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ABSTRACT detection with high probability by a distance decoder. Sations

demonstrate the validity of our analysis and show that smallm-
ber of measurements provides satisfactory results in ipeacti-

nally, results also show that our method outperforms mettaded
on random walk message gathering algorithms in terms otteée
sensor detection.

We consider the problem of failure detection in sensor neksvand
we propose a new distributed detection algorithm based augsr
Testing. We examine the presence of defective sensors biogmp
ing tests over locally gathered sensor measurements. arestspre-
sented with binary messages that sensors exchange ovemdiss
tion rounds using a gossip algorithm. We propose a novelgtitib-
tic message design that allows the use of a low complexitpdiec 2. GROUP TESTING FRAMEWORK
Assuming that the maximum number of defective sensors ishmuc ) ] ]
smaller than the total number of sensors, we provide a boorttee A Sensor network is defined as a connected acyclic gpk-
number of linearly independent messages required for zesahd (V' €), where the vertice¥ = {s;}i_, represent th& sensors and
detection of single or multiple defective sensors. Finaiyulations ~ the edge< denote the transmission links between them. Nonzero
confirm that the proposed method outperforms algorithmedas ~ €dge values; ; € £ denote an existing communication link be-
random walk message gathering in terms of detection a@urac tween Sensors; and Sj. We assume that the Sensors measure a
smooth physical phenomena (for instance, temperature)tiaad
measurements of non-defective neighbor sensors do net diff-
nificantly. Further, we assume that at mést< S sensors in the
network can be defective.

1. INTRODUCTION The sensors perform low-cost boolean algebra operations. |

this work, the termtestdenotes an experiment performed on a subset

Technology development has caused the emergence of simgle aof sensors to detect a set of defective sensors. We mark ttieipa
cheap sensors and led to the deployment of sensor networks. pgation of sensors in tests with a binaest matrixW of size B x S,
network signal analysis is in general performed on sensasare-  where B is the number of tests. The test matrix is obtained by a
ments, which may however be inaccurate. It becomes impgaidan row-wise gathering of test participation indicators. Daf;. and
detect defective sensors in networks, so that their er@eea- W. ; denote the-th test matrix row {-th test indicator vector) and
surements do not impact the performance of signal analygi-a  column (participation of the senssr in tests), respectively. The re-
cations [1]. One of the main frameworks that detects defeal-  sults of B tests are represented by tiest outcomeectorg € FZ.
ements by performing experiments on pools of items is knos/n aDue to the boolean operations performed at sensors, nohesro

Group Testing (GT) [2], [3]. Most of the GT decoding algorits  outcomes occur when at least one defective item particpatthe
are based on the idea of detection by elimination performed b test.

Index Terms— Detection, Group Testing, Distributed algo-
rithms, Sensor Network

central entity. However, sensor networks have usually auhyo ar- Group Testing is a centralized detection method that iiesti
chitecture with loose coordination, which raises incregsiemand  defective sensors in &-dimensional binary vectaf given the test
for collaborative data processing solutions. matrix W and the test outcome vectgr Commonly, deterministic

In this paper, we design a novel distributed defective sedeo  methods design the tests in advance and perform the detéctied
tection method based on GT ideas. We assume that the number @ an elimination methdd However, when a priori test designs are
defective sensors is much smaller than the total numberrsfogse  not feasible, for instance in a large scope sensor netwidekneces-
in the network. We locally gather sensor measurements asigrde sary to apply the probabilistic GT approach [5]. The testountes
sets of probabilistitestswithin sensor clusters that examine sen- are computed as = W ®f, where the element-wise boolean matrix
sors’ defectiveness. The test outcome has a binary valuerewdn  multiplication operator® represents the combination of the bitwise
nonzero value denotes the participation of a defectivemenghe  OR and the bitwise addition operator. The binary elementsath-
test. The test functions and their outcomes together forssag®es  abilistic test matrix are created as:
that are propagated through the network by a gossip algorith- ) -
mor mongering) [4] following a pull protocol. When a nodeeaes wi ;= { L, with probabilityq , 1)

a novel message from its neighbor, it combines it with its ones- ’ 0, otherwise.

sage. The newly formed message is sent with some probaihitite
next transmission round. Due to the probabilistic testgieand the
message dissemination protocol, a simple distance decadebe

used to detect the subset of defective sensors. We providpger 1From the total set of items, non-defective items are eliteiddrom the
bound on the number of messages per network clusters thakass zero valued test outcomes.

For properly selected parametgrthis design createdisjunctma-
trices with high probability [5]. The disjunct property emss that




any test matrix column does not fall in the sub-space formeainy
union of K other columns. The test matrix (&, ¢)-disjunct if these
vectors differ in at leastvalues, where is the robustness parameter.
The probabilistic GT method exploits the disjunctness taatrix
property and employs a distance decoder (Hamming) for tietec
The decoder counts the number of different entries in thenasrix
columns and the outcome vectgr ¢ is set to be the value higher
than the expected number of nhonzero elements in a test ncalrix
umn for a given number of tests. Columns that differ in at most
positions correspond to the defective sensor identifiers.

3. DISTRIBUTED GROUP TESTING

While GT is usually performed in centralized settings, wepmse
a new algorithm for distributed defective sensors detactimt is
based on novel test design and message disseminatiorggtiate
new distributed GT framework. The problem is to detect aksef
up to K < S defective sensors in a sensor network whtldevices,
given B< S linearly independent network test messages.

Each sensor performs successive tasks to form test messag

which are generated and communicated in synchromaedds A
roundt € N consists of two phases and¢;;, as shown in Fig.
1. During the first phase; of durationt ™, the sensors obtaimes-

(a) Phase |
lllustration of message design and dissemination. (a) Mgss
design steps are illustrated by full and dashed arrows. drfitkt step, the
master sensor collects the measurements ffem. .., s4} and forms the
messagég; (t~), W .(t7)). Inthe second step, it propagates the message
to its neighbors. (b) Message dissemination based on gogglgsirithm with

(b) Phase
Fig. 1.
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Fig. 2 The message formation at sensgrin round¢. We assume that
sensogs is defective { = [001...0]) and thatso pulls s; to send its
previous round values (rourtd- 1). The outcome value and the test identifier
vector are formed by bitwise OR operations.

sages They are the estimates about the existence of defective sen

sors in their vicinity. In the second phasg, the sensors exchange

sensor; in the roundt. Since the messages are created probabilisti-

and combine these messages with neighbors by employingsipgos cally, the message combinations across the rounds assiimeotrel

mechanism.

The message construction in the phasstarts with the selec-
tion of L sensors, called hereafterasternodes. The master nodes
and their neighbors cluster the network into disjoint stdb¥e C V),

information reaches sensors in every round with high priibabA

toy example of message dissemination is illustrated in Eign this
example, the sensak at the roundt=7 pulls data from the sensor
s1 and constructs a novel message. Messages are represethtied wi

1€ {1,...,L}. They locally collect sensors readings and estimatedrackets and consist of test outcomes and test indicatonsoval

the presence of defective sensors based on a dissimilagiagune.
Sensors in the network participate in a test with probahilit The
master node appends a binary valf(@;) € f to each sensor in a
neighborhood which participates in the test, wh¢(e;) = 1 de-
notes that the sensar is defective. We finally assume that there
might be noise in the test messages. Noise is representdttipd

in the test matrix. More precisely, noise in tests is modelgtth
theactivation probabilityp. Noise flips the nonzero test matrix ele-
ments to zero with probability— p. To summarize, theest outcome
computation is given by:

1,
0,

a=wWioet={ § Sl @
Further, each master node forms a log of the test processvthat
denote asnessage The messagéy;(t~), W,..(¢~)) contains the
test outcome resulj; and the test participation vect®V,; .. It is
further transmitted from master nodes to their neighborespthis
concludes the phase. This phase is illustrated in Fig. 1(a). Further,
we describe the dissemination process performed duringhibee
trr and illustrated in Fig. 1(b). Every sensqrequests the message
formed in the previous round following a gossip mechanisith \ai
pull protocol from its neighbos;. A neighbors; chosen uniformly
at random responds to this request. The sesséurther combines
its current message generated in the phtaseith neighbors’ mes-
sage from the round-1 as follows:

gi(t) «— gi(t7) ® g;(t — 1),

Wi (t) « Wi.(t7) & W;.(t - 1), 3)

whereg;(t—1) denotes thg-th sensor outcome value in the round

message ik is the result of bitwise additions amongst outcomes
and test indicators.

The Bx S test matrix is denoted bW=[W1.;...; Wp_.]. We
rewrite the equations (2) and (3) in a matrix form by:

g=Waf. (@)

This equation resembles the outcome computation in theateetd
GT case. However, in distributed GW represents the boolean
addition of rows of different disjunct matrix realizatiofes in Eq.
(1)) over different rounds. Note that for an arbitrary netkyahe
number of network rounds required for collecting at le@dinearly
independent tests varies and depends on both the netwartotyp
and the test participation probabiligy

In the multiple defective sensors case, we assume that the nu
ber of defective sensors is much smaller than the total nurobe
sensors. Therefore, two messages with nonzero test ouscarae
rarely combined together in a new message. However suchesuh ev
leads in erroneous decoding and the combination of nonzato o
comes at sensors in; needs to be prevented. We propose to re-
solve this problem by simple protocol modifications. We buthe
i-th sensor message and forward the origjitii sensor message in
the phase;;. Then at the first subsequent round when two messages
with zero-valued test outcomes occur at seristite buffered value
replaces its message with a zero-valued test. Next, thessages
are combined and transmitted.

4. FAILURE DETECTION

4.1. Single defective sensor detection

Below we provide the necessary conditions for detectionsihgle

t—1 andW; .(t) represents the test indicator vector available at thedefective sensor. A defective sensor is detected with highgbil-



ity with a distance decoder if the sensors participate itstist
phases with probability, (dual to( K, €)-disjunct property, see def.
in Sec. 2) and the number of independent messages collected b
sensor is proportional t® (K log(S)/p*), wherep stands for the
activation probability (see def. in Sec. 3). The formal msions
are given below. The first proposition gives the conditiomsden-
tralized detection when clusters’ messages are gathertmimty at
random. The second one determines the number of per-claser
sages that ensures accurate detection by a distance dedtideigh
probability, where the messages are collected distrityited

Proposition 4.1 When in totalL (K, ¢;)-disjunct matrices created

as:
wi,j = {

are linearly combined as in Eq. (3), whete= Zle e; andg =
Z,L.Lzl ¢, the resulting test matriW permits detection by a dis-
tance decoder with high probability as long as it containgatal

L,
0,

with probability o; = ¢,
otherwise,

®)

occurrence. Erroneous messages are generated when arfratcti
defective sensors in a cluster participates actively itstesut this
has a negligible probability [6].

We make the assumption that at most one defective sensts exis
in any cluister. The decoding proceeds in two main stepst,Rire
appropriate unions of test matrix columns are created tm fitre
search set space and second, the Hamming distance betwdestth
outcome vector and the vectors of the search set are compthed
minimum Hamming distance indicates the solution of the ctain
problem.

The outcomeg = [go g1]” are separated in negative and posi-
tive outcome vectorgy andg;, respectively. Subsequently, the rows
of the test matriXW form two sub-matrice®W, and W, and Eq.

e e

Then, we eliminate non-defective sensors fr&%y using knowl-

0
W,

W
0

fO
fy

go

e @)

B > O(K log(S)/p®) messages collected from clusters chosen aledge fromW, and obtairiW;. We form sets of unions of up t&

random.

The complete proof of this proposition is available in [6} dhort,
we bound the error causing events by employing a Chernoffidhou
analysis and show that the probability of decoding failuee gus-
ter is small. Errors occur in cases when the number of coluips fl
in the probabilistic tests matrix generation is higher tham when
its disjunct property is violated. Finally, we show in [65thif the
number of collected messages is proportionaDids log(S)/p®),
the disjunct property holds for any fixed test matrix withijgrob-
ability.

We further analyze the proposed distributed algorithm amd c
sider the detection requirements for every sensor in thearkt We
show that the test messages collected by the sensors dueitigubs-
mission rounds enable failure detection by the distancedravith
high probability if the number of messages is sufficient, wiiee
decoder operations are performed locally at sensors.

Proposition 4.2 We assume thdt master sensors patrtition the sen-
sor network in disjunct parts. Test realizations within aster form
test vectors. Over the rounds, these vectors create in fofd{, ¢)-
disjunct matrices whose elements take values

whereq = Zle ¢;. If the above assumptions hold and if the num-
ber of linearly independent messages received per clustevery
sensor in the network is at least/ L, where B>O (K log(S)/p®),

the probability that sensors fail to detect the defectivesse by the
distance decoder tends to zerogs— co.

L,
0,

with probability o; = ¢,
otherwise,

(6)

For a detailed proof see the corresponding Proposition]in [6

4.2. Multiple defective sensor detection

We assume here that the number of defective sensors is thayer
one, but much smaller than the total number of sensors. Wmopeo
to modify the communication protocol of our distributed@ithm
and to limit the decoder search space to be able to apply the Ha
ming distance decoder. The communication protocol forbra=sar
combinations of messages with two positive outcomes, agitesl

in Section 3. In spite of that, the messages generated withg:
ters that contain more than one defective sensor may siitlecarror

columns from the columns of matriW'1 with at least one non-zero
value. These columns are classified in $étwhose size depends on
the complete or partial sensor knowledge about clusteraaiih of
other sensors in the network. Columns belonging to the séumstec
are grouped together in a sk, wherei € {1,..., L} and L is the
number of clusters. The search spateonsists of vectors that are
obtained from unions of up t& columns, where each column is
picked from a different sekt;,. We choose up td columns, since
the number of defective elements is smaller than or equél toy
the problem definition, while the selection of at most oneunui
from a particularH,; comes from the above simplifying assumption
that at most one defective sensor exists in each cluster.

For the multiple defective sensor case, the transmissiotopr
col ensures that the assumptions behind Proposition 4 \&afed.
We provide below conditions for multiple defective sensoesec-
tion with high probability.

Proposition 4.3 Under the assumption that at most one defective
sensor is present in each cluster, that the number of aviailkib-
early independent messages at all sensors is at Badt per clus-

ter, whereB > O(K log(S)/p®) and that sensors know member-
ship identifiers of all the clusters in the network, the dista de-
coder detects defective sensors at all sensors in the nketwith
high probability.

The proof and more details are available in [6].

5. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate now the performance of the proposed detectgn al
rithm. Extensive simulations are performed on fully coriedcand
irregular networks withS = 70 sensors and. = 5 master nodes,
which are denoted with FG and IG respectively. All results av-
eraged oven 00 simulations per graph realization. The minimum
connectivity degree of IG is set th> 3 and results are averaged
over ten different realizations. The master nodes are chegber
deterministically (DM) or uniformly at random (RM).

Fig. 3illustrates the influence of the graph connectivity #me
value of the test participation probability on defectiveasar detec-
tion for the proposed method. We compare the performancésof F
and IG networks in terms of detection. Results show that f@fi
detection probability and fixed network parameters, FGireguess
message transmission rounds than IG. Both cases favorihbhss
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Fig. 3. Defective sensors detection probability of the proposedrihm. Fig. 4. Detection performance for proposed method (GP) and cosguari
Comparison is given for FG and IG with > 3, (S,L) = (70,5). (a) methods, wheréS, L) = (70, 5). (a) fully connected sensor network (FG);
K =1, RM master nodes selection. (k) = 2, DM master nodes selection. (b) irregular sensor network (I1G).

of the test participation constant=¢K which increase the cardi- S=20 S=70
nality of the set of diverse messages. In Fig. 3(a), RM maxide K=1 K =2 K=1 K=2
selection with high probability creates an innovative naggsin ev- pe(0.9—1) 130 | (115-244) | (174-217)| (125-284)

ery round, so highes values increase detection probability. In Fig.
3(b) DM master node selection partitions the sensors inéalfotus- _'I'_abl_e 1 The required theoretical number of messages. Network spec-
ters over the system rounds, so distinct messages are féomiedy ~ 'fications: {S =20,q € (0.15 — 0.3),pf1 = 0.01,pf> = 0.01} and
values of the test participation probability. {5=70,4€(0-15 = 0.3), pf1=0.01, pf2=0.01}.

The detection performance of the proposed method, densted a
GP, is compared with Random Walk gossip gathering method fOIwhi(:h permits the use of a simple and efficient distance dercatl

lowing a pull protocol dissemination (RWGP) and a RandomkWal sensors. The network messages are created locally basethsor s

method (RW). A random walk defines the path of successive ran- .
dom dissemination message exchanges between the nei ; S‘measurements and they are communicated through the netwyark

sors. Both comparison methods initiate measurementsctioltein gossip algorithm. We have derived the upper bound on the aumb

- of linearly independent messages per cluster that ensetestibn
L nodes (equal to the number of master nodes in GP). The messa : L . .
are transmitted by the gossip algorithm which follows a paito- %+ defective sensors with high probability. We have experitally

col. In RWGP the terminal node of a path creates a messagd bas%hown that, for fully connected and irregular sensor neke/ahis

o value is smaller in practice. Finally, we have seen that thegsed
on the dissimilarity measure of the collected measure_mdm_ﬂéV\{: method outperforms random walk-based data gathering retino
each node along the path stores the values of all previouiitéd .

. . . - : terms of detection performance on sample networks.

nodes. More details about algorithms are given in [6]. Fighdws
that our method outperforms the comparison detection iihgos
in terms of the detection probability for both, FG and |G nextis. 7. ACKNOWLEDGEMENTS
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