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Abstract

Transform coding (TC) is one of the best known practical methods for quantizing high-dimensional vectors. In this
article, a practical approach to distributed TC of jointly Gaussian vectors is presented. This approach, referred to as
source-split distributed transform coding (SP-DTC), can be used to easily implement two terminal transform codes for
any given rate-pair. The main idea is to apply source-splitting using orthogonal-transforms, so that only Wyner-Ziv
(WZ) quantizers are required for compression of transform coefficients. This approach however requires optimizing
the bit allocation among dependent sets of WZ quantizers. In order to solve this problem, a low-complexity tree-
search algorithm based on analytical models for transform coefficient quantization is developed. A rate-distortion
(RD) analysis of SP-DTCs for jointly Gaussian sources is presented, which indicates that these codes can significantly
outperform the practical alternative of independent TC of each source, whenever there is a strong correlation
between the sources. For practical implementation of SP-DTCs, the idea of using conditional entropy constrained
(CEC) quantizers followed by Slepian-Wolf coding is explored. Experimental results obtained with SP-DTC designs
based on both CEC scalar quantizers and CEC trellis-coded quantizers demonstrate that actual implementations of
SP-DTCs can achieve RD performance close to the analytically predicted limits.

Keywords: distributed transform coding, Wyner-Ziv quantization, multi-terminal quantization, Karhunen-Loéve
transform (KLT), optimal bit-allocation

1 Introduction
Many new applications such as multi-camera imaging
systems rely on networks of distributed wireless sensors
to acquire signals in the form of high-dimensional vec-
tors [1]. In such situations, an encoder in each sensor
quantizes a vector of observation variables (without
exchanging any information with other sensors) and
transmits its output to a central processor which jointly
decodes all the sources. The strong statistical dependen-
cies among the signals observed by different sensors can
be exploited in the decoder to reduce the transmission
bit-rate of each sensor. This problem, in general, is
referred to as distributed (or multiterminal) vector
quantization (VQ). The design of a distributed VQ for a
large number of source variables is a difficult task. A
practically simpler, yet very effective approach to quan-
tizing a large number of correlated variables by using a
bank of single variable quantizers is transform coding
(TC) [2-4]. Clearly, TC can be used for distributed VQ
when separately observed vectors have both inter-vector

and intra-vector statistical dependencies, a situation
typical in applications such as camera networks. Most of
the previous work [5-7] studies Wyner-Ziv (WZ) trans-
form coding (WZ-TC), which is a special case of more
general multiterminal transform coding (MT-TC) [8]. In
WZ-TC, a single source is quantized given that the
decoder has access to side information about the source.
Information-theoretic studies of distributed transform

coding (DTC) can be found in [5,8]. In [8], the optimal lin-
ear transform for Gaussian WZ-TC under the mean
square-error (MSE) criterion is shown to be the condi-
tional Karhunen-Loéve transform (CKLT), which is a nat-
ural extension of the result in [2]. This result is based on
the assumption that each transform coefficient is com-
pressed by a rate-distortion (RD) optimal WZ quantizer
and hence describes the optimal performance theoretically
attainable (OPTA) in Gaussian WZ-TC. However, the
optimal solution to the more general MT-TC problem
remains unsolved, even for the Gaussian case. In [8], an
iterative descent algorithm for determining the OPTA of
Gaussian MT-TC problem is given. It is shown that, while
this algorithm [referred to as the distributed KLT (DKLT)]
always converges to a solution, the final solution is not
necessarily the global optimum. In any case, the practical
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implementation of distributed quantizers implied by the
DKLT remains an open problem. In [5] WZ-TC based on
high-rate scalar quantization and ideal Slepian-Wolf (SW)
coding [9] is studied. In particular, it is shown that, for
jointly Gaussian vectors, CKLT followed by uniform scalar
quantization is asymptotically optimal, a natural extension
of the result in [10] for entropy-coded quantization at
high-rate. More importantly, the bit-allocations and quan-
tizer-step sizes found in [5] can be used for practical
design of WZ-transform codes as long as high-rate
approximations hold. However, we note that, even when
scalar quantizers are used, achieving good performance
with this approach still requires the use of a subsequent
block-based SW coding method (e.g., Turbo codes or
LDPC codes). Other previous studies on WZ-TC can be
found in [6,7]. However, they rely on WZ scalar quantiza-
tion of transform coefficients. Such methods are therefore
most suitable for applications requiring low coding delay
as their performance is strictly inferior to block-based
quantization.
In contrast to WZ-TC, we consider in this article the

practical design of two-terminal transform codes for
jointly Gaussian vectors in which arbitrary transmission
rates can be assigned to each terminal. Our approach is
based on the idea of source-splitting [11,12] to convert
the two-terminal TC problem into two WZ-TC pro-
blems. Since transform codes quantize linear projec-
tions, we perform source splitting in terms of optimal
linear approximations, i.e., a linear approximation of
one source is provided as decoder side-information for
the other source. The proposed source-split DTC (SP-
DTC) approach only requires the design of two-sets of
WZ quantizers sequentially, and avoids having to itera-
tively optimize two sets of WZ quantizers to each other
as in [8]. However, this approach requires the solution
of a bit allocation problem involving dependent WZ
quantizers. To solve this problem for Gaussian sources,
we propose an efficient tree-search algorithm, which can
be used to find the a good SP-DTC under different
models for quantization of transform coefficients. When
used with the RD-optimal WZ quantization model [8],
this algorithm can potentially locate the optimal SP-
DTC for Gaussian sources. In practice, with constraints
imposed on tree-search complexity, the algorithm yields
a near-optimal solution. We refer to the optimal solu-
tion to the Gaussian problem as the source-split DKLT
(SP-DKLT). Using this algorithm, we numerically com-
pute the rate-region achievable with a SP-DKLT code
for two examples of jointly Gaussian vector sources.
This study shows that, when there is sufficient inter-
source correlation, optimal SP-DKLT codes can achieve
substantially better performance than independent
transform codes for the two sources. However, we find

that the rates achievable with SP-DKLT codes are
strictly inside the optimal achievable rate-region pre-
dicted by the DKLT algorithm of [8]. In order to
approach the performance predicted by the optimal SP-
DKLT in practice, block WZ quantization of transform
coefficients is required. For implementation of block
WZ quantizers, we consider the use of trellis-coded
quantization (TCQ) followed by SW coding. This two
stage approach is known to achieve the RD function of
Gaussian WZ coding [13]. In order practically imple-
ment this approach, we introduce the idea of designing
conditional entropy constrained TCQ (CEC-TCQ) based
on analytically found bit-allocations. We present experi-
mental results to demonstrate that practical implemen-
tations of SP-DTCs for Gaussian sources can closely
approach the performance limits indicated by the opti-
mal SP-DKLT. On the other hand when SW coded
high-rate scalar quantization model [5] is assumed for
encoding transform coefficients, the tree-search algo-
rithm proposed in this article can also be used to find
asymptotically good SP-DTC codes for scalar quantiza-
tion based implementations. These codes can be readily
implemented using CEC scalar quantizers (CEC-SQ) as
demonstrated by experimental studies presented in this
article. In our experimental study, we also investigate
the design of good SP-DTCs based on widely used dis-
crete cosine transform (DCT).
This article is organized as follows. Section 2 presents

a review of WZ-TC of Gaussian vectors and motivates
the particular approach introduced in this article. Sec-
tion 3 presents the idea of SP-DTC and develops the
tree-search algorithm for finding the optimal transforms
and the bit-allocation for SP-DKLT codes. Section 4
computes the achievable rate region of SP-DKLT codes
for two example Gaussian source models, and presents
experimental results obtained by designing SP-DTCs
based on both KLT and DCT. Finally, some concluding
remarks are given in Section 5.
Notation: As usual, bold letters denote vectors and

matrices, upper case denotes random variables, and
lower case denotes realizations. ΣX denotes the auto-cov-
ariance matrix of the vector X. ΣXY and ΣX|Y, respectively
denote the joint covariance matrix of (X, Y) and the con-
ditional covariance matrix of X given Y. The eigenvalues
l1 , . . ., lM of a M × M covariance matrix are always
indexed such that l1 ≥ l2 . . . ≥ lM , and the correspond-
ing KLT matrix has the structure T = (uT

1, . . . , uT
M) ,

where um is the eigenvector associated lm.

2 WZ-TC of Gaussian vectors
Consider encoding of a Gaussian vector X ∈ RM1 using
B bits per vector, given that the decoder has access to a
jointly Gaussian vector Y ∈ RM2 . Assume that both
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vectors have zero mean, and let the auto-covariance
matrix of X be ΣX = E{XXT}. In WZ-TC, a linear trans-
form is first applied to X and each component of the
transform coefficient vector U = TTX is separately com-
pressed by a WZ quantizer, considering Y as decoder
side-information, where T is a M1 × M1 unitary matrix.
Let Û be the quantized value of U. The decoder then
estimates the source vector based on Û and Y. We wish
to find the optimal transform and the allocation of B
bits among M1 transform coefficients, which minimize

the quantization MSE E
{∥∥∥X − X̂

∥∥∥2
}
, where

X̂ = E{X|Û, Y} is the optimal estimate (at the decoder) of
the source vector. The solution of this problem requires
an analytical model for coefficient quantization. To this
end, [8] considers RD optimal WZ quantization (RD-
WZQ) model, the solution based on which is appropri-
ate for practical block quantization techniques such as
TCQ. On the other hand [5] considers SW-coded high-
rate scalar quantization (SWCHRSQ) model.
Let the eigenvalues of the conditional covariance

matrix ΣX|Y = E{XXT|Y} be λ =
(
λ1, . . . , λM1

)T . The

CKLT of X given Y is defined as θ = TTX, where T is
M1 × M1 unitary matrix such that ΣX|Y = TΛTT, where
� = diag

(
λ1, λ2, ..., λM1

)
[8]. It is easy to verify that E

{θθT|Y} = Λ, i.e., the components of θ are conditionally
uncorrelated, given Y. For convenience, define

d∗(λ, B, N) �
(

N∏
m=1

λm

) 1
N

2
−

2B
N ,

where N ≤ M1 is a positive integer.

2.1 RD-WZQ model
When RD-WZQ model is used, the quantization MSE
for Um is given by [14]

dRD−WZQ
m = λm2−2rm , (1)

where lm = var(Um|Y) and var(·|·) denotes the condi-
tional variance. The optimal solution to the WZ-TC
problem under RD-WZQ model is given by the follow-
ing theorem.
Theorem 1 Given jointly Gaussian X and Y as

defined above, and a total bit budget of B bits, if each
transform coefficient Um, m = 1, . . ., M1, where U =
TTX, is quantized by an RD optimal WZ quantizer
which uses Y as decoder side-information, then the

transform T which minimizes E
∥∥∥X − X̂

∥∥∥2
is the CKLT of

X given Y, and the number of bits allocated to quantiz-
ing Um is

ρm(λ, B, N) =

{ 1
2

log2

[
λm

d∗(λ,B,N)

]
m = 1, . . . , N

0 m = N + 1, . . . , M
(2)

where N ≤ M is the largest integer for which lm ≥ d*

(l, B, N), m = 1, . . ., N. The quantization MSE of the
mth coefficient is

dm = λm2−2ρm

=
{

d∗(λ, B, N), m = 1, . . . , N
λm, m = N + 1, . . . , M

(3)

and the overall MSE is

E
{∥∥∥X − X̂

∥∥∥2
}

= Nd∗(λ, B, N) +
M1∑

m=N+1
λm. (4)

Proof 1 Directly follows from [[8], Section III-B].
Note that RD-WZQ model implies infinite-dimen-

sional VQ of each coefficient and hence the above MSE
is the OPTA in the Gaussian WZ-TC problem.

2.2 SWC-HRSQ model
The asymptotically (in rate) optimal solution to the WZ-
TC problem under SWC-HRSQ model is given by the
following theorem.
Theorem 2 Let X, Y, and B be as in Theorem 1. If

each transform coefficient Um , m = 1, . . ., M1 , where U
= TTX, is quantized by a high-rate scalar quantizer and
the quantizer output is encoded by a SW code which
uses Y as decoder side-information, then the transform T

which asymptotically minimizes E
∥∥∥X − X̂

∥∥∥2
is the CKLT

of X given Y and the bit allocation is given by (2).
Furthermore, the asymptotically optimal quantizer for
Um, m = 1, . . ., N is a uniform quantizer with step-size

� =
√

(2πe)d∗(λ, B, N) . The resulting quantization MSE

is

E
{∥∥∥X − X̂

∥∥∥2
}

=
(πe

6

)
Nd∗(λ, B, N) +

M1∑
m=N+1

λm. (5)

Proof 2 See Section “Proof of Theorem 2“ in Appendix
1.

2.3 Sufficiency of scalar side-information
The WZ quantizers with vector-valued decoder side-
information as considered in Theorem 1 are difficult to
design in practice. However, the following theorem
establishes that when CKLT is used and RD-WZQ
model applies for quantization of coefficients, a linear
transformation of the side-information vector can be
used to convert the vector side-information problem
into an equivalent scalar side-information problem.

Yahampath EURASIP Journal on Advances in Signal Processing 2012, 2012:78
http://asp.eurasipjournals.com/content/2012/1/78

Page 3 of 15



Furthermore, [[5], Section 6] shows that this result
applies in asymptotic sense to the SWC-HRSQ model as
well.
Theorem 3 Let the mean-zero vectors X ∈ RM1and

Y ∈ RM2be jointly Gaussian, and let T be the CKLT of X
given Y. Suppose that transform coefficients Um , m = 1,
. . ., M1, where U = TTX, are each compressed by an RD
optimal WZ quantizer relative to decoder side-informa-
tion Y. Then, the minimum MSE (MMSE) estimate ũm
(y) = E{Um|y} of Um given Y = y is a sufficient statistic
for decoder side-information for quantizing Um.
Proof 3 See Section “Proof of Theorem 3“ in Appendix 1.
Wyner-Ziv transform coding is a special case of more

general MT-TC where two or more terminals apply TC
to their respective inputs and transmit the quantized
outputs to a single decoder which exploits the inter-
source correlation to jointly reconstruct all the sources.
In this case, the problem is to optimally allocate a given
bit budget among all the terminals such that the total
MSE is minimized. However, the closed-from solution
to this problem appears difficult, due to the inter-depen-
dence of the encoders in different terminals. An iterative
descent algorithm is given in [8] for solving the Gaus-
sian MT-TC problem. Given a total bit-budget, the bit-
rate of the system is incremented by a small amount in
each iteration, and the optimal WZ-TC for each term-
inal is determined by fixing the encoders of all other
terminals and considering their outputs as decoder-side
information. The solution that gives the MMSE is
accepted and the iterations are repeated until the total
bit-budget is exhausted. While this algorithm, referred
to as the DKLT algorithm, is guaranteed to converge to
at least a locally optimal solution, there is no tractable
way to implement the quantizers implied by the final
solution since it is not practical to optimize a set of
near-optimal WZ quantizers in each iteration of this
algorithm. Note also that, DKLT requires joint decoding
of two vector sources.

3 Source-splitting based distributed TC
In general, designing a multi-terminal VQ is more diffi-
cult than designing a WZ-VQ, due to the mutual depen-
dence among the encoders. However, one could use
WZ-VQs to realize a multi-terminal VQ by using
source-splitting [12]. It is known that in the quadratic-
Gaussian case, source-splitting can be used to realize
any rate-pair in the achievable rate-region by only using
ideal WZ-VQs which correspond to the corner-points of
the achievable rate-region [[12], Section V-C], [15].
While the same optimality properties cannot be claimed
for source-splitting by linear transforms, the aforemen-
tioned observation still provides us the motivation to
take a similar approach in practically realizing the DTCs

which can operate at arbitrary rates, by using only WZ
quantizers.
A block diagram of the SP-DTC system is shown in

Figure 1. Let the total number of bits available for
encoding two jointly Gaussian vectors X1 ∈ RM1 and

X2 ∈ RM2 be B bits. The terminal 1 performs source

splitting by providing an approximation Y′
1 ∈ RN′

1 of

X1 at the rate B′
1(< B) bits/vector as decoder side-

information for WZ coding of terminal 2, where
N′

1 ≤ M1 . In a TC framework, the goal is to provide
the best (in MMSE sense) linear approximation of X1

as the decoder side-information. Therefore, Y′
1 is the

B′
1-bit approximation of a linear projection

U′
1 = T

′T
1 X1 , where T′

1 is a M1 × M1 unitary matrix.

Given the side-information Y′
1 at the decoder, the

terminal 2 quantizes a linear projection U2 = TT
2X2 of

X2 using B2(< B − B′
1) bits/vector, where T2 is a M2 ×

M2 unitary matrix. Let Y2 ∈ RN2 , be the quantized
value of U2, where N2 ≤ M2. Then, given the quantized
linear projections of both X1 and X2 available at the
decoder, the terminal 1 quantizes the a linear projec-
tion U′′

1 = T
′′T
1 X1 of X1 using B′′

1 = B − B′
1 − B2 bits/vec-

tor, where T′′
1 is a M1 × M1 unitary matrix. Let

Y′′
1 ∈ RN′′

1 be the quantized value of U′′
1 , where

N′′
1 ≤ M1 . In the receiver, each source vector is recon-

structed by a WZ decoder. The MMSE optimal recon-
structions for X1 and X2 are, respectively given by

X̂1 = E
{
X1|Y′′

1, V
}

and X̂2 = E {X2|V} , where

V =
(
Y′

1 Y2
)T . The total transmission rate for source X1

is thus B1 = B′
1 + B′′

1 bits/vector. The rates used by
terminals 1 and 2 in bits/sample are given by R1 = B1/
M1 and R2 = B2/M2, respectively.

Let U′
1 =

(
U′

1,1, . . . , U′
1,M1

)T , U′′
1 =

(
U′′

1,1, . . . , U′′
1,M1

)T

and U2 =
(
U2,1, . . . , U2,M2

)T . Also, let the bit-rates allo-

cated to quantizing these transform coefficients be

r′′
1 =

(
r′′
1,1, . . . , r′′

1,M1

)T , r′′
1 =

(
r′′
1,1, . . . , r′′

1,M1

)T , and

r2 =
(
r2,1, . . . , r2,M2

)T respectively, and define

r =
(
r′

1, r′′
1, r2

)T . Given a total of B bits for encoding

both X1 and X2, the design of a SP-DTC involves deter-
mining the values of the transforms T′

1 , T′′
1 , and T′′

2 , and
a bit allocation among the transform coefficients

U =
(
U′

1, U′′
1, U2

)T such that the total MSE

D (r) = E
{∥∥∥X1 − X̂1

∥∥∥2
+
∥∥∥X2 − X̂2

∥∥∥2
}

(6)
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is minimized. By writing the quantization MSEs of U′′
1,i

and U2,j as d′′
1,i

(
r′′
1,i, r′

1, r2
)
, and d2,j

(
r2,j, r′

1

)
, respectively,

i = 1, . . ., M1, j = 1, . . ., M2, the total MSE can be
expressed as

D(r) =
M1∑
i=1

d′′
1,i

(
r′′
1,i, r′

1, r2
)

+
M2∑
j=1

d2,j
(
r2,j, r′

1

)
. (7)

The bit allocation problem can now be stated as
follows:
Given a total bit-budget of B bits

min
r

D(r) (8)

subject to

2M1+M2∑
m=1

rm ≤ B,

rm ≥ 0, m = 1, . . . , 2M1 + M2,

where r =
(
r1, . . . , r2M1+M2

)T . The explicit solution of

this minimization problem is unfortunately intractable
due to the inter-dependence of the three transform
codes involved.
However, an explicit solution can be found for a variant

of this problem obtained by fixing B′
1 , B′′

1 and B2, so that
the number of bits allocated to each transform code is
fixed and it is only required to optimize the bit allocation

among the quantizers within each transform code. For
simplicity, we refer to this problem as the constrained
bit-allocation problem. In the following, an explicit solu-
tion to this problem is derived. Based on the result, we
then present a tree-search algorithm to solve the uncon-
strained problem (8). Under both RD-WZQ and SWC-
HRSQ models, the optimal transforms for Gaussian
sources are CKLTs. Therefore, we refer to the solution to
problem (8) as the SP-DKLT.

3.1 Solution to the constrained bit-allocation problem
3.1.1 RD optimal quantization

Let B′
1 , B′′

1, and B2 be fixed in Figure 1 and let the coeffi-
cient quantization be represented by the RD-WZQ model
(for components of U′

1 , this reduces to the non-distribu-
ted RD-optimal quantization). From Theorem 1, it follows
that the MMSE optimal transform (in the sense of provid-
ing the best linear approximation as decoder side informa-
tion for terminal 2) T′

1 is the KLT of X1. Let the

eigenvalues of
∑

X1 be λ′
1 =

(
λ′

1,1, . . . , λ′
1,M1

)
. Then, using

(2), the optimal bit allocation for U′
1,m can be given by

r′
1,m = ρm

(
λ′

1, B′
1, N′

1

)
, m = 1, . . . , M1. (9)

for some N′
1 ≤ M1 . Let the quantized value of U′

1,m be

Û′
1,m . We note that EU

′2
1,m = λ′

1,m for m = 1, . . ., M1 and

E
(
U′

1,m − Û′
1,m

)2
= d∗ (λ′

1, B′
1, N′

1

)
for m = 1, . . . , N′

1 . In

T2

WZ
Quantization

X2 ∈ R
M2 U2 ∈ R

N2

Terminal 2 Encoder

(Encoder)

Y
′

1
∈ R

N
′

1

Decoder

Y2 ∈ R
N2

Decoder

WZ
Decoder

Y
′

1
Y

′

1

MMSE
Estimator

T
′

1

T
′′

1

Quantization 

WZ
Quantization

X1 ∈ R
M1

U
′′

1
∈ R

N
′′

1

U
′

1
∈ R

N
′

1

Terminal 1 Encoder

(Encoder)

(Encoder)

X̂1

X̂2

Y
′′

1
∈ R

N
′′

1WZ
Decoder

MMSE
Estimator

Y
′

1
Y

′

1

V ∈ R
N

′

1
+N2

Figure 1 The proposed source-split transform coding (SP-DTC) system for two-terminal distributed quantization of two correlated
vectors.
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RD theoretic sense, the quantized value (up to a scaling
factor) of the mean-zero Gaussian variable U′

1,m can be

given by Y ′
1,m = U′

1,m + Z′
1,m , m = 1, . . . , N′

1 , where Z′
1,m

is a mean-zero Gaussian random-variable independent of
U′

1,m such that

EZ
′2
1,m =

λ′
1,md∗ (λ′

1, B′
1, N′

1

)
λ′

1,m − d∗ (λ′
1, B′

1, N′
1

) , (10)

see [[16], Section 10.3.2]. Therefore, we can write

Y′
1 = K

′(N′
1)T

1 X1 + Z′
1, (11)

where K
′(N′

1)
1

denotes the M1 × N′
1 matrix consisting

of first N′
1 columns of K′

1 . The covariance matrix of

“quantization noise” vector Z′
1 =

(
Z′

1,1, . . . , Z′
1,N′

1

)T
is

given by
∑

Z′
1

= diag
(
Z′

1,1, . . . , Z′
1,N′

1

)
. According to

(11), Y′
1 and X1 are jointly Gaussian, and it follows that

∑
Y ′

1
= K(N′

1)T
1

∑
X1

K(N′
1)

1 +
∑

Z′
1

. (12)

Furthermore, X2 and Y′
1 are jointly Gaussian with the

conditional covariance matrix

∑
X2|Y ′

1
=
∑

X2
−∑T

X1X2
K(N′

1)
1

∑−1
Y ′

1
K(N′

1)T
1

∑
X1X2

. (13)

Next consider TC X2 given Y′
1 as decoder side-infor-

mation. From Theorem 1, it follows that the

E
∥∥∥X2 − X̂2

∥∥∥2
is minimized by choosing T2 as the CKLT

of X2 given Y′
1 and by applying RD optimal WZ quanti-

zation to each element of U2 = TT
2X2 given decoder side

information Y′
1 based on a bit-allocation specified by

the eigenvalues of
∑

X2|Y ′
1
, λ2 =

(
λ2,1, . . . , λ2,M2

)
. The

optimal bit allocation for U2,m is given by

r2,m = ρm (λ2, B2, N2) , m = 1, . . . , M2, (14)

for some N2 ≤ M2. The resulting MSE is given by

D2
(
B′

1, B2
)

= E
∥∥∥X2 − X̂2

∥∥∥2
= N2d∗ (λ2, B2, N2) +

M2∑
m=N2+1

λ2,m. (15)

As before, the quantized value of U2 up to a scaling
factor, can be represented by [[8], Theorem 3],

Y2 = K(N2)T
2 X2 + Z2, (16)

where K(N2)
2 denotes the M2 × N2 matrix consisting of

first N2 columns of K2 and the quantization noise∑
Z2

= diag
(
Z2,1, . . . , Z2,N2

)
is a mean zero iid Gaussian

vector independent of X2. The covariance matrix of Z2

is given by
∑

Z2
= diag

(
Z2,1, . . . , Z2,N2

)
, where EZ2

2,m ,

m = 1, . . ., N2 are given by

EZ2
2,m =

λ2,md∗ (λ2, B2, N2)

λ2,m − d∗ (λ2, B2, N2)
. (17)

The covariance matrix of Y2 is∑
Y2

= K(N2)T
2

∑
X2

K(N2)
2 +

∑
Z2

. (18)

Therefore X1 and V =
(
Y′

1 Y2
)T are jointly Gaussian

with the cross-covariance matrix

∑
X1|V =

∑
X1

−∑T
V X1

∑−1
V

∑
V X1

, (19)

where

∑
V X1

=

(
K(N′

1)
1

∑
X1∑

X2

∑
X2X1

)

and

∑
V

=

⎛
⎝∑

Y ′
1

K(N′
1)

1

∑
X1X2

∑T
X2∑

X2

∑
X2X1

K(N′
1)T

1

∑
Y2

⎞
⎠ .

Finally, consider quantizing X1, given

V =
(
Y′

1 Y2
)T ∈ RN′

1+N2 as the decoder side-information.

As before, E
∥∥∥X1 − X̂1

∥∥∥2
is minimized by choosing T′′

1 as

the CKLT of X2 given V, and RD optimal WZ quantiza-
tion of each element of U′′

1 = T
′′T
1 X1 given V, based on a

bit-allocation specified by the eigenvalues of
∑

X1|V ,

λ′′
1 =

(
λ′′

1,m, . . . , λ′′
M1

)T . The bit rate allocated to quantiz-

ing U′′
1,m given by

r′′
1,m = ρm

(
λ′′

1, B′′
1, N′′

1

)
, m = 1, . . . , M1, (20)

for some N′′
1 ≤ M1 and the resulting MSE is

D1
(
B′

1, B′′
1, B2

)
= E

∥∥∥X1 − X̂1

∥∥∥2
= N′′

1d∗ (λ′′
1, B′′

1, N′′
1

)
+

M1∑
m=N′′

1+1
λ′′

1,m. (21)

Given a rate tuple
(
B′

1, B′′
1, B2

)
, the MMSE achievable

with a SP-DKLT code for two jointly Gaussian vectors
is given by

D
(
B′

1, B′′
1, B2

)
= D1

(
B′

1, B′′
1, B2

)
+ D2

(
B′

1, B2
)

. (22)

3.1.2 High-resolution scalar quantization and SW coding
Due to Theorem 2, the expressions for bit-allocations
given by (9), (14) and (20) applies to SWC-HRSQ
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model as well. However, the resulting MSE and hence
the quantization noise variances are different to those
of the RD-WZQ model. More specifically, since the
decoder side-information in a SP-DTC depends on
quantization noise of the other terminals, the optimal
transforms T2 and T′′

1 and the associated bit allocations
obtained with the SWC-HRSQ model are different to
those obtained with the RD-WZQ model. In order to
make the problem tractable, we assume that the quan-
tization noise of SWC-HRSQ model also follows (11)
and (16) (for a discussion on the validity of this
assumption, see [17]). This assumption essentially
allows us to compute the conditional covariance

matrices
∑

X2|Y ′
1
and

∑
X1|V as in the previous case,

and then apply (9), (14) and (20) to find the optimal
transforms and the bit-allocations. However, due to
(27), the quantization noise variance in (10) in this
case is given by

EZ
′2
1,m =

(
πe/6

)
λ′

1,md∗ (λ′
1, B′

1, N′
1

)
λ′

1,m − (
πe/6

)
d∗ (λ′

1, B′
1, N′

1

) . (23)

A similar expression exists for the quantization noise
variance in (17).

3.2 A tree-search solution to the unconstrained bit-
allocation problem
We note that the optimal solution to the unconstrained
problem defined in (8) corresponds to the MMSE solu-
tion of the constrained problem over the set of rate-
tuples S =

{(
B′

1, B′′
1, B2

)
: B′

1 ∈ (0, B) , B′′
1 ∈ (0, B) , B2 ∈ (0, B) , B′

1 + B′′
1 + B2 ≤ B

}. This set
is shown in Figure 2. One approach to locating the
MMSE solution is to search over an appropriately dis-
cretized grid of points inside S . As we will see, even
though an exhaustive search on a fine grid can be prohi-
bitively complex, a much simpler constrained tree-
search algorithm exists which can be used to locate the
required solution with a very high probability.
The proposed algorithm is a generalization of a class

of bit-allocation algorithms in which a small fraction ΔB
of the total bit-budget B is allocated to the “most deser-
ving” quantizer among a set of quantizers in an incre-
mental fashion, until the entire bit-budget is exhausted
[[4], Section 8.4]. Unfortunately, this type of a greedy
search cannot guarantee that the final solution is overall
optimal and can yield poor results in our problem
where the bit allocation among three sets of dependent
quantizers must be achieved. On the other hand, if the
increment ΔB is chosen small enough, a near-optimal
solution can be found by resorting to a tree-search.

S

B
′

1

B
′′

1

B2

B

B

B

0

B
′

1
+ B

′′

1
+ B2 = B

Figure 2 The solution space S for the unconstrained bit-allocation problem. The tree-search algorithm uses a search-grid of regularly
spaced points (i.e., a cubic lattice) with a separation of ΔB inside S .
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Even though a full tree-search is intractable, a simple
algorithm referred to as the (M, L)-algorithm [18] exists
for detecting the minimum cost path in the tree with a
high probability. We use this insight to formulate a tree-
search algorithm for solving the unconstrained bit allo-
cation problem, in which a set of constrained bit alloca-
tion problems are solved in each iteration.
In order to describe the proposed tree-search algo-

rithm in detail, let ΔB be the incremental amount of
bits to be allocated in each step of the search, where 0
<ΔB ≪ B. The algorithm is initialized by setting(
B′

1, B′′
1, B2

)
= (0, 0, 0) , i.e., the origin in Figure 2. Now

if we are to allocate ΔB bits to only one of the three
transform codes T′

1 , T′′
1 or T2, then there are three pos-

sible choices for the rate-tuple
(
B′

1, B′′
1, B2

)
, namely (ΔB,

0, 0), (0, ΔB, 0), and (0, 0, ΔB). For each of these
choices, we can explicitly solve the constrained bit allo-
cation problem as described in the previous section and
find the MMSE solution. Each of these candidate solu-
tions can be viewed as a node in a tree as shown in Fig-
ure 3. The root node of the tree corresponds to a SP-
DTC of rate 0, and a node in the first level of nodes
obtained in the first iteration of the algorithm corre-
sponds to a SP-DTC of rate of ΔB bits per source pair
(X1, X2). In the second iteration of the algorithm, we
allocate ΔB more bits to each of the three candidate SP-
DTCs (but to one of the SP-DTCs at a time) in the first
level of nodes. Note that, for each SP-DTC we can allo-
cate ΔB bits in three different ways, i.e., ΔB bits can be
added to either B′

1 , B′′
1, or B2. This requires the solution

of three constrained bit allocations problems for each of
the 3 nodes in the first-level. As a result, the tree will be
extended to a second level of 32 nodes, in which each
node corresponds to a SP-DTC of 2ΔB bits per source-
pair, as shown in Figure 3. We can repeat this proce-
dure, allocating ΔB bits to each of terminal node of the
tree in a given iteration, until all B bits are exhausted.
After the final iteration, the tree would consist of L =
⌈B/ΔB⌉ levels with 3L nodes in the last level (terminal
nodes). Each terminal node corresponds to a candidate
SP-DTC of rate B, and rate-tuples of these SP-DTCs lie
on the plane B′

1 + B′′
1 + B2 = B in Figure 2. The MMSE

terminal node of the tree is the optimal solution to the
unconstrained bit allocation problem, provided that the
latter solution is on the search-grid. If ΔB is chosen
small enough, then we can ensure that the optimal solu-
tion is nearly on the search-grid. Suppose that, in each
iteration, the algorithm saves the MSE of the solution to
the constrained bit-allocation problem associated with
each node. In theory, the optimal solution can be found
by an exhaustive tree-search, using the MSE of a node
[given by (22)] as the path-cost. In order to practically
implement the tree-search, we use the (M, L)-algorithm,
in which the parameter M can be chosen to reduce the
complexity at the expense of decreased accuracy (i.e.,
the probability of detecting the lowest cost path in the
tree). In the (M, L) algorithm [[18], p. 216] for a tree of
depth L, one only retains the M best (lowest MSE)
nodes in each iteration. When M = 1 we have a comple-
tely greedy search. On the other hand when Mn = 3n in

(0, 0, 0)

(ΔB, 0, 0)

(2ΔB, 0, 0)

(ΔB,ΔB, 0)

(ΔB, 0,ΔB)

(0,ΔB, 0)

(0, 0,ΔB)
(ΔB, 0,ΔB)

(0,ΔB,ΔB)

(0, 0, 2ΔB)

(ΔB,ΔB, 0)

(0,ΔB,ΔB)

(0, 2ΔB, 0)

Figure 3 Bit allocation tree with the values of the rate-tuple
(
B′

1, B′′
1, B2

)
after two iterations of the tree-search algorithm.

Yahampath EURASIP Journal on Advances in Signal Processing 2012, 2012:78
http://asp.eurasipjournals.com/content/2012/1/78

Page 8 of 15



the nth iteration, we have a full-tree search which has a
complexity that grows exponentially with the iteration
number. When M (1 ≤ M ≤ 3L) is a prescribed constant,
the complexity is linear in M, independent of the num-
ber of iterations. In obtaining the simulation results pre-
sented in Section 4, M = 27 and L = 135 (ΔB = 0.2)
were found to be sufficient to obtain near optimal
results. For example, it was observed that even for M =
81 and L = 405, nearly the same result was obtained.

4 Numerical results and discussion
Source model A: Let the components of X1 be M1 con-
secutive samples of a first-order Gauss-Markov process
with a unit-variance and the correlation coefficient |r| <
1, i.e., X1,m = rX1,(m-1) + Zm , m = 2, . . ., M1, where Zm,
m = 1, . . ., M1 are mean-zero iid Gaussian variables

such that EZ2
m = 1 − ρ2 . The auto-covariance matrix∑

X1 is a Teoplitz matrix with the first row(
1, ρ, ρ2, . . . , ρM1−1

)
. Now define the components of X2

to be noisy observations of the components of X1, i.e.,
X2,m = gX1,m + Wm, where |g| < 1 and Wm is a mean-
zero, iid Gaussian variable with EW2

m = 1 − γ 2 , m = 1, .

. ., M1 (M2 = M1). It follows that,
∑

X2
is a Teoplitz

matrix with the first row
(
1, γ 2ρ, γ 2ρ2, . . . , γ 2ρM1−1

)
.

Furthermore, the cross-covariance matrix∑
X1X2

= γ 2
∑

X1
. Note that X1 and X2 are not statisti-

cally similar and the components of X1 are more corre-
lated than those of X2.
Source model B: Consider a spatial Gaussian random

field in which the correlation function decays with dis-
tance d according to the squared exponential model
[19]. We define the random vectors X1 and X2 to be
observations picked-up by a pair of sensor arrays placed
in this random filed. In this case, the auto-covariance

matrix of X1 is given by
[∑

X1

]
ij

= exp
{
−(

αdij
)2
}
,

where a is a constant and dij is the distance between X1,

i and X1,j. The auto-covariance matrix of X2 also has a
similar form. For simplicity assume that the sensors in
each array are placed on a M × M square grid of unit
spacing (i.e., M1 = M2 = M2), the two arrays are on par-
allel planes separated by a distance r, and the two grids
are aligned so that the distance between X1i and X2i is r
for all i. With this setup, the distance between X1i and

X2j is
√

d2
ij + r2 , and the cross-covariance matrix is given

by
[∑

X1X2

]
ij

= θ exp
{
−(

αdij
)2
}
, where θ = exp {- (ar)

2}. This sensor structure ensures that X1 and X2 are sta-

tistically similar. However,
∑

X1X2
can be chosen

independently (by choosing array separation r) of
∑

X1

and
∑

X2
.

4.1 RD performance
We compute the rate-pairs (R1, R2) achievable with a
SP-DKLT code for a given a total MSE D, by fixing R1

(or R2) and then searching for minimum R2 (or R1)
required to achieve the MSE D [given by (6)]. The
rate-pairs achievable for D = 0.01 with SP-DKLT cod-
ing of vectors from source model A with r = 0.9, g =
0.9, are plotted in Figure 4. These values of r and g
result in a source cross-covariance matrix with the lar-
gest element 0.9. In Figure 4, the curve “SP-DKLT (X1

split)” corresponds to a system in which the input to
terminal 1 (which applies source splitting) is X1 as
shown in Figure 1. The curve “SP-DKLT (X2 split)”
corresponds to a system in which the input to the
terminal 1 is X2. Note that the two curves are not
symmetric in rates and they coincide if R1 and R2 are
inter-changed in one of the curves. This is because X1

and X2 have different auto-covariance matrices, and
hence inter-changing the rates is equivalent to inter-
changing the terminals. Importantly, this result indi-
cates that when the two sources are not statistically
identical, which source is chosen for splitting does not
affect the SP-DKLT performance. Table 1 lists the best
bit allocations found by the tree-search algorithm for
SP-DKLT codes shown in Figure 4. Note that, for the
same (B1, B2), the rate-split between B′

1 and B′′
2 when

X1 is applied to the terminal 1 is not identical to that
when X2 is applied to the terminal 1.
Figure 4 also shows the rate region achievable if each

source is independently compressed using the KLT (i.e.,
only intra-vector correlation is utilized), labeled IKLT,
and the OPTA lower bound for distributed TC pre-
dicted by the iterative DKLT algorithm [8]. The perfor-
mance of both distributed and non-distributed TC of
source model A degrades as r decreases, since both
auto- and cross-covariance matrices of X1 and X2 are
functions of r. Next consider the source model B for
which the lowest achievable rate-pairs corresponding to
D = 0.005 are plotted in Figure 5. The source parameter
a = 0.32 results in auto-covariance matrices whose lar-
gest off-diagonal element is 0.9. Also recall that θ is the
largest element in the source cross-covariance matrix.
Note that changing θ only affects the cross-covariance
matrix, and hence has no effect on the best achievable
rates for independent coding of the two sources. On the
other hand, as θ increases, the rates achievable with dis-
tributed coding do improve. Since in source model B,
the two sources are statistically similar, the curves in
Figure 5 are symmetric in rates and the optimal bit
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allocation does not depend on which source is chosen
for splitting.
The RD performance in Figures 4 and 5 indicate that

SP-DKLT codes can significantly outperform IKLT
codes at all rates when there is sufficient correlation
between the two distributed sources. The performance
of SP-DKLT coding necessarily approaches OPTA
(DKLT) bound when either R1 or R2 is sufficiently high.
That is, the terminal with the higher bit rate can inde-
pendently transform code its input with negligible dis-
tortion, and the other terminal can then apply WZ-TC
at the minimum rate achievable with “almost unquan-
tized” decoder side-information. However, for both
source-models the rate-region achievable with source-
splitting is strictly inside that of DKLT. In other words,
there are some rate-pairs inside the DKLT rate-region
for a given MSE D, which cannot to be achieved by a
SP-DKLT code. A closely related issue is that, for a
range of values of (R1, R2), the sumrate R1 + R2 of SP-
DKLT codes remains constant and reaches its mini-
mum. For example, it can be seen from Figure 4 and
Table 1 that the sum-rate is about 4.125 bits when the
rate of X1 is in the range 1.375 - 2.5 bits/sample. From

Table 1, it can be seen that when the sum-rate is greater
than its minimum value, the optimal SP-DKLT code
approaches a WZ transform code, i.e., no source-split-
ting occurs. This situation, which also exists in Figure 5,
suggests that optimal SP-DKLT codes for the sum-rate
at which a given D can be achieved, are equivalent to
time-sharing [12] of two “corner points”. Figure 6 illus-
trates this situation for optimal SP-DKLT codes at D =
0.005 for source model B (θ = 0.9 in Figure 5). It should
however be noted that, unlike source-splitting, time-
sharing between the two terminals requires synchroniza-
tion of their encoders [11].

4.2 Design examples
In this section, we focus on the practical design of SP-
DKLT codes for a given pair of rates (R1, R2) based on
both scalar and block-quantization. RD-WZQ model
used in Section 3.1.1 implies infinite block-length WZ-
VQ of each coefficient. A practically realizable approach
to block WZ quantization is SWC-TCQ [20]. Experi-
mental results obtained with LDPC codes of block
length up to 106 bits and TCQs up to 8,192 states are
presented in [20] for quadratic Gaussian WZ

Figure 4 Comparison of rate-regions achievable with different TC approaches in quantizing 16-dimensional vectors (M1 = M2 = 16) of
source model A (r = 0.9, g = 0.9). “SP-DKLT (X2 split)” refers to the case when X2 is used as the input to terminal 1 (and hence transmitted at
rate R1) which applies source-splitting.
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quantization, which indicate that performance very close
to the theoretical limit can be achieved with SWC-TCQ.
Motivated by these results, we aim to implement SP-
DTCs which can approach theoretical performance pre-
dicted in Section 3.1.1 using TCQ and SW coding for
encoding transform coefficients. However, the SWC-
TCQ design procedure followed in [20] is to first design
a TCQ whose MSE satisfies a constraint (by choosing a
sufficiently high rate) and then to estimate the output
conditional entropy (which is the target rate of the SW
code) of the resulting TCQ. This is sufficient for verify-
ing the achievable rate pairs for a given MSE which is
the goal of [20]. Our problem is different in that the
rate of the SW code is specified by the solution to the
bit-allocation problem and our goal is to design a TCQ

which minimizes the MSE, subject to a constraint on
the output conditional entropy. This requires an alterna-
tive formulation of the design procedure, which we refer
to as CEC-TCQ. In previous work on non-distributed
quantization, entropy constrained TCQ (EC-TCQ) has
been investigated in [21-24]. CEC-TCQ is a modification
of EC-TCQ in [21,22] to accommodate block SW-cod-
ing of the TCQ output relative to a decoder side-infor-
mation sequence. Our formulation of CEC-TCQ follows
the supersetentropy formulation of EC-TCQ in [22].
Suppose that a sequence of source samples {Un Îℝ}

has to be quantized, given that the sequence {Yn Îℝ}, is
available at the decoder as side-information, where n =
1, 2, . . . denotes the discrete-time. Similar to an ordin-
ary TCQ [25], a CEC-TCQ uses a size 2RTCQ+1 scalar

Figure 5 Comparison of rate-regions achievable with different TC approaches in quantizing 16-dimensional vectors (M1 = M2 = 16) of
source model B for a = 0.32 and different values of θ.
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codebook to quantize the input sequence U1, U2, . . .,
into a RTCQ bits/sample output sequence Û1, Û2, . . . .
However, CEC-TCQ output satisfies the additional
property that the conditional entropy H (Ûn|Yn) = E{-
log2 P (Ûn|Yn)} ≤ R for some given R. It follows from
[9] that if the CEC-TCQ output is SW-coded relative to
the decoder side-information sequence {Yn} then LR bits
are sufficient to (almost) losslessly transmit a sequence
of L source samples as L ® ∞. The optimal CEC-TCQ
minimizes the MSE E{(Un - Ûn)

2}, subject to the con-
straint E{- log2 P (Ûn|Yn)} ≤ R, or equivalently, mini-
mizes the Lagrangian

J = lim
L→∞

L∑
n=1

[
E
{(

Un − Ûn

)2
}

+ βE
{
−log2P

(
Ûn|Yn

)}]
(24)

where b > 0 is the Lagrange multiplier. This implies
that, given a specific sequence of input samples u1, u2, .
. ., the CEC-TCQ encoder should use the Viterbi algo-
rithm based on the path-cost function

∑
n

[(
un − ûn

)2 + βE
{−log2P

(
ûn|Yn

)}]
. (25)
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Figure 6 The optimal SP-DKLT codes at D = 0.005 for source model B with a = 0.32 and θ = 0.9. The minimum sum-rate is 2.5 bits/
sample, which can also be achieved by time sharing of codes C1 and C2.

Table 1 Bit allocations found by the tree-search
algorithm for 16-dimensional SP-DKLT coding of source
model A (r = 0.9, g = 0.9)

X1 Split X2 Split

X1 X2 X2 X1

B’1 B”1 B1 B2 B B’1 B”1 B1 B2 B

0 14.8 14.8 96 110.8 0 22 22 96 118

0 15 15 80 95 0 22.4 22.4 80 102.4

0 15.8 15.8 64 79.8 0 22.6 22.6 64 86.6

0 19 19 48 67 0 24.4 24.4 48 72.4

0 22 22 44 66 0 25.6 25.6 44 69.6

3.2 22.8 26 40 66 0 26.8 26.8 40 66.8

10 20 30 36 66 0 30 30 36 66

16.6 16.4 33 33 66 2.8 30.2 33 33 66

18.6 15.4 34 32 66 4.2 29.8 34 32 66

23.2 12.8 36 30 66 7.6 28.4 36 30 66

34.2 5.8 40 27.2 67.2 17.4 22.6 40 26 66

44 0 44 25.8 69.8 32 12 44 22 66

48 0 48 24.4 72.4 43.8 4.2 48 19.4 68.4

64 0 64 22.6 86.6 64 0 64 16 90

80 0 80 22.2 102.2 80 0 80 15.2 95.2

96 0 96 22 118 96 0 96 14.8 110.8
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In a rate RTCQ TCQ, each codeword ck ,
k = 1, . . . , 2RTCQ+1 , in the codebook is labeled with
RTCQ-bit binary string [25]. Let bi , i = 1, . . . , 2RTCQ be
these binary labels. Then, to compute (25), the cost bE{-
log2P (bi|Y)} must also be stored for each binary label,
where Y is the random variable representing the decoder
side-information. For a fixed value of b, we can use a
slight modification of the algorithm in [21] for optimiz-
ing the CEC-TCQ codebook, by replacing the codeword
entropies E{- log2P(bi)} by the conditional entropies E{-
log2 P (bi|Y)}, and by using a training sequence of (Un,
Yn) pairs. In order to approximate the expectations by
sample averages computed from training data, the side-

information variable Y is discretized to Ŷ ∈ {η1, . . . ηY } ,
where Y is a large enough positive integer. Then E{-
log2 P (B = bi |Y)} can be approximated by

Ĥ (bi) = −
Y∑

k=1
log2

[
P
(
B = bi|Ŷ = ηk

)]
P
(
Ŷ = ηk|B = bi

)
(26)

where B ∈ {
b1, . . . , b2RTCQ

}
is the binary-labeled output

of the TCQ. Given a TCQ code-book, the probabilities
P(B = bi|Ŷ = hk) and P(Ŷ = hk|B = bi) can be estimated
using the training set [it is sufficient to estimate pi, k =
P(B = bi, Ŷ = hk), k = 1, . . .Y , i = 1, . . . , N ]. To com-
plete the design, it is necessary to search for the value
of b for which E{- log2 P (Ûn |Yn)} ≈ R by repeating the
codebook optimization for an appropriately chosen
sequence of b values.
For block WZ-code designs, the transforms and the

bit allocations are found by RD-WZQ model (Section
3.1.1) and WZ quantizers are implemented using CEC-
TCQ followed by binary SW coding. More specifically,
the rate found by the bit allocation algorithm for each
transform coefficient is used as the conditional entropy
constraint in the design of a CEC-TCQ for that coeffi-
cient. As described in Section 2.3, the CEC-TCQ designs
are based on scalar-side information obtained by a linear
transform of the vector side-information at the decoder,
see Theorem 3. All CEC-TCQ designs are based on the
8-state trellis used in JPEG2000 [[26], Figure 3.16]. For
trellis encoding and decoding, a sequence length of 256
source samples has been used. For design and testing
quantizers, sample sequences of length 5 × 105 have
been used. Since, the main focus this paper is the design
of transforms and the quantizers, we assume ideal SW
coding of the binary output of each CEC-TCQ, so that
our results do not depend on any particular SW coding
method. In a practical implementation (e.g., [20]), near
optimal performance can be obtained by employing a
sufficiently long SW code (note that sequence length for
SW-coding can be chosen arbitrary larger than the
sequence length used for TCQ encoding). This type of
coding is well suited for applications such as distributed

image compression, where the coding is inherently
block-based.
We also consider SP-DKLT code designs based on

scalar quantization. In this case, the transforms and bit
allocations are found by using the SWC-HRSQ model
(Section 3.1.2). While it is possible to use the step-size
predicted by SWC-HRSQ model to design uniform
quantizers, we found that such quantizers in reality do
not satisfy the required entropy constraint at lower
rates. We instead use conditional entropy constrained
scalar quantizers (CEC-SQ), designed by modifying the
algorithm in [27] to accommodate a conditional entropy
constraint similar to CEC-TCQ approach above.
The reconstruction signal-to-noise ratio (RSNR) [with

MSE as given by (6)] of SP-DKLT code designs for
source model B is shown in the rows labeled Design in
Table 2 where SP-DKLT/CECSQ and SP-DKLT/
CECTCQ refer to scalar quantization and TCQ based
designs respectively. The rows labeled Analytical show
the performance predicted by the SWC-HRSQ and RD-
WZQ models upon which the transforms and bit-alloca-
tions are based (note however that the performance pre-
dicted by SWC-HRSQ model is not necessarily an
upper-bound for CEC-SQ designs which are not con-
strained to be uniform quantizers). We compare the
performance of our SP-DKLT code designs with IKLT
codes for which the bit-allocations are obtained by using
either entropy coded high-rate quantization model (for
scalar quantizer design) [[4], Section 9.9] or RD-optimal
quantization model (for block quantizer design) [[16],
Section 10.3.3] for Gaussian variables. The IKLT codes
with scalar quantization have been implemented by
using entropy constrained scalar quantizers (EC-SQ)
while those with block quantizers have been implemen-
ted by using EC-TCQ [23], where we assume ideal
entropy coding of the quantizer outputs. In Table 2,

Table 2 RSNR (in dB) of KLT-based transform code
designs for quantizing 16-dimensional vectors (M1 = M2

= 16) of source model B (a = 0.32, θ = 0.9) at R1 = R2 = R
bits/sample

R IKLT SP-DKLT

(bits/sample) EC-SQ EC-TCQ CEC-SQ CEC-TCQ

0.5 10.3 11.7 12.4 14.0 (Analytical)

10.3 11.0 11.6 12.7 (design)

1 16.6 18.0 19.1 20.6

16.4 17.3 18.6 19.6

1.5 21.6 23.0 23.8 25.6

21.7 22.5 23.3 24.4

2 25.7 27.1 28.2 29.8

25.2 26.6 27.8 28.6

Analytical values refer to SNR of the quantization model assumed for
determining the optimal transforms and the bit-allocation
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IKLT/ECSQ and IKLT/ECTCQ respectively refer to
these designs.
From a practical view point, the use of DCT instead of

KLT is interesting [26]. We therefore consider the
design of SP-DTCs based on the DCT, referred to as
source-split distributed DCT (SP-DDCT) codes. Since
DCT is a fixed transform, we only need to optimize the
bit allocations. To do this, we assume that DCT is
approximately a decorrelating transform for Gaussian
vectors [4]. Then, the bit-allocations given by (9), (14),
and (20) are still valid provided that the eigenvalues in
these expressions are replaced by the variances of the
corresponding DCT coefficients. The rest of the design
procedure is the same as that with SP-DKLT. The
RSNR of DCT based designs are presented in Table 3
(again, the performance predicted by SWC-HRSQ
model is not an upper bound for corresponding practi-
cal codes). The results show that, for this particular
source model, even the scalar quantization based SP-
DDCT codes outperform TCQ-based IDCT codes.

5 Concluding remarks
Rate-distortion analysis and experimental results
demonstrate that SP-DTC is a promising practical
approach to implementing distributed VQ of high-
dimensional correlated vectors. The comparisons shown
in Table 2, as well as similar comparisons for source
model A and the source model in [[8], Example 6], indi-
cate that these codes can substantially outperform the
independent transform codes, when there is sufficient
inter-vector correlation. This approach has also been
demonstrated to be effective for DCT-based systems.
Therefore, the proposed approach can be potentially
used in applications such as stereo image compression
when inter-camera communication is impractical. Our
RD analysis however indicates that the achievable rate-
region of SP-DKLT codes for jointly Gaussian sources is

strictly inside that predicted by the DKLT of [8]. An
interesting avenue of future work is to find implementa-
ble distributed transforms codes which can achieve the
rate-pairs below the “time-sharing” line in Figure 6.
Another issue is the extension of the proposed approach
to more than two vector sources. In principle, source-
splitting can be easily applied to more than two sources.
However, with more than two vector sources, the com-
plexity of the bit-allocation will be significantly higher.

1 Appendix
1.1 Proof of Theorem 2
The optimality of CKLT is proved in [5]. To prove the
optimality of the bit allocation, consider high-rate scalar
quantization of the transform coefficient Um and ideal
SW coding of the quantizer output Ûm at the rate rm =
H (Ûm |Y) bits/sample, m = 1, . . ., M1, where H (·|·)
denotes the conditional entropy [16]. In this case, the
asymptotically optimal scalar quantizer for each coeffi-
cient is known to be uniform [5]. For high-rate uniform
quantization, H (Ûm|Y) ≈ h(Um|Y) - log2(Δm), where Δm

is the quantizer step-size and h(·|·) is the conditional dif-
ferential entropy [[16], Section 8.3]. Since the condi-
tional variance of the transform coefficient Um, given

the side-information Y is E
{
U2

m|Y} = λm , and (Um, Y)
are jointly Gaussian, it follows that h(Um|Y) = (1/2) log2
(2πelm) [16], and hence �m =

√
2πeλm2−rm . Therefore,

the MSE of high-rate uniform quantization followed by
ideal SW coding of Um is

dSWC−HRSQ
m =

�2
m

12
=
(πe

6

)
λm2−2rm . (27)

Since (27) and (1) are the same within a constant fac-
tor of πe/6 (which is identical for all transform coeffi-
cients), it is easy to verify that the optimal bit-allocation
solution under SWC-HRSQ model is also given by (2).
However, the MSE of mth coefficient in this case is

dm =
(πe

6

)
λm2−2ρm

=
{(

πe
6

)
d∗ (λ, B, N) , m = 1, . . . , N

λm, m = N + 1, . . . , M

(28)

and hence the overall MSE is given by (5). Further-
more,

�m = � =
√

(2πe) d∗ (λ, B, N)

for m = 1, . . ., N.

1.2 Proof of Theorem 3
For jointly Gaussian and mean-zero X and Y, there
exists a matrix A and a mean-zero Gaussian vector W1

independent of Y such that X = AY + W1, where

Table 3 SNR (in dB) of DCT-based transform code designs
for quantizing 16-dimensional vectors (M1 = M2 = 16) of
source model B (a = 0.32, θ = 0.9) at R1 = R2 = R bits/
sample

R IDCT SP-DDCT

(bits/sample) EC-SQ EC-TCQ CEC-SQ CEC-TCQ

0.5 7.9 9.1 11.7 12.6 (Analytical)

8.0 8.4 11.0 12.0 (design)

1 11.9 13.2 15.9 17.8

11.9 12.6 16.6 17.0

1.5 15.3 16.8 19.7 21.9

15.3 16.1 20.5 21.3

2 18.9 20.3 23.6 25.6

18.7 19.4 24.5 25.1

Analytical values refer to SNR of the quantization model assumed for
determining the bit-allocation.
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∑
W1

=
∑

X|Y = T�TT ,
∑

W1
=
∑

X|Y = T�TT , and Λ is

the diagonal matrix of eigenvalues of ∑X|Y. Furthermore
U = TTAY + W2, where W2 = TT W1 is an uncorre-

lated Gaussian vector since
∑

W2
= TT ∑

W1
T = � (note

that for CKLT, T-1 = T). Therefore ∑U|Y = Λ. The
MMSE estimate of U given Y is Ũ = E{U|Y} = TTE{X|
Y} = TTAY. Thus, U = Ũ + W2 and ∑U|Ũ = Λ, and it
follows that Ui is independent of Ũj if j ≠ i and var(Ui|
Ũi) = var(Ui |Y), where var(·|·) denotes the conditional
variance. Now, since h(Ui|Y) = h(Ui| Ũi), we conclude
that Ũi is a sufficient statistic [16] for decoder side-
information Y in WZ quantization of Ui.
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