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ABSTRACT

In this paper, we consider compressed sensing (CS) of ldpakse
signals, i.e., sparse signals that have nonzero coeffic@auurring
in clusters. An efficient algorithm, called zero-point attiing pro-
jection (ZAP) algorithm, is extended to the scenario of kl@S.
The block version of ZAP algorithm employs an approximatg
norm as the cost function, and finds its minimum in the sotutio
space via iterations. For block sparse signals, an anafie sta-
bility of the local minimums of this cost function under therfur-
bation of noise reveals an advantage of the proposed digoover
its original non-block version in terms of reconstructiamoe Fi-
nally, numerical experiments show that the proposed dlyorout-
performs other state of the art methods for the block sparst@gm
in various respects, especially the stability under noise.

Index Terms— Compressed sensing, sparse recovery, block

sparse, zero-point attracting projection.

1. INTRODUCTION

Compressed sensing (CS) [1]] [2] addresses the problentrawe
ing sparse signals from under-determined linear measuntsmét
enjoys the advantage of reducing computational complérityne
measurement stage, and therefore has shown a great pateafa
plications such as MRI imagin@][3], wireless communicat[dh
pattern recognitiori [5], and source codihg [6]. On the pasignal
reconstruction in CS, one of the key problems is to retribeespars-
est solution, i.e., the minimuri norm solution to the equations of
linear constraints:

min ||x]jo  s.t. y = Ax, @)
wherex € R" is the unknown sparse signay, € R™ is the
measurement, and typically < n. Unfortunately,lo norm mini-
mization problem is generally an NP hard problem. Previoagkw
including [4] and [[1] have shown that under some conditighs,
sparsest solution can be obtained via convex relaxatioch sis
Basis Pursuit (BP). Another popular method for CS recoveopp
lem is based on greedy pursuits, and its representativéhisgonal
matching pursuit (OMPY]8].

The block spare problem for compressed sensing was first intr

duced by Eldar et.al i [9]. The authors have shown that sagpl

problems over unions of subspaces can be converted int&-bloc

sparse recovery problems. Examples in applications camuredf
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in [10], [11] and [12]. Mathematically, a block-sparse sitjpan be
represented as follows:
T

X = [XT7X§7 7X%] ) (2)
wherex; = [z(iD — D + 1),--- ,z(:D)] is theith block ofx with
lengthD, andn = N x D. A signal isK block-sparse if at mosk’
out of theV blocks of the signal are non-zero. Similarfid (1), the
norm minimization for the block-sparse problem can be fdataa
as:
s.t. y = Ax, 3)

where thd,, , norm of a block vectox is defines as:

min [[x(2,0,

N

I¢llp.q = D (Ilxilp) - (4)

k=1

From [4) it is clear that thé o norm can be interpreted as the num-
ber of non-zero blocks of the signal. Like theminimization prob-
lem (), solving[(B) is also NP-hard. Although all the convemal
recovery algorithms in CS is also applicable to the block @®p
lem, these algorithms cannot take advantage of the esisilatik-
sparse characteristic of sighals. To remedy this, Eldat &ttro-
duced two algorithms i [13] and][9]: tHe ;-opt and the Block or-
thogonal matching pursuits (BOMP). However, like their estors,
these algorithms have their inherit drawbacksi-opt is quite slow
and becomes worse as dimension increases; BOMP is fastéts bu
estimation accuracy is poorer in the presence of noise bation.

In contrast, a recently proposed algorithm called zerovpai-
tracting projection (ZAP)[[14] is an efficient sparse redomstion
method based on an idea different from the aforementionadeso
relaxations and greedy pursuits: The authors choose a brivut-
tion to approximate thé& norm and then finds its minimum in the
solution space via iterations. Their simulations show #Z¥aP re-
quires fewer measurements for exact reconstruction thametter-
enced algorithms in the experiment settings, while haviagtable
computational complexity. It is then interesting to expltime block-
sparse reconstruction methods based on the idea of ZAP.

In this paper, the ZAP algorithm is extended to the block spar
model. The block ZAP algorithm (BZAP) employs a smoothett cos
function to approximate thk, o norm of the block sparse input, and
then minimize this function via iterations. An analysis loé tstabil-
ity of the local minimums of the cost function gives a lowewubd
on the reconstruction error for BZAP than the original ZAgHi@x-
imately by a factor oft /+/D. Simulations show that BZAP outper-
forms other state-of-the-art methods for the block sparsblpm
(BOMP, I2,1-0pt) both in terms of incidence of exact recovery in
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noiseless case, and the mean square deviation in the cas&ef n
contaminated measurements.

The remainder of the paper is organized as follows: section 2

presents the formulation of the BZAP algorithm. In sectioraf8
analysis of thd, stability of the local minimum of the cost function
for BZAP is offered. Section 4 presents simulation resuttspar-
ing BZAP with BOMP, [ ;-opt and the original ZAP. Finally, the
whole paper is concluded in section 5.

Notation. Throughout this paper, we denote vectors by boldface

lowercase letters, and matrices by boldface upper casedetiven
a matrixA, A* is its Hermitian conjugateA ' denotes the pseudo
inverse ofA, that is, if A has full row rank or full column rank, then

-]

Block supportT is a subset of 1... N} indicating the non-zero
blocks ofx, andT“ is its complement. We user to denote the
vector formed by the blocks ir indexed byT’, and A+ the sub-
matrix that lies in the column blocks indexed By Notation|| - ||
takes either the Euclid norm of a vector or theoperator norm of a
matrix.

AT(AAY),
(A"A) 1A,

A has full row rank
A has full column rank

©)

2. BLOCK ZAP ALGORITHM

This section aims to extend the ZAP algorithm to the blockspa
problem. One chief idea of BZAP is to employ a ‘smoother’ func
tion:

N
J(x) =Y F(lxkll) (6)
k=1
to approximate thé o norm ofx. Of course, there is a great liberty
in the choice of the functiod in (@). But to reduce computation
complexity, we select
20|w| — ®w?  |w| < 1.
Fy = = o 7
(w) { 1 elsewhere, 0

in the implementations, since its derivative is linear. Noam (4)
we see that thé o norm ofx can be approximated as:

N
%20 & > Fa(llxl), ®)
k=1
So the problen{({3) is transferred to
N
minZFa(kaH), st. y = Ax. 9)
k=1

Traditional methods of steepest descent together with@eption’
step can be used to solVé (9). That s, inttieiteration, the solution
is updated along the negative gradient direction of thesggaenalty,
which in effect attracts the solution to the zero point:

%(t+1) = x(t) — k- VJ(x(1)). (10)

Table 1. Procedure Outline of BZAP

Input: o, Kk, A,y;

Initialize BZAP: x0(0) = Ay, t = 0.

Repeat: (for time instant);
Updatex (¢ + 1) with the zero attraction by (10) and (8);
Projectx (¢ + 1) back to the solution space Hy {11);
Update the indext = ¢ + 1.

Until: Block ZAP stop criterion is satisfied.

in the iterations, hence the name of zero-point attractiogeption.
The procedure of BZAP is summarized in TABLE 1.

Finally, we remark on the choice of parameters for the BZAP
algorithm:

The choice ofv: According to [T), parameter determines the
range of effect of the cost function. There is a tradeoff m¢hoice
of a since a smalkx leads to a bad approximation of they norm,
and produces many local minimums, while an overly largemits
the effective range. Empirically we have found that BZAPfpens
the best wher /« is around the square root of the variation of the
non-zero entries ix.

The choice of: The step length determines the speed of con-
vergence and the accuracy of the estimation. A largell result in
a fast convergence but a poor estimation. In our simulatiomsde-
creased as the iterations approaches convergence, intorelesure
both speed of convergence and accuracy. More specificadlyetv
k decrease by a factor ef (n < 1) whenever the cost functiof](6)
starts to increase.

Stop conditions The iteration[(ID) and(11) is terminated when
any of the two following conditions is satisfied: (a) The totamber
of reductions of step lengthreaches a predefined numlgér, or (b)
The total number of iterations exceeds a predefined nudber

3. STABILITY OF THE LOCAL MINIMUM POINT

In this section, we consider the problem of estimatin§rom the
following noisy measurements:
y=Ax+v. (12)

While in [15], the authors have discussed the convergendbeof

ZAP iterations, in this work we mainly consider the stalitif local

minimums of the cost function of BZAP under noise perturdati
Supposex satisfies

Va <[z, keT, (13)
define the closed balB(x, d) as a neighborhood &, where

d = min(1/a, %] 1/a).
Let L be the solution space:
L:={xeR":y=Ax},

wherey is the measurement given {n_{12). Then, regarding the sta-
bility of the local minimizer of[(9) in the noise-contamieat mea-

Sincex(t + 1) is generally not in the solution space, the next step issurements, we have the following theorem:

to project it back to the hyperplane afx = y:
x(t+1)=Px(t+ 1)+ Q, (11)

whereP = I — A'A is named as projection matrix afl = A'y.
The attraction stefy (10) and projection sfeg (11) are usechately

Theorem 1. Supposex is a block sparse signal and.r has full
column rank, then the minimizet of function [®) in the region
L B(x,d) satisfies

% = x| < 2VN(1L+ | AL Aze|)[ATV] + [|ALv].  (14)



Proof. Let

fx =% — % (15)

be the difference between the local minimum of the cost fonct

and the real signal. The aim is to boujpdix|| with v. Obviously,
l[6x[| < [loxr[| + (|7 |- (16)

Then we will derive bounds offx || and||dxre || respectively:
First, consider the bound dpdxr<||. If x € B(x,d), then

IIxr — %kl <d, k=1...N,
and it follows from the definition of that
lIxkll > 1/c, keT;
lIxkl < 1/e, keTe. 17)

Therefore, with the cost functions defined|[ih (€], (7), weedhav

allxrellan < S Fa(llxel) < 2alxre 2,1 (18)
keTe
Next, we will prove
[0x7e| < 2V N|ATv|| (19)
by differentiating between the following two situations:
1) If |ATv]|| > d, then [I9) automatically holds.
2) If |ATv|| < d, we have
ll0xre || < [|6x7e]l2,1 (20)
1
<= > Fallloxs]) (21)
keTe
!
= min — > Fa(lxkl),st x| <d, Ax=v (22)
keTe
< min 2[|x|[2,1,S.t]|x]| < d,Ax = v (23)
< 2|AMV|2a (24)
<2V N|ATv], (25)

where the definition ofx is used in the derivation of (22), relation

(@8) in the derivation of{23), and the fact thaf v is a feasible point
for the constraint of(23) in the derivation 6f{24). To camt, [19)
holds in both situations.

Finally, we derive a bound ojffxr||. Since

Ardxr =v — Apedxre,
we have
OXT = A;«(v — Apcdxre),
therefore by triangular inequality and {19),
oxr| < [|ALV] + | AL Ageoxre||
< |ALV] + 2V N[ AL Aze[[|ATv]2.  (26)
Then, combining[(25) an@(P6) yields the final resulil(14). O

Now, we remark on the improvement of BZAP over ZAP: Since
ZAP can be seen as tlie¢ = 1 special case of BZAP, when theorem

1is applied to ZAP, the bound becomes
I% - x|| < 2vn(1 + | AL Az |)|ATV] + ALVl (@7)

It will be shown later that the terjAl.v|| in (I4) is equivalent
with the error of a so-called ‘oracle estimator’, which giveelower

4. SIMULATION RESULTS

In this section, the proposed BZAP algorithm is comparedh wie
conventional ZAP, BOMP, and} -opt algorithm. In all examples,
the measurement matri has40 rows andl00 columns, with inde-
pendent entries following the distribution 8f(0, 1). The block is
of the sizeD = 4. The locations of nonzero blocks in the unknown
sparse signat are randomly chosen, and the values of nonzero ele-
ments are independently drawn from the Rademacher digtibu
For the BZAP algorithm, we set = 1, « = 1, n = 0.1,
Cy1 = 4, andC> = 1200; Therefore it's easily checked that con-
dition (I3) in theorem 1 is always satisfied. For ZAP dnd-opt,
we adopt the same stop conditions and control of step sizethe
implementation of BZAP.

4.1. Recovery rate for different block sparsity

In this first experiment, the exact recovery rate for différalgo-
rithms in the noiseless case is compared. We define exaateigco
when the squared deviatipg — x||?/||%||* is smaller thani0~°.
One thousand independent simulations are conducted talatdc
the empirical exact reconstruction rate.

As is shown in Fig.1, the proposed BZAP algorithm outperform
all the other referenced algorithms in the experiment damdi That
is, BZAP can achieve exact reconstruction of sparse sigunaén
there are more non-zero elements: while other algorithnastix
reconstruct the signal whei is no more than 3, BZAP can achieve
this whenK is up to 4. ZAP gives a poor estimation because it is
the only one of the algorithms that doest not employ the bipzkcse
nature of the signal.

4.2. Mean square deviation (MSD) in the presence of noise

In this experiment, the noise-contaminated measuremefidsmu-
lated as in[(IR). The observational signal-to-noise re@bR) is

defined as i
SNR = 10lg (”AX! ) .
(vl

In the simulation the SNR ranges frohddB to 50dB. The noise
vector v is first generated with independent entries following the
normal distribution and then re-scaled to the fit the desigdieR.

To compare the reconstruction error, the mean-squaretagvia
associated with different algorithms is calculated, whikiefined
as follows:

(28)

Ell% —x||?
E||x[>
To calculate the empirical expectation [n29), we take terage
of the squared norms oveé6® independent simulations.
Regarding the MSD lower bound, consider the following ora-
cle estimator: suppose the supp®ris known, then the minimum
variance unbiased estimatesofs the least square estimate:

MSD = (29)

x=Aly. (30)
The reconstruction error {sA!.v||, therefore the MSE is given by
E(||% — x||*) = o*tr[(AT A7) ], (31)

which should be lower than the achievable MSE for any prakttic

bound on the mean square error for the recovery problem. fileg 0 estimators.

term,2y/n(1+ || AL Arec|))||ATv| in @2) is reduced by BZAP by a

The simulation results are shown in Fig.2. In this experithen

factor ofv/D in (Id). This reveals that the reconstruction via BZAP the proposed BZAP algorithms again outperforms other estira

is more stable than via ZAP in the case of noisy measurements.

in terms of MSD, and in fact closely follows the oracle bouiithe



BOMP algorithm, although guarantees higher exact reconagyin
the noiseless case, is very unstable under the perturbaftiorise.

5. CONCLUSION

In this paper, we have extended the ZAP algorithm to the block
sparse problem, by introducing a cost function to approtenthae
l2,0 norm of the signal. The stability of the local minimum of trest
function in BZAP is studied, which reveals an advantage oABZ
over the original ZAP by employing block sparsity of blockasge
signals. Finally, simulation results show that BZAP outfpems
BOMP, I 1-opt and the original ZAP both in terms of the incidence
of exact recovery in the noiseless case, and the mean sgevdee d
tion in the noisy measurements.
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Fig. 1. Recovery of an input signal from = Ax, wherex is a
block sparse signal with a block sparsity levelfof
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Fig. 2. Recovery of an input signal from = Ax + v, wherex is a
block sparse signal with a block sparsity levelf6f= 4.
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