TIME-VARYING CLOCK OFFSET ESTIMATION IN TWO-WAY TIMING MESSAGE EXCHANGE IN WIRELESS SENSOR NETWORKS USING FACTOR GRAPHS^{\ddagger}

Aitzaz Ahmad^{*}, Davide Zennaro[†], Erchin Serpedin^{*}, Lorenzo Vangelista[†]

*Department of ECE, Texas A&M University, Texas, TX, 77843 USA. †Department of Information Engineering, University of Padova, Padova, Italy.

ABSTRACT

The problem of clock offset estimation in a two-way timing exchange regime is considered when the likelihood function of the observation time stamps is exponentially distributed. In order to capture the imperfections in node oscillators, which render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed using a factor graph representation of the posterior density. Message passing using the max-product algorithm yields a closed form expression for the Bayesian inference problem.

Index Terms— Clock offset, factor graphs, message passing, max-product algorithm

1. INTRODUCTION

Clock synchronization in wireless sensor networks (WSN) is a critical component in data fusion and duty cycling, and has gained widespread interest in recent years [1]. Most of the current methods consider sensor networks exchanging time stamps based on the time at their respective clocks [2]. In a *two-way* timing exchange process, adjacent nodes aim to achieve pairwise synchronization by communicating their timing information with each other. After a round of N messages, each node tries to estimate its own clock parameters. A representative protocol of this class is the timing-sync protocol for sensor networks (TPSNs) which uses this strategy in two phases to synchronize clocks in a network [3].

The clock synchronization problem in a WSN offers a natural statistical signal processing framework [4]. Assuming an exponential delay distribution, several estimators were proposed in [5]. It was argued that when the propagation delay dis unknown, the maximum likelihood (ML) estimator for the clock offset θ is not unique. However, it was shown in [6] that the ML estimator of θ does exist uniquely for the case of unknown d. The performance of these estimators was compared with benchmark estimation bounds in [7]. A common theme in the aforementioned contributions is that the effect of possible time variations in clock offset, arising from imperfect oscillators, is not incorporated and hence, they entail frequent re-synchronization requirements.

In this work, assuming an exponential distribution for the network delays, a closed form solution to clock offset estimation is presented by considering the clock offset as a random Gauss-Markov process. Bayesian inference is performed using factor graphs and the max-product algorithm.

2. SYSTEM MODEL

By assuming that the respective clocks of a sender node S and a receiver node R are related by $C_R(t) = \theta + C_S(t)$ at real time t, the two-way timing message exchange model at the kth instant can be represented as [5] [6]

$$U_k = d + \theta + X_k, \quad V_k = d - \theta + Y_k \tag{1}$$

where d represents the propagation delay, assumed symmetric in both directions, and θ is offset of the clock at node R relative to the clock at node S. The network delays, X_k and Y_k , are the independent exponential random variables. By further defining $\xi \stackrel{\Delta}{=} d + \theta$ and $\psi \stackrel{\Delta}{=} d - \theta$, the model in (1) can be written as

$$U_k = \xi + X_k, \quad V_k = \psi + Y_k \tag{2}$$

for k = 1, ..., N. The imperfections introduced by environmental conditions in the quartz oscillator in sensor nodes result in a time-varying clock offset between nodes in a WSN. In order to sufficiently capture these temporal variations, the parameters ξ and ψ are assumed to evolve through a Gauss-Markov process given by

$$\xi_k = \xi_{k-1} + w_k, \quad \psi_k = \psi_{k-1} + v_k \quad \text{for } k = 1, \dots, N$$

where w_k and v_k are *i.i.d* such that $w_k, v_k \sim \mathcal{N}(0, \sigma^2)$. The goal is to determine precise estimates of ξ and ψ in the Bayesian framework using observations $\{U_k, V_k\}_{k=1}^N$. An estimate of θ can, in turn, be obtained as

$$\hat{\theta} = \frac{\hat{\xi} - \hat{\psi}}{2} \,. \tag{3}$$

^{*}The work of A. Ahmad and E. Serpedin is supported by Qtel.

[†]The work of D. Zennaro is partially supported by an "A. Gini" fellowship and has been performed while on leave at Texas A&M University, College Station, TX (USA).

[‡]An extended version of this work has been submitted to IEEE Transactions on Information Theory.

Fig. 1. Factor graph representation of posterior density (4)

3. A FACTOR GRAPH APPROACH

The posterior pdf can be expressed as

$$f(\boldsymbol{\xi}, \boldsymbol{\psi} | \boldsymbol{U}, \boldsymbol{V}) \propto f(\boldsymbol{\xi}, \boldsymbol{\psi}) f(\boldsymbol{U}, \boldsymbol{V} | \boldsymbol{\xi}, \boldsymbol{\psi})$$

$$= f(\xi_0) \prod_{k=1}^N f(\xi_k | \xi_{k-1}) f(\psi_0) \prod_{k=1}^N f(\psi_k | \psi_{k-1})$$

$$\cdot \prod_{k=1}^N f(U_k | \xi_k) f(V_k | \psi_k)$$
(4)

where uniform priors $f(\xi_0)$ and $f(\psi_0)$ are assumed. Define $\delta_{k-1}^k \stackrel{\Delta}{=} f(\xi_k | \xi_{k-1}) \sim \mathcal{N}(\xi_{k-1}, \sigma^2), \nu_{k-1}^k \stackrel{\Delta}{=} f(\psi_k | \psi_{k-1}) \sim \mathcal{N}(\psi_{k-1}, \sigma^2), f_k \stackrel{\Delta}{=} f(U_k | \xi_k), h_k \stackrel{\Delta}{=} f(V_k | \psi_k)$, where the likelihood functions are given by

$$f(U_k|\xi_k) = \lambda_{\xi} \exp\left(-\lambda_{\xi}(U_k - \xi_k)\right) \mathbb{I}(U_k - \xi_k)$$

$$f(V_k|\psi_k) = \lambda_{\psi} \exp\left(-\lambda_{\psi}(V_k - \psi_k)\right) \mathbb{I}(V_k - \psi_k) .$$
(5)

The factor graph representation of the posterior pdf is shown in Fig. 1. The factor graph is cycle-free and inference by message passing is indeed optimal. In addition, the two factor graphs shown in Fig. 1 have a similar structure and hence, message computations will only be shown for the estimate $\hat{\xi}_N$. Clearly, similar expressions will apply to $\hat{\psi}_N$.

The message updates in factor graph using max-product can be computed as follows

$$m_{f_N \to \xi_N} = f_N, \quad m_{\xi_N \to \delta_{N-1}^N} = f_N$$
$$m_{\delta_{N-1}^N \to \xi_{N-1}} \propto \max_{\xi_N} \delta_{N-1}^N \cdot m_{\xi_N \to \delta_{N-1}^N}$$
$$= \max_{\xi_N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(\xi_N - \xi_{N-1})^2}{2\sigma^2}\right)$$
$$\cdot \exp\left(\lambda_\xi \xi_N\right) \mathbb{I}(U_N - \xi_N)$$

which can be rearranged as

$$\frac{m_{\delta_{N-1}^{N} \to \xi_{N-1}} \propto \max_{\xi_{N} \le U_{N}} \exp(A_{\xi,N}\xi_{N}^{2} + B_{\xi,N}\xi_{N-1}^{2} + C_{\xi,N}\xi_{N}\xi_{N-1} + D_{\xi,N}\xi_{N})}{C_{\xi,N}\xi_{N}\xi_{N-1} + D_{\xi,N}\xi_{N}}$$
(6)

where

$$A_{\xi,N} \stackrel{\Delta}{=} -\frac{1}{2\sigma^2}, \quad B_{\xi,N} \stackrel{\Delta}{=} -\frac{1}{2\sigma^2}$$
$$C_{\xi,N} \stackrel{\Delta}{=} \frac{1}{\sigma^2}, \quad D_{\xi,N} \stackrel{\Delta}{=} \lambda_{\xi} . \tag{7}$$

Let $\bar{\xi}_N$ be the unconstrained maximizer of the exponent in the objective function above, i.e.,

$$\bar{\xi}_N = \arg \max_{\xi_N} \left(A_{\xi,N} \xi_N^2 + B_{\xi,N} \xi_{N-1}^2 + C_{\xi,N} \xi_N \xi_{N-1} + D_{\xi,N} \xi_N \right) .$$

This implies that

$$\bar{\xi}_N = -\frac{C_{\xi,N}\xi_{N-1} + D_{\xi,N}}{2A_{\xi,N}} .$$
(8)

If $\bar{\xi}_N > U_N$, then the estimation problem is solved, since $\hat{\xi}_N = U_N$. However, if $\bar{\xi}_N \leq U_N$, the solution is $\hat{\xi}_N = \bar{\xi}_N$. Therefore, in general, we can write

$$\hat{\xi}_N = \min\left(\bar{\xi}_N, U_N\right)$$
.

Notice that $\bar{\xi}_N$ depends on ξ_{N-1} , which is undetermined at this stage. Hence, we need to further traverse the chain backwards. Assuming that $\bar{\xi}_N \leq U_N$, $\bar{\xi}_N$ from (8) can be plugged back in (6) which after some simplification yields

$$m_{\delta_{N-1}^{N} \to \xi_{N-1}} \propto \exp\left\{ \left(B_{\xi,N} - \frac{C_{\xi,N}^{2}}{4A_{\xi,N}} \right) \xi_{N-1}^{2} - \frac{C_{\xi,N}D_{\xi,N}}{2A_{\xi,N}} \xi_{N-1} \right\}.$$
(9)

Similarly the message from the factor δ_{N-2}^{N-1} to the variable node ξ_{N-2} can be expressed as

$$\begin{split} & m_{\delta_{N-2}^{N-1} \to \xi_{N-2}} \propto \max_{\xi_{N-1} \le U_{N-1}} \delta_{N-2}^{N-1} \cdot m_{\xi_{N-1} \to \delta_{N-2}^{N-1}} \\ &= \max_{\xi_{N-1}} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\xi_{N-1} - \xi_{N-2})^2}{2\sigma^2}\right) \\ & \cdot \exp\left\{\left(B_{\xi,N} - \frac{C_{\xi,N}^2}{4A_{\xi,N}}\right)\xi_{N-1}^2 - \frac{C_{\xi,N}D_{\xi,N}}{2A_{\xi,N}}\xi_{N-1}\right\} \\ & \cdot \exp\left(\lambda_{\xi}\xi_{N-1}\right)\mathbb{I}(U_{N-1} - \xi_{N-1}) \;. \end{split}$$

The message above can be compactly represented as

$$m_{\delta_{N-2}^{N-1} \to \xi_{N-2}} \propto \max_{\xi_{N-1} \le U_{N-1}} \exp(A_{\xi,N-1}\xi_{N-1}^{2} + B_{\xi,N-1}\xi_{N-2}^{2} + C_{\xi,N-1}\xi_{N-1}\xi_{N-2} + D_{\xi,N-1}\xi_{N-1})$$
(10)

where

$$A_{\xi,N-1} \stackrel{\Delta}{=} -\frac{1}{2\sigma^2} + B_{\xi,N} - \frac{C_{\xi,N}^2}{4A_{\xi,N}},$$
$$B_{\xi,N-1} \stackrel{\Delta}{=} -\frac{1}{2\sigma^2}, \quad C_{\xi,N-1} \stackrel{\Delta}{=} \frac{1}{\sigma^2},$$
$$D_{\xi,N-1} \stackrel{\Delta}{=} \lambda_{\xi} - \frac{C_{\xi,N}D_{\xi,N}}{2A_{\xi,N}}.$$

Proceeding as before, the unconstrained maximizer $\bar{\xi}_{N-1}$ of the objective function above is given by

$$\bar{\xi}_{N-1} = -\frac{C_{\xi,N-1}\xi_{N-2} + D_{\xi,N-1}}{2A_{\xi,N-1}}$$

and the solution to the maximization problem (10) is expressed as

$$\hat{\xi}_{N-1} = \min\left(\bar{\xi}_{N-1}, U_{N-1}\right)$$
.

Again, $\bar{\xi}_{N-1}$ depends on ξ_{N-2} and therefore, the solution demands another traversal backwards on the factor graph representation in Fig. 1. By plugging $\bar{\xi}_{N-1}$ back in (10), it follows that

$$m_{\delta_{N-2}^{N-1} \to \xi_{N-2}} \propto \left\{ \left(B_{\xi,N-1} - \frac{C_{\xi,N-1}^2}{4A_{\xi,N-1}} \right) \xi_{N-2}^2 - \frac{C_{\xi,N-1}D_{\xi,N-1}}{2A_{\xi,N-1}} \xi_{N-2} \right\}$$
(11)

which has a form similar to (9). It is clear that one can keep traversing back in the graph yielding messages similar to (9) and (11). In general, for i = 1, ..., N - 1, we can write

$$A_{\xi,N-i} \stackrel{\Delta}{=} -\frac{1}{2\sigma^2} + B_{\xi,N-i+1} - \frac{C_{\xi,N-i+1}^2}{4A_{\xi,N-i+1}}$$

$$B_{\xi,N-i} \stackrel{\Delta}{=} -\frac{1}{2\sigma^2}, \quad C_{\xi,N-i} \stackrel{\Delta}{=} \frac{1}{\sigma^2}$$

$$D_{\xi,N-i} \stackrel{\Delta}{=} \lambda_{\xi} - \frac{C_{\xi,N-i+1}D_{\xi,N-i+1}}{2A_{\xi,N-i+1}}$$
(12)

and

$$\bar{\xi}_{N-i} = -\frac{C_{\xi,N-i}\xi_{N-i-1} + D_{\xi,N-i}}{2A_{\xi,N-i}}$$
 (13)

$$\hat{\xi}_{N-i} = \min\left(\bar{\xi}_{N-i}, U_{N-i}\right) . \tag{14}$$

Using (13) and (14) with i = N - 1, it follows that

$$\bar{\xi}_1 = -\frac{C_{\xi,1}\xi_0 + D_{\xi,1}}{2A_{\xi,1}}, \quad \hat{\xi}_1 = \min\left(\bar{\xi}_1, U_1\right) .$$
(15)

Similarly, by observing the form of (9) and (11), it follows that

$$m_{\delta_0^1 \to \xi_0} \propto \exp\left\{ \left(B_{\xi,1} - \frac{C_{\xi,1}^2}{4A_{\xi,1}} \right) \xi_0^2 - \frac{C_{\xi,1}D_{\xi,1}}{2A_{\xi,1}} \xi_0 \right\}.$$
(16)

The estimate ξ_0 can be obtained by maximizing (16).

$$\hat{\xi}_0 = \bar{\xi}_0 = \max_{\xi_0} m_{\delta_0^1 \to \xi_0} = \frac{C_{\xi,1} D_{\xi,1}}{4A_{\xi,1} B_{\xi,1} - C_{\xi,1}^2} .$$
(17)

The estimate in (17) can now be substituted in (15) to yield ξ_1 , which can then be used to solve for $\hat{\xi}_1$. Clearly, this chain of calculations can be continued using recursions (13) and (14). Define

$$g_{\xi,k}(x) \triangleq -\frac{C_{\xi,k}x + D_{\xi,k}}{2A_{\xi,k}} .$$
(18)

Lemma 1 For real numbers a and b, the function $g_{\xi,k}(.)$ defined in (18) satisfies

$$g_{\xi,k}(\min(a,b)) = \min(g_{\xi,k}(a), g_{\xi,k}(b))$$
.

Proof: The constants $A_{\xi,k}$, $C_{\xi,k}$ and $D_{\xi,k}$ are defined in (7) and (12). The proof follows by noting that $\frac{-C_{\xi,k}}{2A_{\xi,k}} > 0$ which implies that $g_{\xi,k}(.)$ is a monotonically increasing function.

Using the notation $g_{\xi,k}(.)$, it follows that

$$\bar{\xi}_{1} = g_{\xi,1} \left(\hat{\xi}_{0} \right), \quad \hat{\xi}_{1} = \min \left(U_{1}, g_{\xi,1} \left(\hat{\xi}_{0} \right) \right) \bar{\xi}_{2} = g_{\xi,2} \left(\hat{\xi}_{1} \right), \quad \hat{\xi}_{2} = \min \left(U_{2}, g_{\xi,2} \left(\hat{\xi}_{1} \right) \right)$$

where

$$g_{\xi,2}\left(\hat{\xi}_{1}\right) = g_{\xi,2}\left(\min\left(U_{1}, g_{\xi,1}\left(\hat{\xi}_{0}\right)\right)\right)$$
$$= \min\left(g_{\xi,2}\left(U_{1}\right), g_{\xi,2}\left(g_{\xi,1}\left(\hat{\xi}_{0}\right)\right)\right)$$
(19)

where (19) follows from Lemma 1. The estimate $\hat{\xi}_2$ can be expressed as

$$\hat{\xi}_2 = \min \left(U_2, \min \left(g_{\xi,2} \left(U_1 \right), g_{\xi,2} \left(g_{\xi,1} \left(\hat{\xi}_0 \right) \right) \right) \right) = \min \left(U_2, g_{\xi,2} \left(U_1 \right), g_{\xi,2} \left(g_{\xi,1} \left(\hat{\xi}_0 \right) \right) \right) \ .$$

Hence, one can keep estimating $\hat{\xi}_k$ at each stage using this strategy. Note that the estimator only depends on functions of data and can be readily evaluated. For $m \ge k$, define

$$G^{m}_{\xi,k}(.) \stackrel{\Delta}{=} g_{\xi,m} \left(g_{\xi,m-1} \dots g_{\xi,k} \left(. \right) \right)$$
 (20)

The estimate $\hat{\xi}_N$ can, therefore, be compactly represented as

$$\hat{\xi}_{N} = \min\left(U_{N}, G_{\xi,N}^{N}\left(U_{N-1}\right), \dots, G_{\xi,2}^{N}\left(U_{1}\right), G_{\xi,1}^{N}\left(\hat{\xi}_{0}\right)\right).$$
(21)

By a similar reasoning, the estimate ψ_N can be analogously expressed as

$$\hat{\psi}_{N} = \min\left(V_{N}, G_{\psi,N}^{N}(V_{N-1}), \dots, G_{\xi,2}^{N}(V_{1}), G_{\xi,1}^{N}(\hat{\psi}_{0})\right)$$

and the factor graph based clock offset estimate (FGE) $\hat{\theta}_N$ is given by

$$\hat{\theta}_N = \frac{\hat{\xi}_N - \hat{\psi}_N}{2} . \tag{22}$$

It only remains to calculate the functions of data G(.) in the expressions for $\hat{\xi}_N$ and $\hat{\psi}_N$ to determine the FGE estimate $\hat{\theta}_N$. With the constants defined in (7), it follows that

$$G_{\xi,N}^N(U_{N-1}) = -\frac{C_{\xi,N}U_{N-1} + D_{\xi,N}}{2A_{\xi,N}} = U_{N-1} + \lambda_{\xi}\sigma^2 .$$

Fig. 2. Comparison of MSE of $\hat{\theta}_N$ and $\hat{\theta}_{ML}$.

Similarly it can be shown that

$$G^{N}_{\xi,N-1}(U_{N-2}) = U_{N-2} + 2\lambda_{\xi}\sigma^{2}$$

and so on. Using the constants defined in (12) for i = N-1, it can be shown that $\hat{\xi}_0 = \frac{C_{\xi,1}D_{\xi,1}}{4A_{\xi,1}B_{\xi,1}-C_{\xi,1}^2} = +\infty$. This implies that $G_{\xi,1}^N(\hat{\xi}_0) = +\infty$. Plugging this in (21) yields

$$\hat{\xi}_N = \min(U_N, U_{N-1} + \lambda_{\xi}\sigma^2, \dots, U_1 + (N-1)\lambda_{\xi}\sigma^2) .$$

Similarly, the estimate $\hat{\psi}_N$ is given by

$$\hat{\psi}_N = \min(V_N, V_{N-1} + \lambda_{\psi}\sigma^2, \dots, V_1 + (N-1)\lambda_{\psi}\sigma^2)$$

and the estimate $\hat{\theta}_N$ can be obtained using (22) as

$$\hat{\theta}_{N} = \frac{1}{2} \min(U_{N}, U_{N-1} + \lambda_{\xi}\sigma^{2}, U_{N-2} + 2\lambda_{\xi}\sigma^{2}, \dots, U_{1} + (N-1)\lambda_{\xi}\sigma^{2}) - \frac{1}{2} \min(V_{N}, V_{N-1} + \lambda_{\psi}\sigma^{2}, V_{N-2} + 2\lambda_{\psi}\sigma^{2}, \dots, V_{1} + (N-1)\lambda_{\psi}\sigma^{2}) . \quad (23)$$

As the Gauss-Markov system noise $\sigma^2 \rightarrow 0$, (23) yields

$$\hat{\theta}_N \to \hat{\theta}_{\mathrm{ML}} = \frac{\min\left(U_N, \dots, U_1\right) - \min\left(V_N, \dots, V_1\right)}{2}$$
(24)

which is the ML estimator proposed in [6].

4. SIMULATION RESULTS

With $\lambda_{\xi} = \lambda_{\psi} = 10$ and $\sigma = 10^{-2}$, Fig. 2 shows the MSE performance of $\hat{\theta}_N$ and $\hat{\theta}_{ML}$, compared with the Bayesian Chapman-Robbins bound (BCHRB). It is clear that $\hat{\theta}_N$ exhibits a better performance than $\hat{\theta}_{ML}$ by incorporating the effects of time variations in clock offset. As the variance of the Gauss-Markov model accumulates with the addition of more samples, the MSE of $\hat{\theta}_{ML}$ gets worse. Fig. 3 depicts the MSE of $\hat{\theta}_N$ in (23) with N = 25. The horizontal line represents the MSE of the ML estimator (24). It can be observed that the MSE obtained by using the FGE for estimating θ approaches the MSE of the ML as $\sigma < 10^{-3}$.

Fig. 3. MSE in estimation of θ_N vs σ .

5. CONCLUSION

The estimation of a possibly time-varying clock offset is studied using factor graphs. A closed form solution to the clock offset estimation problem is presented using a novel message passing strategy based on the max-product algorithm. This estimator shows a performance superior to the ML estimator proposed in [6] by capturing the effects of time variations in the clock offset efficiently.

6. REFERENCES

- I. F. Akyildiz, W. Su, Y. Sankarasubramanium, and E. Cayirci, "A survey on sensor networks," *IEEE Commun. Mag.*, vol. 40, no. 8, pp. 102-114, Aug. 2002.
- [2] B. Sadler and A. Swami, "Synchronization in sensor networks: An overview," in *Proc. IEEE Military Commun. Conf. (MILCOM 2006)*, pp. 1-6, Oct. 2006.
- [3] S. Ganeriwal, R. Kumar, and M.B. Srivastava, "Timingsync protocol for sensor networks," in *Proc. SenSys*, Los Angeles, CA, pp. 138-149, Nov. 2003.
- [4] Y.-C. Wu, Q.M. Chaudhari, and E. Serpedin, "Clock synchronization of wireless sensor networks," *IEEE Signal Process. Mag.*, vol. 28, no. 1, pp. 124-138, Jan. 2011.
- [5] H. S. Abdel-Ghaffar, "Analysis of synchronization algorithm with time-out control over networks with exponentially symmetric delays," *IEEE Trans. Commun.*, vol. 50, no. 10, pp. 1652-1661, Oct. 2002.
- [6] D. R. Jeske, "On the maximum likelihood estimation of clock offset," *IEEE Trans. Commun.*, vol. 53, no. 1, pp. 53-54, Jan. 2005.
- [7] K.-L. Noh, Q. M. Chaudhari, E. Serpedin, and B. Suter, "Novel clock phase offset and skew estimation using twoway timing message exchanges for wireless sensor networks," *IEEE Trans. Commun.*, vol. 55, no. 4, pp. 766-777, Apr. 2007.