suppose w € V](»;”“) . Then one can always divide w into two segments
w = [wy, w,] such that w, involves only the node i and j and the end edge of
w; (if there is one) is either {[u, i], u € N(i)\j} or {[v, j], v € N(j)\i}. Using
the fact that |w;| <t and equation 3.4, we have w € W](»?’H) .

With these three lemmas, we are ready to present the main result regard-
ing the convergence of the LiCD algorithm:
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Theorem 1. If the quadratic matrix | in equation 1.1 is walk-summable (i.e.,
p(R) < 1) and z(o) 0 for all [i, j] € E, then the iterates of the LiCD algorithm
satisfy

,0( )t+1

||2—1_7()

1% —

17115, (3.8)

where i = [|h;|] and || - ||, denotes the spectral norm of a matrix (or, equivalently,
matrix 2-norm).

Proof. Note that the computation of % involves the union of the sets
Usen) W (i} From lemma 3, we know that W 2 U,Ll V& Thus, the

error |x(t )

— x7| can be upper-bounded by

o0 o0
50 —xii=7 | UV = | X R

k=t+1 k=t+1 i

Consequently, the error [|£*) — x*||, can be upper-bounded by

o0

120 —x* I, < || D R
k=t+1 2
< > IR Ik,
k=t+1
,0( )t+1 _
< ———|hl,.
p(R)

3.1.2 Initialization {z(O) € R}. We now consider the algorithm conver-

gence for a general 1n1t1ahzat10n Thatis, z? € R for any|[i, j] € E.Toachieve
this goal, we use the result from lemma 1.

We first reformulate the updating expression 3.4 for any [}, i] € E into
vector form. Let z*) denote the message (or parameter) vector at time t.
The vector z® is of dimension |E|, of which the components are indexed
by the directed edges in E. Correspondingly, equation 3.4 can be written in
compact form as

2D = Dy + Az®, (3.9)
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where y € R is a vector with

yi=h;, LjileE.
D e REIXEl ig a matrix with

ZR,], if[jile E,u=ik=]

D, .. =
{ji,uk} ZRZk ‘17 ]’ l] € E U= ], k= i,

0, otherwise
and A e RIEXIEl ig a matrix with

ZR,], if [u k. [j,il€e E.k=i,j#u

A= =
{ji,uk) ZRZk 1, if [u,k],[j, ileE, k= j,U # 0.

O, otherwise

Note that the spectral radius of A in equation 3.9 is essential for the
convergence of the LiCD algorithm. When z® =0, it is immediate from
lemma 1 that the infinite summation lim, z® = Y7 A’Dy is absolutely
e
be less than 1, that is, p(A) < 1. As a result, the spectral radius of A is also
less than 1. We summarize the result in lemma 4:

convergent. Therefore, the spectral radius of A, where A = [14; j i must

Lemma 4. If the quadratic matrix | in equation 1.1 is walk-summable (i.e.,
p(R) < 1), then the matrix A has the properties p(A) < 1 and p(A) < 1.

For an arbitrary initialization z© e RIEl, we have

t-1
2 =) " ADy+ A'z0.
k=0

The property p(A) < 1 implies that the impact of the initialization z® on
z® and further the estimate X decays exponentially over time. In other
words, the two vectors z") and £ become independent of the initialization
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Figure 2: The five-cycle graph. The edge weights are as denoted by r in the
graph.

z® as t — oco. Based on the above analysis, we present the convergence
result in theorem 2:

Theorem 2. If the quadratic matrix | in equation 1.1 is walk-summable (i.e.,

p(R) < 1) and zf-?) eR forall [i, j] € E, then the LiCD algorithm converges to

the optimal solution x*, that is, 8®) — x*.

Remark 1. The walk sumability of ] is not a necessary condition for the
convergence of the LiCD algorithm. Consider the following example where
we construct a matrix | by using the five-cycle graph as shown in Figure 2.
The matrix | has unit-diagonal and off-diagonal elements being the edge
weights as indicated in the graph. We let r = 0.6 and h; =i, i € V. Corre-
spondingly, p(R) = 1.2 > 1. The matrix | is not walk-summable. The LiCD
algorithm still converges for this particular example.

3.2 Asynchronous Convergence. The results of theorems 1 and 2 es-
tablish the algorithm convergence for the synchronous message-updating
scenario. That is, all of the messages are updated at every time step in par-
allel. In this section, we study the convergence of the LiCD algorithm under
an asynchronous model of message updating.

We consider a simple asynchronous model. That is, each time only one
directed edge is randomly selected from E. Then only the associated pa-
rameter along the directed edge is updated. At the same time, all the other
messages remain the same. We make the assumption that any directed edge
in the graph would be eventually selected if arbitrary delay is allowed in
the algorithm.

In the following, we argue that theorems 1 and 2 can be extended to the
asynchronous model. Our main idea is to show that any initialization z®
has less and less impact on z¥) and £*) as the algorithm evolves. To achieve
this goal, we let y = 0 in equation 3.9 (or, equivalently, & = 0) to remove the
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impact of 1 on z and ). We then show that z*) — 0 as t — oo for any
initialization z®.

Before formally presenting the argument, we introduce the weighted
sup-norm used in Moallemi and Roy (2010) for distributed convex opti-
mization. Suppose there is a positive vector s € Rl where each element
corresponds to an edge in E. For vectors z € RIE|, the weighted sup-norm is
defined as

s |Zi]'|
llz|I{, = max . (3.10)
li.,jleE Sij
For a matrix A € RIEXIE| the weighted sup-norm is given by
s 1
JAS, = max — Z SulA ity - (3.11)

[j. ileE' S ji [u.k]eE

The selection of s is the key point in the following argument. We present
the result regarding the vector s in lemma 5:

Lemma 5. If the matrix | is walk-summable, then there exists a positive vector
s € RIEI such that

Al <1

Proof. See the appendix for the proof.

Suppose at time t, a directed edge [i, j] € E is selected. We consider
using the latest information from neighbors of i and j to compute z(;)
Define 0 < 7,,,(t) <t to be the last time the directed edge ([u, v] € E, has
been selected. Then from equation 3.9 and using the condition that y = 0,

the parameter Z( ) is computed as

<t> i) (@;®)
> A{Uuz}zm + ) Agiui) - (3.12)
ueN(@@)\j veN(H)\i

This expression can be written in vector form. By applying the weighted
sup-norm || - ||, on the obtained vector form and using the property that
IAl%, <1, we have

} (Tuz(t)){ |Z(T,U](t))|
“ L ueN®@\j; ;7 veN(N\it. (3.13)

|zf§) |/si]» < max
ui vj
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We use equation 3.13 to show that as t — 0o, the vector z!) approaches
v (1)

. Lo .
0. Suppose at time £, the ratio |z,;" * |/s,, has maximum value:

2"/ = max {[z4i " | /5, v, ul € E} = 0.

For simplicity, we assume that only one element has the maximum value
in the maximization operation. The analysis that follows can be easily ex-
tended to the general case. The assumption in the asynchronous model
guarantees that there exists a time step t; > t, at which time the directed
edge [p, q] is selected. When equation 3.13 is applied, the maximum ratio
at time ¢, is smaller than that at time £,:

max {|z$;‘“(t1))|/sw, [v,u] € E} < max {|z$;'“(t0))|/sw, [v,u] € E}.

Thus, as t — oo, the vector z") approaches 0 in the sense of the weighted
sup-norm (i.e., || - [I5,).

Finally, since it is known that the estimate £ is independent of any
initialization z©, the algorithm arrives at a stable solution. To further show
that the stable solution is the optimal solution x* = | 11, one may also use
the walk-sum concept as in the synchronous message-passing scenario by
letting z(® = 0. Since the procedure is similar to that in section 3.1, we omit
the details here.

The asynchronous model allows only one directed edge to be activated
at each time step. Thus, the information of (], #) does not spread fast enough
over the graph. To speed up the information flow, several directed edges
can be activated at the same time for message updating as long as their
associated nodes donot overlap. This procedure would require a scheduling
plan to manage the activation of the directed edges.

We note that the asynchronous model considered here is more flexible
than that of the BCD algorithms. In the implementation of a BCD algorithm
for a discrete optimization problem, the parameters are updated block by
block. On the other hand, the LiCD algorithm can update the parameters
either block by block or one by one.

4 Fixing Convergence for General |

The work we have presented thus far establishes the convergence of the
LiCD algorithm for a particular class of J. That is, the matrix | is walk-
summable. However, in practice, | may be an arbitrary symmetric positive-
definite matrix. Thus, it is of great interest to extend the LiCD algorithm
with guaranteed convergence for a general matrix J.

In order to fix the convergence of the LiCD algorithm for a general matrix
J, we follow the line of work proposed in Johnson et al. (2009). In particular,
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they propose a double-loop algorithm for the quadratic optimization prob-
lem, where the min-sum algorithm is taken as a subroutine. Their basic idea
is to perform diagonal loading on J to obtain /|, = (1 —a)/ +al,1 > « > 0.
Then instead of solving x* = J~'h directly, they considered a sequence of
linear equations:

2D ]‘;1((1 —a)h+ af(’)) t=0,1,... (4-1)

Johnson et al. (2009) showed that by following the iteration in equation 4.1,
%@ converges to x* = |~k for any initialization £©. Given £*) at time t, the
new estimate £¢*1 is computed by exploiting the min-sum algorithm. To
guarantee the convergence of the min-sum algorithm, « is chosen to ensure
that ], is walk-summable. The algorithm involves two loops: the outer loop
follows iteration 4.1, and the inner loop implements the min-sum algorithm
for each time step in that equation.

In order to understand the double-loop algorithm better, we take a
close look at equation 4.1. The iteration converges when the estimate
£® becomes stable: £ = £t+1) = £(>) for some t. In this situation, there
is 2 = J-1((1 — a)h + a%®). Hence, J£* = h. To briefly summarize,
equation 4.1 eventually reaches the optimal solution that minimizes the
quadratic function, equation 1.1. The key point for the algorithm is to se-
lect the parameter « properly. Johnson et al. (2009) showed that as long as
a>1-1/p(R), J, is walk-summable. For the special case that p(R) <1,
o = 0 corresponds to the min-sum algorithm without outer-loop iteration.

In this work, we exploit the LiCD algorithm as a subroutine in designing
a double-loop algorithm. Similarly, we take equation 4.1 to be the outer-
loop iteration. Since the LiCD and the min-sum algorithm share the same
convergence condition, the LiCD-based double-loop algorithm would also
converge to the optimal solution x* = J~!h. For a fixed parameter « in ],
the convergence speed of the double-loop algorithm is determined by the
inner-loop procedure. If the LiCD algorithm is efficient, the corresponding
double-loop algorithm would also be efficient. Since the LiCD algorithm
transmits only one parameter per message, the new double-loop algorithm
also carries this property.

We note that instead of the LiCD algorithm, the Jacobi algorithm can also
be used to design a Jacobi-based double-loop algorithm. The argument for
the algorithm convergence is similar as above.

5 Experiments with Synthetic Data

We evaluated the proposed LiCD algorithm for both the synchronous and
asynchronous message-updating scenarios. In the synchronous message-
updating scenario, we implemented the Jacobi and the min-sum algorithms
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for performance comparison. In the experiments, we studied the impact of
different graphical topologies on the performance of the three algorithms.

In the asynchronous scenario, we implemented the min-sum algorithm
for performance comparison. The implementation is similar to that of the
LiCD algorithm (see section 3.2). We note that it may not be appropriate
to take the Gauss-Seidel algorithm as a reference in this scenario. This
is because the LiCD and Gauss-Seidel algorithms transmit parameters by
following different schemes. For the Gauss-Seidel algorithm, once a node
i updates its own estimate ¥; of x}, it broadcasts the new value to all its
neighbors in the graph. On the other hand, the parameters of the LiCD
algorithm are edge specific. Once a directed edge [i, j] € E is activated, the
parameter 8, ; is computed at node i and transmitted to node j for updating
z; (see section 2.2).

5.1 Synchronous Message Updating. In the experiments, we inves-
tigated three types of graphical topologies: graphs with a line structure,
graphs with one cycle, and general graphs with more cycles. Our main pur-
pose is to study how the performance of the LiCD is affected by different
graphical topologies.

5.1.1 Graph with a Line Structure:. In the first experiment, we considered
the simplest graph, that is, the graph with a line structure. We set the number
of nodes to be 10: |V| = 10. The off-diagonal components in ] and those in
h were generated from the gaussian distribution N(0, 0.25). The diagonal
elements of | were set to 1. Only | matrices that were positive definite were
selected for test. From Johnson et al. (2009), we know that for a graph with
a tree structure, the associated | matrix is walk-summable. Thus, the Jacobi,
LiCD, and min-sum algorithms are guaranteed to converge to the optimal
solution. To terminate the iterations of the three algorithms, the infinite
norm between an estimate and the optimal solution x* was measured. The
convergence threshold were set as 1071°.

Seven pairs of (], h) were tested: the experimental results are displayed
in Table 2. The min-sum algorithm is most efficient in terms of convergence
speed. Further, the number of iterations for the min-sum algorithm is al-
ways equal to 9 (the diameter of the graph), which coincides with the results
of Pearl (1988). For each case, the LiCD algorithm took a few more itera-
tions than the min-sum algorithm. On the other hand, the LiCD algorithm
outperforms the Jacobi algorithm significantly.

5.1.2 Graph with One Cycle. In the second experiment, we considered
graphs with one cycle. The elements of ] and & were generated as in the first
experiment. Since there is a cycle in the graph, the generated matrix | might
not be walk-summable. We applied the double-loop scheme proposed in
Johnson et al. (2009) to fix the convergence of the three algorithms. As we
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Table 2: Number of Iterations of the Three Algorithms for Seven Realizations
of (J, h) with |V| = 10.

1 2 3 4 5 6 7
Jacobi 115 125 306 568 397 64 95
LiCD 38 40 74 81 143 19 34
Min-sum 9 9 9 9 9 9 9

12000 T T T T T T T T
=#= Jacobi Alg. (D. L.)
—6—LiCD Alg. (D. L.) b
10000F . @+ min-sum Alg. (D. L.) i )
1
;
;
8000} ; 1
;
» ’
S ’
= 6000| ; .
8
40001 B
2000F 4 o= T 1
0 eyttt | 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter

Figure 3: Impact of the parameter « on the performance of the three algorithms
for a graph of 10 nodes with one-cycle structure. D. L.: double-loop.

explained in section 4, the outer loop follows the iteration in equation 4.1,
and the inner loop implements each one of the three algorithms for each
time step in equation 4.1. The parameter « in this equation was selected
from the range (1 -1 /||R||oo, 1). Again to terminate the iterations of the
algorithms, we measured the infinite norm between an estimate and the
optimal solution. Convergence thresholds for the outer and inner loops
were set as 107> and 10719, respectively.

The results of the three algorithms for a particular pair (], k) are dis-
played in Figure 3. The number of nodes (or, equivalently, the dimension
of h) was set as |V| = 10. It is seen that the LiCD and min-sum algorithms
converge much faster than the Jacobi algorithm for different « values. Also,
the performance of the LiCD and min-sum algorithms is getting close as o
increases.
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(a): |E|=21, §=0.2 4 (b): |E|=45, 0 =0
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Figure 4: Impact of the parameter « on the performance of the three algorithms
for a dynamic graph with a fixed number (|V| = 10) of nodes and increasing
edges. D. L.: double-loop.

5.1.3 General Graph with More Cycles. In the third experiment, we con-
sidered general graphs with more cycles. We note that it was not easy to
generate a (random) sparse | matrix that is positive definite. In order to
obtain such a | matrix, we first generated a random matrix B, of which
the components were realized from the gaussian distribution N(0, 1). After
that, a positive-definite matrix C with unit diagonal was computed by nor-
malizing the matrix product B'B. Finally, we constructed a sparse matrix |
by replacing the components of C that were within a range [—3§, §] with ze-
ros, where § was a threshold. The threshold § determines the sparsity of the
matrix J. If § = 0, we have | = C, corresponding to a fully connected graph.
The convergence thresholds were the same as in the second experiment.

In the evaluation of the three algorithms, we chose two different val-
ues for § for a particular pair (C, k), that is, § = 0.2, 0. The number (or
the dimension of &) of nodes was |V| = 10. For the first case, that § = 0.2,
(IVI], IE]) = (10,21) corresponds to a sparse graph with multicycles. For
the second case that § =0, (|V|, |[E|) = (10, 45) corresponds to a fully con-
nected graph. The experimental results are shown in Figure 4. It is seen
that the LiCD algorithm outperforms the Jacobi and min-sum algorithms
for different o parameters in both cases.

To briefly summarize the three experiments, the efficiency of the LiCD
algorithm is related to the graphic topologies. As a graph becomes dense
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Table 3: Number of Iterations of the Two Algorithms for Seven Pairs of (], k).

1 2 3 4 5 6 7
((VI,IED)  (10,21)  (1023)  (1544) (1548) (20,61)  (20,130)  (30,327)
LiCD 630 684 1590 1694 1771 4620 11,260
min-sum 697 632 1590 1893 1804 4435 13,012

(the number of edges increases), the performance of the LiCD algorithm
improves compared to that of the min-sum algorithm. For a graph with
multiple cycles, the LiCD algorithm may outperform the Jacobi and min-
sum algorithms with regard to the number of iterations. By taking into
account the fact that the LiCD algorithm transmits only one parameter per
message, the LiCD algorithm may be a good approach for graphs with
multiple-cycles.

5.2 Asynchronous Message Updating. In the experiment, we applied
a simple asynchronous message-updating scheme. That is, each time we
activate only one node. Suppose node i is active at a time step. Node i first
selects a node from its neighbors uniformly. The probability of selecting
each neighboring node is thus . Suppose node j is selected from N (i). For

the LiCD algorithm, node i computes and transmits the parameter g;, ; to
node j for updating the parameter z;. For the min-sum algorithm, node i
computes and transmits u;; and z;; to node j. In the next iteration, node j is
taken to be active. This scheme in fact specifies a random walk on the graph.
If time allows, all the directed edges in E eventually would be visited, which
guarantees the convergence of the LiCD and min-sum algorithms. Since the
Gauss-Seidel algorithm does not fit into this transmission scheme, we did
not evaluate the algorithm.

The generation of (], 1) was similar to the case of a general graph with
more cycles in the synchronous message-updating scenario. In the experi-
ment, we chose only the ] matrices that are walk-summable for evaluation.
The convergence threshold was set as 10~°.

Seven pairs of (], 1) were tested; the experimental results are displayed
in Table 3. We emphasize that each of the corresponding seven graphs has
multiple cycles. It is seen that both the LiCD and min-sum algorithms have
comparable convergence speeds. This convergence property of the LiCD
algorithm is the same as the case of a general graph with more cycles in the
parallel message-updating scenario.

Remark 2. In the asynchronous message-updating experiment, we also
tested the LiCD algorithm for | matrices that were not walk-summable
without using the double-loop scheme. Unfortunately, we found that the
algorithm may fail for some ] matrices. This property is different from that
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of the Gauss-Seidel algorithm, which converges for any positive-definite
matrix J.

6 Application to Distributed Speech Enhancement in Wireless
Microphone Networks

6.1 Problem Formulation. Consider a wireless microphone network
(WMN) with n microphones, whose acoustic signals are windowed and
transformed to the spectral domain using a discrete Fourier transform
(DFT). We assume the presence of a single target source degraded by acous-
tical additive noise uncorrelated with the source. Let Y =[Y,, ..., Yn]T, de-
note a vector containing the stacked noisy DFT coefficients for each of the
n microphones for a particular time frame and frequency bin.* The vector
Y can be expressed as (Brandstein & Ward, 2001),

Y =5d+N,

where (S, d, N) denote the target speech DFT coefficient, the (frequency-
dependent) propagation vector, and the vector containing noise DFT coef-
ficients, respectively. In this work, we assume that d is given. In addition,
we assume that a global timing is available (e.g., by broadcast).

In order to estimate the target DFT coefficient S (for each frequency bin
within each time frame), one can apply a spatial filter w to the noisy DFT
coefficients, leading to an estimate of the clean speech signal $ = w*Y, where
(-)* indicates Hermitian transposition. One particular choice for the spatial
filter w leads to the so-called MVDR beam former, of which the coefficients
are given by Brandstein and Ward (2001),

Ry'd

=N _ 6.1
WMy DR d*Rg,ld (6.1)

where Ry, is the autocorrelation matrix of the noise vector N, of which
the diagonal elements are denoted as (Gf,l, L of, ). We note that in the
computation of wy,pr, @ Matrix inversion is requi;ed, which leads to the
application of message-passing algorithms.

We consider applying the LiCD algorithm to compute the quantity Ry,'d
in equation 6.1. It is worth noting that both R, and d in that equation are
defined in the complex domain while (J, /1) in equation 1.1 are defined in the
real domain. By following a similar argument in section 3, one can easily
extend theorems 1 and 2 to the complex domain. That s, if R, in equation 6.1

3In this letter, we assume that DFT coefficients are independent across time and fre-
quency and therefore neglect time and frequency indices for ease of notation.
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is walk-summable, the LiCD algorithm converges to the quantity Ry'd.
If Ry is not walk-summable, one can apply the LiCD-based double-loop
algorithm to compute Ry'd.

To save transmission power for microphones, we relax the autocorre-
lation matrix Ry, so that the resulting matrix Rj; is walk-summable, thus
avoiding the double-loop scheme. In this way, the convergence speed of
the LiCD algorithm is significantly improved at the cost of degraded per-
formance compared to that of the MVDR beamformer. In particular, we
construct Ry, as Ry, = (1 — )Ry + ndiag(ol%l, ..., 0% ), where the parame-
ter 1 is chosen to make R}, walk-summable. Corresi)ondingly, the spatial
filter w, is given by

Ry 'd
w, = N .
" d*Ryd

6.2)

We note that for the speech enhancement in wireless sensor networks, a
speech signal is generally processed frame by frame. Each frame consists of
a set of frequency bins, leading to a set of matrix inversions (one for each
frequency bin). The LiCD algorithm can process the set of matrix inversions
for each frame in parallel. As a result, for each iteration, a microphone can
transmit a set of parameters (one for each frequency bin) to one of its
neighbors at once, improving the transmission efficiency (i.e., in practice,
extra data are needed for establishing a transmission connection).

6.2 Experimental Results. In this section we discuss experimental re-
sults obtained by computer simulations. The microphone network con-
sisted of nine microphones lying on a 2D rectangular grid, as depicted in
Figure 5a. One of the nine microphones is denoted by a for reference. The
distances between neighboring microphones were set to 2 meters. The nine
microphones formed a fully connected graph for distributed speech en-
hancement. We considered the situation that there were one speaker and
three noise sources within the microphone network. Their locations were
generated randomly, as illustrated in Figure 5a.

The parameters in the experiment were set as follows. The sampling fre-
quency was f, = 16 kHz. Each frame contained 400 samples, corresponding
to a speech segment of 25 ms. A 50% overlapped Hanning window was
used. The three noise sources were simulated by independent white gaus-
sian noise. The noise correlation matrices Ry, for different frequency bins
were estimated beforehand. A speech signal of 20 s was processed by the
Jacobi, LiCD, and min-sum algorithms. The convergence threshold for the
three algorithms was set as 1075. As described in section 6.1, the parameter
n for each frequency bin was chosen such that R}, was walk-summable.

The SNR for microphone 2 in the network before speech enhancement
is —8.2 dB. The SNRs for all the microphones after speech enhancement



3368 G. Zhang and R. Heusdens

(a): Microphone network (b): Convergence speed
120
x x x # Jacobi Alg.
- v O LiCD Alg.
x mlf:rophone O min-sum Alg.
V noisy source 100
< speaker
80
° o
c
v o
x x x T 60
2
40
v »
20 o
2m o
a P
x x x
0 . . L .
0 1 2 3 4 5 6 7 8 9 10

frequency indices

Figure 5: (a) A microphone network with nine microphones, one speaker, and
three noisy sources. One of the nine microphones is denoted by a for reference.
(b) The convergence speeds of the three algorithms for the first 10 frequency
bins. In particular, frequency 1 corresponds to the DC component.

are the same, which is 12.6 dB. Figure 5b demonstrates the (time) average
numbers of iterations needed for the three algorithms in each of the first 10
frequency bins. It is seen that the LiCD algorithm outperforms the Jacobi
and min-sum algorithms. The Jacobi algorithm performs the worst in each
frequency bin.

7 Conclusion

We have proposed a new message-passing algorithm for quadratic opti-
mization by performing linear coordinate-descent operations. Compared
to the min-sum algorithm of which the messages are quadratic functions,
the LiCD algorithm has linear-functional messages like the Jacobi algo-
rithm. We have shown that the LiCD has the same convergence condition
as the min-sum algorithm. Similar to the min-sum algorithm, the LiCD algo-
rithm works by performing either synchronous or asynchronous message
passing.

Experimental results show that for arbitrary graphs, the LiCD algorithm
outperforms the Jacobi algorithm significantly with regard to convergence
speed, even though the two algorithms transmit the same number of pa-
rameters per iteration. For graphs with multiple cycles, the LiCD algo-
rithm has comparable convergence speed to the min-sum algorithm, but
at lower complexity in terms of computation and number of transmission
parameters.
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We note that in the literature, the Jacobi algorithm was extended to
the Jacobi-relaxation algorithm to cover all positive-definite matrices J. In
further work, we will consider extending the LiCD algorithm in a similar
way as the Jacobi-relaxation algorithm to replace the LiCD-based double-
loop algorithm.

Appendix: Proof of Lemma 5

We assume, without loss of generality, that the graph G = (V,E) is con-
nected (otherwise we can treat each connected subgraph separately). In
this case, the matrix R is irreducible and nonnegative.

Next, we study the properties of the matrix A. If every node in the
graph has at least two neighbors (i.e., N(i) > 2, ¥i € V), then the matrix A
is irreducible and nonnegative. In this situation, one can directly apply the
Perron-Frobenius theorem (Horn & Johnson, 1990) to A.In particular, there

exists a positive vector s € RIEl and a scalar A = p(A), so that
As = 2s.

By using 0 < A < 1, we have [|A[l, < 1.

For the case that the graph G is more general (i.e., some nodes may have
only one neighbor), the matrix A is reducible. To see this, we suppose that
a node i € V has only one neighbor j (ie., Jij # 0). It is immediate from
the updating expressions that the message z; has no contribution to all
other messages {z,,,, [u, v] # [}, ], [u, v] € E}. Correspondingly, the column
of the matrix A indexed by [}, i] is zero. Thus, by proper permutation on the
columns of A, the matrix takes the form

_ 0 A
Apgr _ |: kxk _1i| )
0|Efk|xk A,

By identifying all the zero columns in A, the submatrix A, is irreducible and
nonnegative. Further, the spectral radius of Az isless than1 (i.e., p (Az) <1).
Again from the Perron-Frobenius theorem, there exists a positive vector
s, € REIF and a scalar 4, = p(A,), so that

AsSy = Ay8,.

With s, at hand, one can easily find a positive vector s; € R¥ such that for
s=1[s{ s; 1T, IA|5, < 1. This completes the proof.
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