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ABSTRACT

The problem of clock offset estimation in a two-way timing
exchange regime is considered when the likelihood function
of the observation time stamps is exponentially distributed. In
order to capture the imperfections in node oscillators, which
render a time-varying nature to the clock offset, a novel
Bayesian approach to the clock offset estimation is proposed
using a factor graph representation of the posterior density.
Message passing using the max-product algorithm yields a
closed form expression for the Bayesian inference problem.

Index Terms— Clock offset, factor graphs, message
passing, max-product algorithm

1. INTRODUCTION

Clock synchronization in wireless sensor networks (WSN)
is a critical component in data fusion and duty cycling, and
has gained widespread interest in recent years [1]. Most of
the current methods consider sensor networks exchanging
time stamps based on the time at their respective clocks [2].
In a two-way timing exchange process, adjacent nodes aim
to achieve pairwise synchronization by communicating their
timing information with each other. After a round of N mes-
sages, each node tries to estimate its own clock parameters.
A representative protocol of this class is the timing-sync pro-
tocol for sensor networks (TPSNs) which uses this strategy in
two phases to synchronize clocks in a network [3].

The clock synchronization problem in a WSN offers a nat-
ural statistical signal processing framework [4]. Assuming an
exponential delay distribution, several estimators were pro-
posed in [5]. It was argued that when the propagation delay d
is unknown, the maximum likelihood (ML) estimator for the
clock offset θ is not unique. However, it was shown in [6] that
the ML estimator of θ does exist uniquely for the case of un-
known d. The performance of these estimators was compared
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with benchmark estimation bounds in [7]. A common theme
in the aforementioned contributions is that the effect of pos-
sible time variations in clock offset, arising from imperfect
oscillators, is not incorporated and hence, they entail frequent
re-synchronization requirements.

In this work, assuming an exponential distribution for the
network delays, a closed form solution to clock offset estima-
tion is presented by considering the clock offset as a random
Gauss-Markov process. Bayesian inference is performed us-
ing factor graphs and the max-product algorithm.

2. SYSTEM MODEL

By assuming that the respective clocks of a sender node S and
a receiver node R are related by CR(t) = θ + CS(t) at real
time t, the two-way timing message exchange model at the
kth instant can be represented as [5] [6]

Uk = d+ θ +Xk, Vk = d− θ + Yk (1)

where d represents the propagation delay, assumed symmetric
in both directions, and θ is offset of the clock at node R rela-
tive to the clock at node S. The network delays, Xk and Yk,
are the independent exponential random variables. By further
defining ξ ∆

= d + θ and ψ ∆
= d − θ, the model in (1) can be

written as
Uk = ξ +Xk, Vk = ψ + Yk (2)

for k = 1, . . . , N . The imperfections introduced by envi-
ronmental conditions in the quartz oscillator in sensor nodes
result in a time-varying clock offset between nodes in a WSN.
In order to sufficiently capture these temporal variations, the
parameters ξ and ψ are assumed to evolve through a Gauss-
Markov process given by

ξk = ξk−1 + wk, ψk = ψk−1 + vk for k = 1, . . . , N

where wk and vk are i.i.d such that wk, vk ∼ N (0, σ2).
The goal is to determine precise estimates of ξ and ψ in the
Bayesian framework using observations {Uk, Vk}Nk=1. An es-
timate of θ can, in turn, be obtained as

θ̂ =
ξ̂ − ψ̂

2
. (3)
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Fig. 1. Factor graph representation of posterior density (4)

3. A FACTOR GRAPH APPROACH

The posterior pdf can be expressed as

f(ξ,ψ|U ,V ) ∝ f(ξ,ψ)f(U ,V |ξ,ψ)

= f(ξ0)

N∏
k=1

f(ξk|ξk−1)f(ψ0)

N∏
k=1

f(ψk|ψk−1)

·
N∏
k=1

f(Uk|ξk)f(Vk|ψk) (4)

where uniform priors f(ξ0) and f(ψ0) are assumed. Define
δkk−1

∆
= f(ξk|ξk−1) ∼ N (ξk−1, σ

2), νkk−1
∆
= f(ψk|ψk−1) ∼

N (ψk−1, σ
2), fk

∆
= f(Uk|ξk), hk

∆
= f(Vk|ψk), where the

likelihood functions are given by

f(Uk|ξk) = λξ exp (−λξ(Uk − ξk)) I(Uk − ξk)

f(Vk|ψk) = λψ exp (−λψ(Vk − ψk)) I(Vk − ψk) . (5)

The factor graph representation of the posterior pdf is shown
in Fig. 1. The factor graph is cycle-free and inference by
message passing is indeed optimal. In addition, the two factor
graphs shown in Fig. 1 have a similar structure and hence,
message computations will only be shown for the estimate
ξ̂N . Clearly, similar expressions will apply to ψ̂N .

The message updates in factor graph using max-product
can be computed as follows

mfN→ξN = fN , mξN→δNN−1
= fN

mδNN−1→ξN−1
∝ max

ξN
δNN−1 ·mξN→δNN−1

= max
ξN

1√
2πσ2

exp

(
−(ξN − ξN−1)2

2σ2

)
· exp (λξξN ) I(UN − ξN )

which can be rearranged as

mδNN−1→ξN−1
∝ max
ξN≤UN

exp
(
Aξ,Nξ

2
N +Bξ,Nξ

2
N−1+

Cξ,NξNξN−1 +Dξ,NξN
) (6)

where

Aξ,N
∆
= − 1

2σ2
, Bξ,N

∆
= − 1

2σ2

Cξ,N
∆
=

1

σ2
, Dξ,N

∆
= λξ . (7)

Let ξ̄N be the unconstrained maximizer of the exponent in the
objective function above, i.e.,

ξ̄N = arg max
ξN

(
Aξ,Nξ

2
N +Bξ,Nξ

2
N−1 + Cξ,NξNξN−1+

Dξ,NξN
)
.

This implies that

ξ̄N = −Cξ,NξN−1 +Dξ,N

2Aξ,N
. (8)

If ξ̄N > UN , then the estimation problem is solved, since
ξ̂N = UN . However, if ξ̄N ≤ UN , the solution is ξ̂N = ξ̄N .
Therefore, in general, we can write

ξ̂N = min
(
ξ̄N , UN

)
.

Notice that ξ̄N depends on ξN−1, which is undetermined at
this stage. Hence, we need to further traverse the chain back-
wards. Assuming that ξ̄N ≤ UN , ξ̄N from (8) can be plugged
back in (6) which after some simplification yields

mδNN−1→ξN−1
∝ exp

{(
Bξ,N −

C2
ξ,N

4Aξ,N

)
ξ2
N−1−

Cξ,NDξ,N

2Aξ,N
ξN−1

}
.

(9)

Similarly the message from the factor δN−1
N−2 to the variable

node ξN−2 can be expressed as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

δN−1
N−2 ·mξN−1→δN−1

N−2

=max
ξN−1

1√
2πσ2

exp

(
− (ξN−1 − ξN−2)2

2σ2

)
· exp

{(
Bξ,N −

C2
ξ,N

4Aξ,N

)
ξ2
N−1 −

Cξ,NDξ,N

2Aξ,N
ξN−1

}
· exp (λξξN−1) I(UN−1 − ξN−1) .

The message above can be compactly represented as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

exp(Aξ,N−1ξ
2
N−1+

Bξ,N−1ξ
2
N−2 + Cξ,N−1ξN−1ξN−2 +Dξ,N−1ξN−1)

(10)

where

Aξ,N−1
∆
= − 1

2σ2
+Bξ,N −

C2
ξ,N

4Aξ,N
,

Bξ,N−1
∆
= − 1

2σ2
, Cξ,N−1

∆
=

1

σ2

Dξ,N−1
∆
= λξ −

Cξ,NDξ,N

2Aξ,N
.



Proceeding as before, the unconstrained maximizer ξ̄N−1 of
the objective function above is given by

ξ̄N−1 = −Cξ,N−1ξN−2 +Dξ,N−1

2Aξ,N−1

and the solution to the maximization problem (10) is ex-
pressed as

ξ̂N−1 = min
(
ξ̄N−1, UN−1

)
.

Again, ξ̄N−1 depends on ξN−2 and therefore, the solution de-
mands another traversal backwards on the factor graph repre-
sentation in Fig. 1. By plugging ξ̄N−1 back in (10), it follows
that

mδN−1
N−2→ξN−2

∝

exp

{(
Bξ,N−1 −

C2
ξ,N−1

4Aξ,N−1

)
ξ2
N−2 −

Cξ,N−1Dξ,N−1

2Aξ,N−1
ξN−2

}
(11)

which has a form similar to (9). It is clear that one can keep
traversing back in the graph yielding messages similar to (9)
and (11). In general, for i = 1, . . . , N − 1, we can write

Aξ,N−i
∆
= − 1

2σ2
+Bξ,N−i+1 −

C2
ξ,N−i+1

4Aξ,N−i+1

Bξ,N−i
∆
= − 1

2σ2
, Cξ,N−i

∆
=

1

σ2

Dξ,N−i
∆
= λξ −

Cξ,N−i+1Dξ,N−i+1

2Aξ,N−i+1

(12)

and

ξ̄N−i = −Cξ,N−iξN−i−1 +Dξ,N−i
2Aξ,N−i

(13)

ξ̂N−i = min
(
ξ̄N−i, UN−i

)
. (14)

Using (13) and (14) with i = N − 1, it follows that

ξ̄1 = −Cξ,1ξ0 +Dξ,1

2Aξ,1
, ξ̂1 = min

(
ξ̄1, U1

)
. (15)

Similarly, by observing the form of (9) and (11), it follows
that

mδ10→ξ0 ∝ exp

{(
Bξ,1 −

C2
ξ,1

4Aξ,1

)
ξ2
0 −

Cξ,1Dξ,1

2Aξ,1
ξ0

}
.

(16)
The estimate ξ̂0 can be obtained by maximizing (16).

ξ̂0 = ξ̄0 = max
ξ0

mδ10→ξ0 =
Cξ,1Dξ,1

4Aξ,1Bξ,1 − C2
ξ,1

. (17)

The estimate in (17) can now be substituted in (15) to yield ξ̄1,
which can then be used to solve for ξ̂1. Clearly, this chain of
calculations can be continued using recursions (13) and (14).
Define

gξ,k(x)
∆
= −Cξ,kx+Dξ,k

2Aξ,k
. (18)

Lemma 1 For real numbers a and b, the function gξ,k(.) de-
fined in (18) satisfies

gξ,k (min(a, b)) = min (gξ,k(a), gξ,k(b)) .

Proof: The constants Aξ,k, Cξ,k and Dξ,k are defined in (7)
and (12). The proof follows by noting that −Cξ,k2Aξ,k

> 0 which
implies that gξ,k(.) is a monotonically increasing function.

Using the notation gξ,k(.), it follows that

ξ̄1 = gξ,1

(
ξ̂0

)
, ξ̂1 = min

(
U1, gξ,1

(
ξ̂0

))
ξ̄2 = gξ,2

(
ξ̂1

)
, ξ̂2 = min

(
U2, gξ,2

(
ξ̂1

))
where

gξ,2

(
ξ̂1

)
= gξ,2

(
min

(
U1, gξ,1

(
ξ̂0

)))
= min

(
gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

)))
(19)

where (19) follows from Lemma 1. The estimate ξ̂2 can be
expressed as

ξ̂2 = min
(
U2,min

(
gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

))))
= min

(
U2, gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

)))
.

Hence, one can keep estimating ξ̂k at each stage using this
strategy. Note that the estimator only depends on functions of
data and can be readily evaluated. For m ≥ k, define

Gmξ,k(.)
∆
= gξ,m (gξ,m−1 . . . gξ,k (.)) . (20)

The estimate ξ̂N can, therefore, be compactly represented as

ξ̂N = min
(
UN , G

N
ξ,N (UN−1) , . . . , GNξ,2 (U1) , GNξ,1

(
ξ̂0

))
.

(21)
By a similar reasoning, the estimate ψ̂N can be analogously
expressed as

ψ̂N = min
(
VN , G

N
ψ,N (VN−1) , . . . , GNξ,2 (V1) , GNξ,1

(
ψ̂0

))
and the factor graph based clock offset estimate (FGE) θ̂N is
given by

θ̂N =
ξ̂N − ψ̂N

2
. (22)

It only remains to calculate the functions of data G(.) in the
expressions for ξ̂N and ψ̂N to determine the FGE estimate
θ̂N . With the constants defined in (7), it follows that

GNξ,N (UN−1) = −Cξ,NUN−1 +Dξ,N

2Aξ,N
= UN−1 + λξσ

2 .
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Fig. 2. Comparison of MSE of θ̂N and θ̂ML.

Similarly it can be shown that

GNξ,N−1(UN−2) = UN−2 + 2λξσ
2

and so on. Using the constants defined in (12) for i = N−1, it
can be shown that ξ̂0 =

Cξ,1Dξ,1
4Aξ,1Bξ,1−C2

ξ,1
= +∞. This implies

that GNξ,1(ξ̂0) = +∞. Plugging this in (21) yields

ξ̂N = min(UN , UN−1 + λξσ
2, . . . , U1 + (N − 1)λξσ

2) .

Similarly, the estimate ψ̂N is given by

ψ̂N = min(VN , VN−1 + λψσ
2, . . . , V1 + (N − 1)λψσ

2)

and the estimate θ̂N can be obtained using (22) as

θ̂N =
1

2
min(UN , UN−1 + λξσ

2, UN−2 + 2λξσ
2,

. . . , U1 + (N − 1)λξσ
2)−

1

2
min(VN , VN−1 + λψσ

2, VN−2 + 2λψσ
2,

. . . , V1 + (N − 1)λψσ
2) . (23)

As the Gauss-Markov system noise σ2 → 0, (23) yields

θ̂N → θ̂ML =
min (UN , . . . , U1)−min (VN , . . . , V1)

2
(24)

which is the ML estimator proposed in [6].

4. SIMULATION RESULTS

With λξ = λψ = 10 and σ = 10−2, Fig. 2 shows the MSE
performance of θ̂N and θ̂ML, compared with the Bayesian
Chapman-Robbins bound (BCHRB). It is clear that θ̂N ex-
hibits a better performance than θ̂ML by incorporating the ef-
fects of time variations in clock offset. As the variance of the
Gauss-Markov model accumulates with the addition of more
samples, the MSE of θ̂ML gets worse. Fig. 3 depicts the MSE
of θ̂N in (23) with N = 25. The horizontal line represents
the MSE of the ML estimator (24). It can be observed that the
MSE obtained by using the FGE for estimating θ approaches
the MSE of the ML as σ < 10−3.
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Fig. 3. MSE in estimation of θN vs σ.

5. CONCLUSION

The estimation of a possibly time-varying clock offset is stud-
ied using factor graphs. A closed form solution to the clock
offset estimation problem is presented using a novel message
passing strategy based on the max-product algorithm. This
estimator shows a performance superior to the ML estimator
proposed in [6] by capturing the effects of time variations in
the clock offset efficiently.
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