DISTRIBUTED PRINCIPAL COMPONENT ANALYSIS ON NETWORKS VIA
DIRECTED GRAPHICAL MODELS

Zhaoshi Meng *, Ami Wiesel t and Alfred O. Hero 11l *

* University of Michigan, Ann Arbor, M1 48109 USA
T Hebrew University of Jerusalem, Israel
* {mengzs, hero}@umich.edu, famiw@cs. huji.ac.il

ABSTRACT

We introduce an efficient algorithm for performing distributed prin-
cipal component analysis (PCA) on directed Gaussian graphical
models. By exploiting structured sparsity in the Cholesky factor of
the inverse covariance (concentration) matrix, our proposed DDPCA
algorithm computes global principal subspace estimation through
local computation and message passing. We show significant per-
formance and computation/communication advantages of DDPCA
for online principal subspace estimation and distributed anomaly
detection in real-world computer networks.

Index Terms— Graphical models, principal component analy-
sis, anomaly detection, distributed PCA, subspace tracking.

1. INTRODUCTION

We introduce a new approach to distributed principal component
analysis called directed distributed PCA (DDPCA) that can be ap-
plied to networked data collection and analysis. As a widely used
dimensionality reduction technique PCA estimates the principal sub-
space, which is the subspace spanned by the leading eigenvectors
of the data covariance matrix. When applied to network data, dis-
tributed PCA results in an algorithm having improved scalability,
decentralization of computation, and reduced communication cost.
For recent contributions on distributed PCA, we refer the reader to
related work [1-4].

Our proposed distributed PCA approach exploits a directed
acyclic graphical model perspective of the network of measure-
ments. Graphical models characterize conditional independence
within the multivariate distribution of the data through the topology
of a graph. The two most common families of graphical models
are undirected graphical models and directed acyclic graph (DAG)
models (also known as Bayesian networks). When the graph is
sparse and the variables are jointly Gaussian, the graphical model
imposes sparsity on the inverse covariance, variously called the in-
formation, concentration or precision matrix. Such a representation
enables distributed and efficient inference algorithms. In [1], a dis-
tributed PCA algorithm called DPCA was introduced using a family
of undirected graphical models, specifically decomposable Gaussian
graphical models (DGGM).

The contribution of this paper is an extension of the DPCA
framework to directed Gaussian graphical models. Instead of as-
suming sparsity in the concentration matrix, the proposed directed

This research was supported in part by ARO grant WO11NF-11-1-0391
and ISF 786/11.
A. Wiesel would like to thank M. Drton for introducing him to DAGs.

DPCA algorithm assumes sparsity in Cholesky factor of the concen-
tration matrix, which results in closed-form distributed covariance
estimation and reduced computation/communication complexity.
DDPCA can equally be applied to non-directed decomposable
graphical models by using a sparsity-preserving Markov-equivalent
conversion.

DDPCA is a two-stage algorithm. In the first stage, DDPCA
performs decoupled regressions to estimate the covariance matrix
associated with the graphical model. In the second stage, a dis-
tributed orthogonal iterations method is implemented to accomplish
global estimation of the principal subspace. In this way DDPCA re-
quires only local computation and message passing between neigh-
bors. The algorithm is also suitable for online incremental process-
ing in subspace tracking problems.

The outline of the paper is as follows. In Section 2 we briefly
review directed graphical models. In Section 3, a general network
model is proposed, focusing on two specific network models that fit
the DAG assumptions. Then in Section 4, we describe the DDPCA
algorithm. In Section 5, DDPCA is applied to an online subspace es-
timation problem and distributed anomaly detection in a real-world
computer network.

The following notation is used. Boldface upper case letters like
A denote matrices, boldface lower case letters like x denote col-
umn vectors, and standard lower case letters like x denote scalars.
The cardinality of a set A is denoted by |.A|. We use indices in the
subscript x 4 or X 4,5 to denote sub-vectors or sub-matrices, respec-
tively.

2. REVIEW OF DIRECTED GRAPHICAL MODELS

A directed graphical model G specifies conditional dependence
among variable according to the existence of edges between nodes
of a directed graph G. If i — j, then i is called a parent of j and
j is called a child of 7. The set of parents and children of 7 in G is
denoted as pa(7) and ch(i), respectively. If there exists no directed
cycle in G, then it is called a directed acyclic graph (DAG).

A random vector x satisfies the Markov property with respect
to a DAG G if the conditional independence between components
of x are encoded in G through the notion of d-separation [5]. DAG
models are most suitable for variables with natural ordering (such as
temporal or spatial), where each variable only depends on a subset
of its previous variables, which are denoted as its parent nodes in the
DAG, i.e.

z; = f(z1,...,25-1) + € = f(Xpa(s)) + &> M

where €;’s are uncorrelated residuals.

Another family of graphical models are the undirected graphical
models, specified by a graph with undirected edges. We say that the
set of nodes C separates sets A and B, if there is no path between any
node in A and node in B that does not include a node in C. Unlike
DAG models, the Markov property on undirected graphs states that
random variables measured in two distinct subsets are conditionally
independent given the separating subset. Under Gaussian assump-
tions the Markov property in undirected models imposes zeros in the
concentration matrix [5].

Decomposable Gaussian Graphical Models (DGGM) define an
important family of undirected Gaussian graphical models. The fam-
ily can be defined by a junction tree of cliques C1,...,Ck which
satisfy a perfect elimination order. These ordered cliques are cou-
pled through separators

Sj:(C1U02U---UCj71)ﬂCj 2)

for j = 2,...,, K, and satisfy the running intersection property:
for all j > 2 thereis a k < j such that S; C Cj.

DGGMs are closely related to Gaussian DAG models. Given a
DGGM we can construct a vector-based DAG model by directing
the edges in the junction tree. The resulting model preserves all the
conditional independencies and the sparsity pattern in its informa-
tion domain, and is called a Markov equivalence. The conversion
from DAG models to DGGMs is also straightforward through mor-
alization. However, this may require additional edges which reduce
the sparsity level. In this sense the DAG model is a more efficient
representation than its DGGM counterpart.

3. ADAG NETWORK MODEL

In this section we motivate the DAG models for network modeling
and describe two specific models whose spatial covariance satisfies
the DAG structure. Consider a computer network consisting of NV
nodes and L links (adjacent nodes are connected by two links). The
network carries traffic flows from origin nodes to destination nodes,
known as OD (Origin-Destination) flows, through routing over a pre-
determined ordered subset of links (called a path) of the network. On
each link of the network, the accumulation of all OD flows that pass
through this link is measured. Therefore the link flows and the OD
flows can be related by a linear equation

y = Ax, 3

where y € R” is the link-level flow measurement vector, and x €
RT is the OD flow vector, and P is the total number of OD paths.
The routing matrix A = (aip) L x p is defined as:

1,
|}

As noted in the literature, under uncongested network conditions
the OD traffic flows z,,’s can be well approximated as statistically
uncorrelated. Thus the statistical correlation between components
of y are solely determined by the structure of routing matrix A. We
consider the following two models for link flow vector y:

Scenario A (Decomposable model). In this scenario, two dis-
tantly separated link flow variables are modeled as conditionally in-
dependent given the separator flow variables between them. There-
fore if the network topology satisfies decomposable separation as
defined in (2), then y is readily modeled by a DGGM, which also
can be converted into a DAG model as described in Section 2. This
model is equivalent to the model [1] that specifies a decomposable
sparsity structure on the precision matrix.

if link [is on path p
otherwise.

C)

Scenario B (Single-source model). In this scenario, the net-
work flow consists of OD flows originating from a single source
node (See Fig. 3(a)). Due to the tree-structured routing in this net-
work, each “parent” link carries the accumulated flows of all its de-
scendants. Thus its corresponding flow variable depends only on its
descendant flows variables. Therefore there exists a natural ordering
of all the link flow variables, as in (1), and y naturally follows a DAG
model. This single-source model arises in the context of flow-based
network anomaly detection, such as spoofing detection, where an at-
tacker makes independent and unauthorized connections and injects
phony packets into the OD flow tree.

4. DISTRIBUTED PCA ON GRAPHICAL MODELS

4.1. Problem Formulation

Let G be a DAG with known edge topology, and let x be a p-
dimensional zero mean Gaussian random vector that satisfies the
Markov properties specified by the DAG G. Measured is a set of
T independent and identically distributed realizations of x, denoted
as {x[t]}i—;. We assume that there are p units, or agents, that
collect and process the data in a distributed manner. Each agent
4+ only collects and processes all the 7' samples of the component
{z:[t]}7—;. Agents can communicate with their neighbors (called
local communication) defined by DAG G. Our goal is to perform
global estimation of the principal subspace spanned by the first r
leading eigenvectors of the covariance matrix. In other words, our
algorithm searches for the the linear combination X = V7'x having
maximal variance, where V. € RP*".

4.2. Distributed Covariance Estimation

In the first stage of DDPCA we perform distributed covariance es-
timation. It is well-known [6] that, given a random vector x which
satisfies a known DAG model, its covariance matrix 3 can be trans-
formed to a diagonal matrix €2 as following:

I-A)ZI-A" =9, 5)

where I is the identity matrix and A is a lower-triangular matrix with

0
Aji = { ik

This formulation leads to the following recursive linear system:

it k ¢ pa(j)
if k € pa(j). ©)

Tj = Z)\jkmk + €5, .7 = 17 Sy 2 @)
kepa(j)

where the variances of the uncorrelated residuals €;’s form the diag-
onal matrix €2.

The covariance matrix ¥ is fully characterized by A and €.
Thus, a simple approach to covariance estimation is to perform de-
coupled linear minimum mean squared error (LMMSE) regression
in model (7) for each x; to estimate the parameters. In fact, this
procedure results in the maximum likelihood estimate [5]. For real-
time applications, this distributed covariance estimation scheme can
be recursively implemented, e.g., by using recursive least squares
(RLS) to update the estimate. This enables fast distributed principal
subspace tracking.

For the purpose of presentation, we develop the estimator for the
case of scalar node variables, e.g. ;. In the general vector case, (6)
and (7) are modified by replacing A ’s by matrices.

4.3. Distributed Orthogonal Iterations

The second step of DDPCA is a decentralized implementation of
Orthogonal Iteration (OI) method, also known as Power Iteration, to
estimate the leading eigenvectors of covariance matrix using the es-
timated Cholesky factor obtained in the first step. OI is one of the
simplest yet prevailing iterative algorithms for estimating the prin-
cipal subspace of large-scale matrices. In each iteration, the matrix
is multiplied by the current estimate of the eigenvectors, then the
resulting vectors are orthonormalized. Under broad assumptions the
subspace spanned by the produced vectors converges to the true prin-
cipal subspace of the matrix at a linear rate.
The most expensive operation in the implementation of OI is
a matrix-vector multiplication. DDPCA simplifies this calculation
by exploiting the structural sparsity of the Cholesky factor of the
covariance matrix. Let L denote the modified Cholesky factor (also
called the Backward Cholesky factor) of the concentration matrix,
defined as:
s =L"L. ®)

From (5), we have
L=Q '?1I-A).)

It is easy to see that L shares the same lower-diagonal nonzero pat-
tern as A, which characterizes the topology of the DAG G through
(6). Therefore the matrix-vector multiplication between the covari-
ance matrix and a vector q can be structured as:

z=%q=L"'L "q, (10)
which is efficiently performed by introducing an auxiliary vector y
and sequentially solving the following two linear triangular systems:

an

through backward substitution and forward substitution, respec-
tively. Since the non-zero pattern of L matches the edge topology
of G, solving a given component of the solution vector only requires
linear message-passing from its parents or children. For example,
the j-th component of y is calculated by

v =L (0= > Munoy),

mech(j)

L'y =q, Lz=y,

12)

where the message is M,,—,; = L,Tnjym. Note that solving this
local triangular system (12) requires a quadratic computation cost
and a linear communication cost in the dimension of y;.

For estimating the principal subspace, multiple principal com-
ponents are estimated simultaneously. OI also requires orthonor-
malization in each iteration which can be efficiently implemented in
distributed form [7] with only small additional cost.

4.4. Comparison with PCA and DPCA [1]

DDPCA, DPCA and standard PCA are matched to different mod-
els. Standard PCA makes no assumptions on covariance structure.
DPCA assumes that the covariance follows a decomposable undi-
rected graphical model with known sparsity pattern in precision ma-
trix. DDPCA assumes that the Cholesky factor of the eevarianeg
follows a DAG model with known sparsity structure.

Moreover, in the case that Markov equivalent DAG model and
DGGM are assumed for applying DDPCA and DPCA, respectively,
DDPCA enjoys lower implementation complexities. DPCA per-
forms a sequence of local PCA operations on the junction tree, which

have cubic local computation complexity and quadratic inter-clique
communication cost as a function of separator dimension. On the
other hand, DDPCA exploits sparsity via distributed regression and
substitution techniques, which requires quadratic computation and
linear communication cost in the local dimension. Therefore, DPCA
is suitable for problems with very small separators and relatively
large cliques, whereas DDPCA is applicable to arbitrary DAGs.

5. EXPERIMENTS

5.1. Online subspace estimation example

We first illustrate DDPCA on a synthetic example. The objec-
tive is online estimation of the first principal component from an
i.i.d. sequence of samples. The samples are generated from a
80-dimensional multivariate normal random vector using a four-
node vector-based DAG model with star topology (three disjoint
nodes point to the fourth node). Each node corresponds to a 20-
dimensional random sub-vector. The Markov equivalent undirected
graph of this sparse DAG via moralization is a fully-connected
graph, which means that the precision matrix has no sparsity.
Therefore DPCA cannot be used for distributing the computation.
However, the proposed DDPCA can distribute the computation by
exploiting sparsity in the Cholesky factor.

We perform DDPCA for an increasing window of successive
samples, updating the previous estimate of Cholesky factor at each
sample time. Using this evolving factor, we perform a few number of
OI’s at each sample time to update the previous eigenvector estimate.
For comparison, we implement the standard PCA using OI with full
sample covariance that does not account for the DAG model.

Online subspace estimation
T T

—6— DDPCA (#iter = 1)
09§ —*— DDPCA (#iter = 2) H
—v— DDPCA (#iter = 8)

— — — Standard PCA (#lter = 20)
—=— Standard PCA (#lter = 50)

o
o
T

subspace distance
o o o o
N w B (%))
T 3 T

o

o

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
of samples x10*

Fig. 1. Online estimation example

Fig. 1 shows the subspace estimation error, i.e., the distance be-
tween the estimated and the true subspace with respect to the total
number of samples. It can be seen that for DDPCA even two it-
erations of OI’s in each update result in a fast convergence to the
steady state regime where the Cholesky factor estimate is stable;
whereas standard PCA performs poorly even using 20 OI's for the
updating, and requires 50 OI’s to achieve similar performance to
DDPCA. The better performance and faster convergence of DDPCA
is due to the matched DAG model, which is a more parsimonious and

hero
Inserted Text
the

hero
Cross-Out

hero
Replacement Text
precision matrix(???)

lower dimensional covariance model. The decentralized framework
of DDPCA also makes it computationally advantageous.

5.2. Distributed Anomaly Detection in Abilene Network

x10" Residual norm - Centralized PCA

0 200 400 600 800 1000 1200 1400 1600 1800
x10" Residual norm -~ DDPCA with Decomposable model

0 200 400 600 800 1000 1200 1400 1600 1800
x10° Residual norm error

o 02 04 06 08 1 0 200 400 600 800 1000 1200 1400 1600 1800

(a) Connectivity of Abilene network (b) Residual norm and error (decom-
posable model)

Fig. 2. Anomaly detection in Abilene with decomposable model

Finally, we apply the proposed DDPCA to anomaly detection in
a real-world Abilene network [8] based on a DAG network model.
Abilene is the Internet2 backbone which carries traffic between uni-
versities in the United States. Fig. 2(a) shows its connectivity map
consisting of 11 nodes and 30 links. Measurements of link flow traf-
fic data satisfy the network model (3), where the routing matrix A is
known. Our goal is to detect the anomalies occurring in the OD flow
vector x with observations of y.

In this context, PCA is used to estimate a low dimensional prin-
cipal subspace containing the nominal flow traffic. The test data
are projected into the nullspace and the norm of the projected data is
thresholded to indicate potential anomalies [§]. DDPCA enables dis-
tributed estimation of the principal subspace through decentralized
computation and communication over the network.

We consider the two models presented in Section 3 for imple-
menting the PCA algorithms on this network data:

(A) Decomposable model. We consider all the OD flows and
links. In view of Fig. 2(a) there exist two separators: S; = {DNVR-
KSCY, SNVA-KSCY, LOSA-HSTN}, S2 = {KSCY-IPLS, HSTN-
ATLA} which physically separate the other three subsets of links.
Then we can model the link traffic variable by a three-clique DGGM,
which can be equivalently converted into a block-sparse DAG model.

Note that in this model, the dimensions of the separating sets
(|S1] = 6,|S2| = 4) are not significantly smaller than the clique di-
mensions (14, 12, and 14, respectively). Therefore the computation
cost (~ 142) and communication cost (~ 14) of DDPCA is less ex-
pensive than DGGM-based DPCA, which requires cubic local com-
putation cost (~ 143) and quadratic communication cost (~ 62).

(B) Single-source model. In this scenario, we consider all the
OD flows originating from node ATLA, as shown in Fig. 3(a). The
dotted lines with arrows indicate OD flows, and the thickness of solid
edges are proportional to the number of OD flows passing through it.
As described above we can construct a 11-node sparse DAG model
for the link traffic. Note that in this example, the equivalent DGGM
has two additional edges and thus is less sparse than the DAG model.

In our experiments, we examined two weeks of real-world flows
data. We learn the nominal principal subspace from the first week’s
data using standard centralized PCA and DDPCA, respectively.
Then we project the second week’s link traffic, the test data, on the
nominal principal subspace and examine the residual. Fig. 2 and

Fig. 3 show the norm of the residual signal using centralized PCA
(first row), using DDPCA (second row) and showing their difference
(third row). We can see that DDPCA successfully approximates
anomaly detection performance of the centralized PCA. Anomaly
detection can be performed by thresholding the residual norm and
locating the peaks.

x10% Residual norm - Centralized PCA

0 200 400 600 800 1000 1200 1400 1600 1800
x10% Residual norm - DDPGA with single-source model

O RN

0" 200 400 600 800 1000 1200 1406 1600 1600
x10" Residual norm error
.
2
0 Ao] A L " L
o o o o8 1 %0 0 a0 600 B0 1000 7200 1400 1800 1600
(a) OD tree from ATLA (b) Residual norm and error (single-

source model)

Fig. 3. Anomaly detection in Abilene with single-source model

6. CONCLUSION

We have presented a distributed PCA algorithm on directed Gaus-
sian graphical models, called DDPCA, designed for networked data
whose covariance has sparse Cholesky factor with known zero pat-
tern. We have illustrated DDPCA’s performance for estimating sub-
space and detecting anomalies in link traffic in Abilene network data.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

7. REFERENCES

A. Wiesel and A.O. Hero 111, “Decomposable principal compo-
nent analysis,” Signal Processing, IEEE Transactions on, vol.
57, no. 11, pp. 4369-4377, 2009.

M. Gastpar, PL. Dragotti, and M. Vetterli, “The distributed
karhunen—loeve transform,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 12, pp. 5177-5196, 2006.

L. Huang, X.L. Nguyen, M. Garofalakis, M.I. Jordan, A. Joseph,
and N. Taft, “In-network PCA and anomaly detection,” Ad-
vances in Neural Information Processing Systems, vol. 19, pp.
617, 2007.

L. Li, A. Scaglione, and J.H. Manton, “Distributed principal
subspace estimation in wireless sensor networks,” Selected Top-
ics in Signal Processing, IEEE Journal of, vol. 5, no. 4, pp. 725
—738, aug. 2011.

S.L. Lauritzen, Graphical models, vol. 17, Oxford University
Press, USA, 1996.

P. Riitimann and P. Bithlmann, “High dimensional sparse covari-
ance estimation via directed acyclic graphs,” Electronic Journal
of Statistics, vol. 3, pp. 1133-1160, 2009.

D.P. O’Leary and P. Whitman, “Parallel QR factorization by
householder and modified gram-schmidt algorithms,” Parallel
computing, vol. 16, no. 1, pp. 99-112, 1990.

A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-
wide traffic anomalies,” in Proceedings of ACM SIGCOMM
2004, Aug. 2004, pp. 219-230.

