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ABSTRACT

We propose a distributed, decentralized algorithm for iaglv

separable optimization problems over a connected netwiockro-

pute nodes. In a separable problem, each node has its ovatepriv

function and its own private constraint set. Private me&as no

Assumption 2. The given network, or graph, is connected and its
topology does not vary with time.

Assumption 3. A coloring of the graph is available.

While Assumptions 1 and 2 are standard in algorithms solv-

other node has access to it. The goal is to minimize the sum qﬁg (1), Assumption 3 is not as common, but is used many tirhes a

all nodes’ private functions, constraining the solutionbtin the
intersection of all the private sets. Our algorithm is basadhe
alternating direction method of multipliers (ADMM) and réres
a coloring of the network to be available beforehand. Wequerf
numerical experiments of the algorithm, applying it to coegsed
sensing problems. These show that the proposed algorittuires
in general less iterations, and hence less communicatibmeka
nodes, than previous algorithms to achieve a given accuracy

lower implementation levels for avoiding packet collissomA col-
oring of a graph is an assignment of numbers, which we catirsol
to each node of that graph such that no neighboring nodesthave
same number.

Our algorithm is novel and based on the alternating diraatio
multipliers [1, §3.4] (ADMM). It is fully decentralized inhe sense
that it uses no special or central node. We present expetéinen
sults of our algorithm applied to compressed sensing (CS)rfb-

Index Terms— Distributed optimization, compressed sensing, lems, which demonstrate that our algorithm requires in geriess

basis pursuit, network optimization

1. INTRODUCTION

The interest in distributed processing methods has inecesignif-

icantly over the last years. At least two scenarios conteithito

this: the emergence of sensor networks that generate aoegsrdis-
tributed data, and the increasing need for processing kEmgmints
of data on large scale, distributed computing platformac&many
data processing algorithms are based on optimizatiorg tkerneed
for new, distributedoptimization algorithms.

In this paper we consider separable optimization problefus.

separable optimization problem has the form

minimize  fi(z) + f2(z) + - + fr(x) o)
subjectto ze Xy NXonN---NXp,

where the minimization is with respect to (w.rtg € R". We
propose an algorithm for solving (1) in a distributed way. dg-

tributed we mean that, given a network withnodes, we associate
with nodep a functionf, and a sefX,, and require these to be private

to nodep. This means that no other node has access wr X, at

any time during the algorithm. We make some assumptions ®n th

functionsf,, on the setsX,,, and on the given network.

Assumption 1. Each functionf, : R" — R is convex, and eac
setX, C R" is convex. Alson,_; X, # (.
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communication than its competitors.

Applications. There are many inherently distributed problems
in control and signal processing that can be written as (fantples
include: projected consensus [3], resource allocatioblpros [4],
cognitive radio [5], and distributed support vector maekif6].

Here, we apply our algorithm to solve two CS problems that are
essential for the reconstruction of an acquired/compdesggnal.
These are the Basis Pursuit (BP) [2]

minimize ||z|1 @
subjectto Az =1b

and the Basis Pursuit De-Noising (BPDN) [7]
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minimize 1| Az — b||? + Bl|z|1 3)
T

where the variable in both problemsiisc R™, and the matrixA €

R™*™ and the vectob € R™ are given. We consideA and b

to be partitioned by rows, i.ed = [A] A;]T andb =
[b] ~~~bHT, whereA, € R™*™ andb, € R™, with m; +
-+ +mp = m. We assumed, and b, are known by node
only, but the total number of nodd3 and the parametes in (3)
are known by all nodes. Hence, (2) can be written as (1) by set-
ting fp(z) = +||z|l1 andX, = {z : A,z = b,}. Similarly, (3) is

p Writtenas (1) doing, (z) = 4[| Apz—by >+ £ x| andX, = R".

In CS, solving (2) and (3) is a required step to reconstruetsily-
nal of interest from the acquired/compressed signaéspectively,
in noiseless and noisy settings. And, although there is disre
ature about the properties of distributed CS (e.g. [2]),grablem
of distributed reconstruction has not yet been studied mittere
are several applications for distributed CS reconstradticluding



geographical modeling and healthcare [2], or processirtgland  with variablez. Due to our numbering scheme, we can partiti®n

signals captured by narrowband antennas [8]. into [ B Bj ] T and rewrite (4) as
Related work. Problem (1) is closely related to decomposition
methods [4], where subgradient methods are very populaH@v- minimize Zpecl fo(zp) + ZpeC2 fo(zp)
ever, in spite of their nice convergence properties (eaiserobust- subjectto z, € X,, p=1,...,P (5)
ness), they are rather slow. Other distributed algorithohgiregy (1) (B ® I)T1 + (By ®I,)Z2 =0,

include the method of multipliers concatenated with thelinear

Gauss-Seidel method [9] or with the diagonal quadratic @ppr Wwherez = (Z1,Z2) € R x R®, andc; = |C;|, 7 = 1, 2. Now we

mation [10], a double-looped algorithm using Nesterov'sirod in ~ apply the alternating direction method of multipliers [Q{MM)

both loops [8], and an algorithm called D-Lasso [5] that sspars,  to problem (5). Consider the augmented Lagrangian

based on ADMM. In [11], we compared a particular case, namely

BP, of the proposed algorithm with all these algorithms aad-c L(Z1,Z2; \) = Z fo(zp) + Z fo(zp) + &(Z1, Bi; \)

cluded that D-Lasso is the only truly competitor. Hence gict®n 3, pecy PECs

we only compare our algorithm with D-Lasso. The distribuwed _ T T _

sion of ADMM that has been proposed in [12] requires a central +&(Z2, B2 A) + 22, (B1B; ® In)Z2, (6)

node; our.alg_orlthm is completely decentrall_zed. _ where (7, B A) = AT (B @ I)#: + 5”(3; 2 L)E|2,
Contrlbytlops. We propose anew a!gorlthm for so!vmg SePA for j = 1,2, andp > 0 is a predefined parameter. ADMM is an it-

rable optimization problems (1) in a distributed way. THigoaithm . loorith hich. at iterati inimizesZ (s, . \(*)

extends our preliminary work [11], where we proposed anrittym erative a ggr|t .m w (LCH')a lera |oh.n.1|n_|m|zes ((Ifj{)% o )

for solving (2) specifically. Extensive experiments for @d (3)  W.I-t. Z1, finding z;""; then, minimizes L(z; 22 A)

indicate that our algorithm requires in almost all scersaléss com-  W.r.t. Z2, finding i’;’““); and finally, updates the dual variable=

munications than previous algorithms. We believe this¢acthave (..., \;;,...) € (R")® asA(FTD) — \(k) +p((BY ®[n)f§’“+1) +

a significant impact on applications. (B3 ® I,)z™™). 1t can be shown that each minimization step
decomposes into several optimization problems, one fdn eade

in C1 or C2, whether the minimization is w.r.tz, or z», respec-
tively. After each minimization step, the nodes transmititth

. estimate ofz* to their neighbors (which, of course, have a dif-
We assume a network (undirected graph) withodes and” edges  ferent color). It can also be shown that the dual variabldoes
and represent its graph with = (V, &), whereV = {1,..., P} ot need to be updated directly: nogecan update the auxiliary
is the set of nodes anfl = {..., (4,J), ...} is the set of edges. A variablefy,(,k) _ ZjENp sign(j — p)/\g;) instead. The result is

link (i,7) € £ means that nodesand j can communicate. The . ; . g
set/\, represents the set of neighbors of ngdand D, := |\, | the foIIowmg“a_lgo_rlthm, \’/’VhICh we name D-ADMM, where the ‘D
comes from “distributed.

its degree. A prerequisite for our algorithm is a coloringesoe [1],
such that every pair of adjacent nodes have different coldise i S
minimum number of colors graphrequires is represented yG).  Algorithm 1 D-ADMM:-I for bipartite networks

The algorithm we propose is only proven to converge for ggaph |nitialization: forall p € V, setyz(,l) = x;l) —0andk =1
such thaty(G) = 2, called bipartite graphs (e.g., a grid graph). Al- 1. repeat

2. PROPOSED METHOD

though we have no proof of convergence for graphs \p_g(t@) > 2, 2 for all p € C, [in parallel]do
our algorithm never failed to converge in any of our simalasi for 3 setv®™ — ~F) _ 3y +® and find
that type of graphs. ' P T TP ljen, U
Algorithm for bipartite graphs. We present the algorithm for . T
bipartite graphs since it is simpler, and once understdsdjeineral- mékﬂ) = argmin  fy(x,) + v @ + %H%W
ization to graphs withy(G) > 2 is straightforward. Assume thgt st xpeXp
has two colors] and2, and represent the nodes with coldn the (k1)
setC;, i = 1, 2. Also assume, without loss of generality, that nodes 4: Sendz;, toN,
numbered from to |C;| are inC; and the remaining are if. 5. endfor

In problem (1), all nodes have to agree on a solutién Due 6:  Repeat2-5Sforalp € Cz, replacingz" by $§k+1) in vg")
to the distributed nature of the problem, we replicate a aufpthe 7. forall p € V[in parallel]do

variablex throughout all the nodes. The copy in ngdé denoted 7<1c+1) _ ’_y(k) 3. (m<k+1) _ m(_kJrl))
with z, € R". To guarantee equivalence to (1), we have to con- P P JEN TP J
strain all these copies to be equal, for example requiting= z; 8: end for

forall (i,5) € £. Let B € R”*¥ pe the node-arc incidence matrix ~ 9: k+—k+1

of the graph, i.e., a matrix where each column representg thgh 10: until some stopping criterion is met
edge and has-1 and1 in its ith andjth entries, respectively. The
remaining entries have zeros. Then, the constraint= z;, for

all (i,5) € & is written more compactly asBT ® I,)% = 0, It can be seen that nodes with different colors cannot opénat
where® is the Kronecker product],, is the identity matrix inR™”, ~ parallel, but all the nodes with the same color operate ialfedr At
andz = (x1,...,zp) € (Rn)P_ Therefore, (1) is equivalent to each iteration, each node solves the optimization problestep 3,
which depends only on local data (functigp and the sefX,,), but
minimize 25:1 fo(zp) requires knowledge of the neighbors’ estimates. Thosmasts are
subjectto z, € X,, p=1,...,P (4) communicated in step 4. After step 6 is executed, all nodee ha

(BT ®1,)z=0, performed one minimization step and have sent the respestiv-



tion to all their neighbors. Next, in step 7, they update tinelary
variable~, in parallel. Regarding the convergence of Algorithm 1,
the following theorem holds.

Theorem 1 ([11]). For eachp = 1,..., P, the sequencéx](f)}
produced by Algorithm 1 converges to a solution(bY.

The proof consists of showing that (5) satisfies the comnustio
of the theorem that establishes the convergence of ADMM [d].
particular, the matriceSIB’iT ® I,),i = 1,2 have to be full column-
rank, but this follows from well known properties of the niatB.

Algorithm for general graphs. The generalization of Algo-
rithm 1 to graphs colored with more than two colors (in paitc,

Table 1. Network models for the experiments.

Network number Model Parameters
1 Erdbs-Rényi p=0.25
2 Erdds-Rényi p=0.75
3 Watts-Strogatz (n,p) = (4,0.6)
4 Watts-Strogatz (n,p) = (2,0.8)
5 Barabasi-Albert _
6 Geometric d=0.75
7 Lattice

x(G) > 2) is now straightforward: in each iteration, steps 2-5 are

repeated for all colors. Unfortunately, Theorem 1 no loraygplies

Communication steps

because the proof of convergence of ADMM [1] cannot be easily10*

generalized to the case when the variable is partitiones imire
than two blocks. However, empirical evidence shown in negtisn
suggests that the conclusions of the theorem may still hold.

3. EXPERIMENTAL RESULTS

We now present results from the simulations of Algorithm lvso
ing (2) and (3). As mentioned, we only compare our algorithithw
D-Lasso, since it is the only competitive one. In the case2pf &
comparison with other algorithms can found in [11]. In pautar,
Algorithm 1 applied to (2) always outperformed any otheoaitpm
for all the considered networks and data types.

Performance measure.We will use the number of communi-
cation steps to assess the performance of an algorithm. @amm
cating is the most energy-consuming task in sensor netveoritshe
runtime bottleneck in computer clusters. Therefore, tlss leom-
munications an algorithm uses, the more energy-efficierfaster
that algorithm can be. D-ADMM and D-Lasso have a very simi-
lar structure: both consist of a single loop where in eactatiien
each node solves the optimization problem in step 3 of Atboril,
and communicates its solution to all its neighbors. Thus, itera-
tion of both algorithms is comparable since they performsheme
computations and transmit the same amount of informatioasac
the nodes. To emphasize that we are interested in the nuniber
communications, we will use the teroommunication stepo de-
note an iteration of either D-ADMM or D-Lasso. Note that, ejiva
network withE' edges2 E' multiplied by the number of communica-
tion steps gives the total number of communications in the/oe.
Also, note that while D-ADMM operates asynchronously, Dst@
can perform synchronously. Thus, in environments wheretsyn
nism is allowed, D-Lasso can have smaller execution timepite
of using more communications. We note, however, that sugh en
ronments are rare in practice; for example, in wireless adtsvthe
packet collision problem prevents synchronism.

Experimental setup. The data we used for simulating the al-

g D-Lasso: Gaussian

10°
a D-ADMM: Gaussian

10!

10°

4 5

Network number

Fig. 1. BP results for Gaussian and Sparco (Id 7) data.

this is the only network for which D-ADMM is proven to converg
For the other networks, although there is not a guaranteerofec-
gence, D-ADMM always converged.

Both D-ADMM and D-Lasso are augmented Lagrangian-based
algorithms. Therefore, they depend on a paramef{eee, e.g., (6)),
which is chosen beforehand. It is known that the performafce
augmented Lagrangian-based algorithms depends stromgtheo
choice ofp. To mitigate that dependence, we designed our exper-
gnents the following way: given a network and a dataset, we ru
both D-ADMM and D-Lassd times, where each run has a differ-
ent value forp, chosen from the stl0™3,1072,107*,1,10}. And
we always choose the best result, i.e., the one that leatie tedst
number of communication steps. In each run, the algorithios s
whenever they achievel® 3% accuracy at an arbitrary node, i.e.,

=5 — 2*||/||l=*|| < 10~° for an arbitrary nodey, or when the

maximum number of iterations)® is reached. The solutian* for

BP or BPDN is computed beforehand using centralized alyost
Results. Figs. 1 and 2 show the results of our simulations for

problems (2) (BP) and (3) (BPDN), respectively. In Fig. 1 wpre-

sent the number of communication steps as a function of mktwo

gorithms comes from CS. In one case, we generate our own datgtumber (c.f. Table 1). There, we see that D-ADMM always re-

each entry in the matrixt € R%°°%20°° was drawn from an i.i.d.

Gaussian distribution with zero mean and variah¢g00. The vec-
tor b was generated from multiplying by a vector with80 nonzero
random entries, located at random places. In the other eese,
used data provided by the Sparco toolbox [13], namely prokie
(A € R8Y0x2560) Regarding the networks, we generaTedifferent
networks withP = 10 nodes according to a random model, shown
in Table 1. A description of the parameters of these modeishea
found, e.g., in [11]. We mention that the only network thasvmat
generated by a random model was the Lattice one: it is just a
dimensional grid with dimensior x 5, thus it is bipartite. Hence,

quired less communication steps than D-Lasso to achiévé %
of accuracy, for both types of data. The optimal valuesgfovere
always10~2, 107}, or 1, for both algorithms.

In Figs. 2(a) and 2(b) we present the same type of plots but for
BPDN, for Gaussian and for Sparco data, respectively. Irrash
with what happened for BP, here there are two cases wheresBeLa
required less communication steps than D-ADMM: for netvgatk
and7 under Gaussian data. For illustration, we represent in B{g$
and 2(d) how the error evolved along the iterations for twaipalar
cases: one for which D-ADMM required less communicatiopste
than D-Lasso (Gaussian data, netw8jk and another for which it
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Fig. 2. BPDN results for Gaussian (a) and Sparco (b) data. Reletige along the iterations for Gaussian data: netwarfs and7 (d).

required more communication steps than D-Lasso (Gaussitm d
network 7). In Fig. 2(c) we see that D-ADMM required uniformly
less communication steps than D-Lasso to achieve any amyuioe- 4]
tween10~! and10~>. For network?7, however, this only happened
until an accuracy of0~*, value after which D-Lasso started requir-
ing less communication steps. This explains Fig. 2(a). [5]

4. CONCLUSIONS

We proposed a distributed algorithm for solving separaptemiza-
tion problems over a network of nodes. Each node has a pfivate 7]
tion that wants to minimize, and a private constraint set.nabtles

reach a solution together by exchanging solution estimatesach
iteration. By assuming that a coloring scheme is availabkfere- 8]
hand, we are able to apply ADMM to our problem formulationeTh
resulting algorithm requires, in general, less commuidoatthan 9]
the state-of-the-art algorithms, as shown by numericaligitions
for compressed sensing reconstruction problems.
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