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ON THE FLUCTUATIONS OF THE SINR AT THE OUTPUT OF THE WIENER FILTER FOR
NON CENTERED CHANNELS: THE NON GAUSSIAN CASE

Abla Kammouh, Malika Kharouf, Romain Couillet, Jamal Najim and Merouane Debbah

Télecom ParisTech 46, rue Barrault, 75634 Paris Cedex 13, Prance
Sureleé

ABSTRACT nent to be non-Gaussian improves the fit of the presented re-
sults to the true SINR in many practical scenarios, esgdgcial
encountered in severe fading situations, like for instahee
Nakagami-m channels particularly suited to model some ur-
ban multipath environments [7]. In particular, it is proved
that in the asymptotic regime (i.e. fé¥,n — +oo at the
same pace), the SINR fluctuates around its first order approx-
Imate as a centered Gaussian random variable whose variance

multiple-input multiple-output (MIMO) channels. The case
of Ri(I:Dean fhannelspwhichpi)ndéces no)n-centered random Vaﬁiepends on the cumulant of the entries and the deterministic
' [jne-of-sight matrix.

ables, can be encountered in several practical envirorsment Notat] In the following. boldf | bol

and has not been studied so far, as it raises substantiai{echr ; 0 an|to\?s. ¢ nr € Oi IO\;VLn%f 0 a;:er ovxt/err cgsi ?gn ots

cal issues. With the help of large random matrix theory, Whic epresent veclors, capital boldlace characters denotecesa
(I is the sizeN identity matrix). The transpose and Her-

has shown to be fruitful to successfully address severdi-pro itian t : dengted and
lems in wireless communications, we study the behaviour of'uan transpose operators are endtgd and(.)", respec-

the SINR, together with its fluctuations via a central lirhit tively. The expectanon and inverse operators will be dedot
orem. As realistic models also involve non-Gaussian randorJR y E and( )

variables, we relax the Gaussian assumption. This results i

an extra term involving the fourth cumulant in the expressio 2. SYSTEM MODEL AND PROBLEM SETTING

of the variance.

In the context of multidimensional signals, the linear Véen
receiver is frequently encountered in wireless commuitnat
and in array processing; it is in fact the linear receivet tha
achieves the lowest level of interference. In this contidny

we focus on the study of the associated Signal-to-intenfare
plus noise ratio (SINR) at its output in the context of Ricean

o Consider a wireless MIMO transmission model wihanten-
Index Terms— Central Limit Theorem, MIMO systems, ,,q ot the reception side and-1 antennas at the transmission
Quadratic Form, Random Matrix Theory, Wiener Filtering  giqe corresponding to -+ 1 distant sources. Ldf denote the
N x n + 1 channel matrix given by:
1. INTRODUCTION

In the mid-nineties, Telatar[1] and Foshini[2] demonstdat H = ﬁ <\/K+1X + \/KHA> 5

the great potential of the multiple-input multiple-output

(MIMO) technology to meet the increasing demand to highehere is called the Rice factoiX is a random matrix with
data rates. Indeed, their analyses show that the mutual ifj 4. entries with zero mean and unit variance (not necégsa
formation over anV x n MIMO channel is proportional t©0 - Gaussian), and is the deterministic matrix which stands for
min(N,n). Nevertheless, the data rates stipulated by thene Jine-of-sight component assumed known to the receiver.
mutual information are only achievable in practice throughconsider the following transmission model:

the use of high complexity algorithms. In reality, one usual

uses suboptimal decoders such as the Wiener filter, whose r=Hs+n

performance are clearly of interest. The SINR at its output

has been extensively studied in the literature, for theecorr wheren is the additive white Gaussian noise (AWGN) ver-

lated and non correlated cases, [3, 4, 5]. The non-centeréfying En = 0 andEnn* = pIy, ands = [sg, - ,s,] IS
Gaussian case has been considered in [6], where only the fitsie unknown random vector of transmitted symbols with size
order result has been provided. n + 1. Partition the channel matrix

In this paper, we extend previous works to the case when
the channel, not necessarily Gaussian, admits a determinis
tic line-of-sight component. Allowing the random compo-

1/ —a, Y+ A
+1




, then the estimate af, at the LMMSE receiveg, reads:

So=("+b) (Y +B) (Y +B") +ply) "

r,

whereb = ,/K—Ha andB = K+1A The SINRg,, is
thus given by:

Pn=0"+b")Q(y+b),
whereQ is the matrix given by:
Q =

For fixed dimensiongv, n, the study of3,, is rather difficult.
In what follows, we will consider the asymptotic regime de-
fined asV,n — oo such that:

(Y +B) (Y* + B*) + pIy) "

. . N . N
0 < liminf — < limsup — < +o0,
n n

which we will denoten — +oo for notational simplicity. In
this regime, the first and second order statistics3pfwill

It suffices then to determine the asymptotic limit of each of
the fourth terms. From theorem 1.1 in [9], we know that:

b*Qb — (K + 1)b*Thb — 0 almost surely.
Hence, substitutind by K+1a we get:

b*Qb — Ka*Ta —— 0 almost surely.
n—oo

Besides, by the strong law of large numbers for weighted in-
dependent random variables, the crossed terms converge to
zero almost surely [10]. Finally, using standard resultthef
characterization of the convergence of quadratic forme (se
Lemma 2.7 in [11]) , one can easily establish that:

trEQ

n—oo

1
0 almost surely.
n(K +1) ¥

Finally, the theorem follows from the fact that:

Yy Qy —

1

1
7n(K+1) (EQ)—ftrT—>0

n—oo

depend on the following deterministic quantities which we

recall hereafter:

Theorem 1([8]). For anyp > 0, the deterministic system:

5(p) = - TYT(p) 1)
5(0) = ~TrT () )

whereT,, and Tn are the matrices

KAA* \ !
i +6<p>>) )

KAA ) @
(1+4(p))

Tolp) = (o5 + D1+ 3o +

Tn(p) = (P(K +1)(1+6(p)In +

admits a unique solutiof¥, 8) in (0, c0)2.

3. FIRST ORDER RESULT

Theorem 2. Assume thatup,, ||A| < oo, where||.|| is the

spectral norm. In the asymptotic regime, the following kold

true:
Bn — B,, — 0 almost surely
n—+oo
where )
B, = - tr T,, + Ka*T,a,

whereT,, is given in theorem 1.

Proof. To prove Theorem 2, we shall decompgsgas fol-
lows

Bn =b"Qb+b*Qy +y*Qb + y*Qy.

4. SECOND ORDER RESULT -

Beyond the convergencg, — 3, — 0, a natural question
arises regarding the accuracy®f for finite values ofV, n.

This can provide insights about the outage probability Whic

is defined as the probability that the SINR falls below a é¢erta
threshold. To answer to this question, one needs to study the
fluctuations which will be described in the following theore

Theorem 3. Lety = 2Tr(T?), 5 = Imy(T?), S =
diag(T), and S = dlag(T). Let x be the fourth cumu-
lant of the entries oK given byx = E|X; 1|* — 2. Define
A, a, andg, as:

K 2
A,=(1- ————Tr(AA'T?) | — p2(K +1)%3

1 K
Y n

Ay =

2
+ ((1 +6)% - K T2AA*) (v+ Ka*T2a)} :
n

N
1 ~
& = p2(K + 1)2K2E S? " [Taa"TT; ,
k=1
K4 al 2 2 2
(1+64Z\u Tayaj; Tu| ftrS trS.
Then, the following holds true:
1. The sequence of real numbers:
K2 *TZ 2
o om KT
A, 5



satisfies: We consider here the Nakagami-m channel, for which the
distribution ofr; ; is given by:

D L Y Ry
I 0) = R
2. The SINR,, satisfies: wherew is set tol in order to geff| X, ;|> = 1. The cumu-
o lant of X; ; is thus given by:x = 1 + ;% — 2. It should be
\/ o2 (Bn —EB,) —— N(0,1), in distribution. also noted that the Rayleigh distribution correspondinio
n e Rayleigh channel (Gaussian non-line of sight componenmt) ca
be retrieved by setting to 1.

The technical proofs of our results rely on the REFORM _Fig. 1 displays the empirical estimation Bf3,, as well
(REsolvent, FORmula and Martingale) method which ha@sf, with respect ta: = & whenn = 32, N ranging from
been successfully used to establish the CLT for the mutuad 0 32 and the rice factor ang set to X' = 1,p = 0.5.
information and the SINR for centered channels. It merelyn that experiment, we consider the case of Gaussian random
consists in decomposing, — ES3, into a some of difference Vvariables (o = 1), since the asymptotic approximateBf,,
of martingales by choosing the appropriate filtration. Deta does not depend on the cumulant. As expected, the SINR in-
are omitted because of lack of space, but the interesteeread-reases when the number of receiving antennas grows thereby

can refer to the works in [5] and [12]. increasing the channel diversity.
0.9 T T T T

0 < liminf Q2 < limsup Q2 < +oo
n n

2

Remark 1. The expressions of the asymptotic theoretical

. . . . . . 0.8 |-
variance might seem involved. Their numerical computation

is quite easy since it merely depends on the system solutions 07
6 and § which can be computed using standard iterative g8  o06f
i £
algorithms. 3 0|
Remark 2. Theorem 3 describes the asymptotic behavior of % 041

the SINR around its expected moment. Determining the fluc- 0.3
tuations of the SINR around the deterministic approximate
B,, is not immediate since according to the results in [9], 021

Vvn (EB, — B,) = O(1). We prove hereafter a stronger re- 0.1}

— I I I I I I
sult which states thaynE (Bn—ﬁn) tends in reality to zero. 0 01 02 03 04 05 06 07 08 09 1

c

Theorem 4. Under mild technical assumptions, the SINR

. Fig. 1. Empirical and asymptotic means with respect todhe
satsfies: 9

In a second experiment, we study the effect of the rice fac-
tor on the variance of the SINR. Fig. 2 displays the variance
of the SINR forn = 32, N = 8, p = 0.5 andu = 0.6, while
the rice factorK ranges fron0.1 to 5. Note that whenk
Corollary 1. In the asymptotic regime, and under mild tech-grows, the variance decreases, thus reducing the fluatsatio

]E/BTL - Bn, —0
n—oo

As a corollary, we get thus:

nical assumptions, the SINR satisfies: of the SINR. Finally, we represent in fig. 3 the histogram of
& (By — B,) whenK = 2,p =1, N = 16 andn = 32.
% (Bn — Bp) — N(0,1), in distribution. We notice that the behaviour of the SINR around its asymp-
n e totic equivalent is similar to that of a Gaussian random-vari
able.
5. SIMULATIONS 6. CONCLUSION

In this section, we check by simulations the accuracy ofn this paper, we have established the asymptotic Gaussian
our results. We assume a non-centered channel with a linsehavior of the SINR at the output of the LMMSE receiver for

of sight matrixA = [a(a1),-- ,a(any+1)] Wherea(a) = non-centered MIMO channels. We have provided simulations
[1’ eI ’eJ(N—l)oz]T is a directional vector, the; being  that support our theoretical claims.

some given phase variables. The entries of the non-line of

sight matrixX are assumed to satisf; ; = ; ; exp (96; ;). 7. REFERENCES
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