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ABSTRACT not be biorthogonal t&,. We show that given such a pair

Given a lowpass filter, finding a dual lowpass filter is an essenOf lowpass filtersf andy, the dual filterd that satisfies the

tial step in constructing non-redundant wavelet filter mank above conditions (i) and (ii) simultaneously can be obtaine

Obtaining dual lowpass filters is not an easy task. In this pa§traightforwardly. Since finding the pafy, g) that satisfies

per, we introduce a new method called committee algorithrrga) _and (b) independently is.much easier than fin_ding the dual
that builds a dual filter straightforwardly from two easily- d directly, our method provides an easier algorithm to con-

constructible lowpass filters. It allows to design a widegen struct non-redundant wavelet FBs. We refer to this algorith

of new wavelet filter banks. An example based on the familf S tlhecodmm|ttte§ alglorlthm it lqorith th
of Burt-Adelson’s 1-D Laplacian filters is given. n order fo develop our commitiee algorithm we use the

_ _ _ Laplacian pyramid (LP) algorithm and its polyphase repre-
Index Terms— Laplacian pyramid, non-redundant filter sentation. We briefly review these along with other relevant

bank, polyphase representation, wavelet filter bank concepts in Section 2. Our main results are presented in Sec-
tion 3 together with an example illustrating our findings. We
1. INTRODUCTION summarize our results in Section 4.

A filter bank (FB) consists of the analysis bank and the syn- 5 | p AND ITS POLYPHASE REPRESENTATION
thesis bank, which are collections of, sayfilters linked by

downsampling and upsampling operators, respectivélyA1]. We consider only the FBs with finite impulse response (FIR)
FB is typically referred to aswavelet~B if each of its analy- filters that have the perfect reconstruction (PR) prop&Hiy.

sis and synthesis banks has exactly one lowpass filter and tF®s are useful as they provide fast algorithms. We Aise
rest of them are all highpass filters. Designing non-redohda denote then x n dilation matrix for sampling, where is
wavelet FBs is an important problem since it leads to the conthe spatial dimension. The PR property holds only it
struction of biorthogonal (or Riesz) wavelet bases unddlrwe ¢ .= | det A|, wherep is the number of filters in each bank as

understood constraints| [1-3]. before. Ifp = ¢, the FB is callechon-redundantotherwise,
Such a design problem is often reduced to the problert js called redundant.
of extending a matrix with Laurent polynomial entries [4]. | The Laplacian pyramid is introduced by Burt and Adel-

this approach, an essential step is to find a dual lowpassdfilte son [6]. The LP algorithm has analysis and synthesis pro-
of a given lowpass filtek so that (i). andd are biorthogonal, cesses. One begins the LP analysis process with two FIR low-
(ii) d has positive accuradycf. see Section 2 for definition), pass filters: the compression and prediction filters. Usteg t
and optionally (iii)d has some other properties desirable forcompression filtef,, one obtains the coarse coefficients that
the specific design. Although a filter that is only biorthogbn approximate the input signal. The prediction filteis used
to h, or afilter that has only positive accuracy can be obtainegor predicting the original signal from the coarse coeffitge
readily, finding the filter that satisfies both propertiesafid ~ One computes the detail coefficients by subtracting the pre-
(i) at the same time is not easy. The filters with biorthogo-dicted signal from the input signal, and then stores themgalo
nality property but not with positive accuracy lead to FB$ bu with the coarse coefficients in place of the original sigithle
not to wavelet FBs. standard LP synthesis process recovers the original signal

In this paper we show that the dual filiécan be obtained reversing the above subtraction step. It is well-known that
by first finding two lowpass filterg andg that have a “partial P representation isesdundant there are more coefficients
responsibility”: (a)f is biorthogonaltd: but it needs nothave after the LP analysis process than those in the input signal.
positive accuracy and (lg) has positive accuracy butitneeds  The polyphase decomposition inl [7] is a widely used

1In designing non-redundantvaveletFBs, having lowpass filters with method of tranSformmg a filter (Or S|gnal) Into= |detA|

positiveaccuracy is essential as the positive accuracy guarartaealtthe  TILETS _(Or signgls) running at the sampling ra@. Below
other filters are highpass|[5]. we briefly review the polyphase representation of LP and
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refer [8/ 9] for details. We leF be a complete set of represen-

tatives of the distinct cosets of the quotient grdtip/ AZ™

The synthesis operatd(z) in (@) corresponds to the
case wheré&/(z) = 0. The LP pair(ALp(z),S0(z)), with

containing0, andI'* be a complete set of representativesthe trivial synthesis operator, is not a wavelet FB sinceenon

of the distinct cosets ot (((AT)~1Z")/Z™) containing0.
HereA” is used to denote the transpose\ofThen both the
setsI" andI'™ haveq = | det A| elements. We use

V():Ovyla"' s Vg—1

to denote the elements bf
The (polyphase) LP filters are

G(2):=[Gyy(2),Gp (2), ...
H(z):=[H,,(2), Hy,(2),...

LGy (2]
9 Hl/q—l (Z)]a

whereG, and H,, are thez-transforms[[10] ofg, andh,,
respectively, with

gv(m) :== g(Am+v), h,(m):=h(Am—v), VmeZ",
and
hrrle) = { 1, — S ] |
So(2) = [ 6(2) I ], (1)

are the (polyphase) analysis and trivial synthesis opesato
LP, respectively. Here and below we denoteithe m iden-

tity matrix usingI,,. Sinceh andg are FIR filters, the entries

of the above operators are all Laurent polynomials.in

of the filters in the synthesis bask(z) is highpass.

There are a few existing methods for designing wavelet
FBs from LPs. The wavelet frame theory was used in [8, 13]
to reinterpret the LP process as a wavelet process, and-the as
sociated wavelet FB was constructed along the way. However
the resulting wavelet FB is redundant and the filters are not
necessarily FIR unless the LP filters are biorthogonal. The
paper[[9] concerns about transforming the given LP to a-criti
cal representation (CLP). A CLP of a given LP is said to exist
if there exists ag x (¢ + 1) matrix R(z), called the reduc-
tion operator, whose entries are the Laurent polynomiais in
such that (ilR(z)ALp(z) is invertible, and (ii) the first row of
R(z)ALp(z) is the same aB(z). We also recall that a CLP is
called ECLP if the reduction operator takes a simple special
form. The ECLP enables us to obtain a critical representa-
tion effortlessly by eliminating a redundant portion of thie
In the same article, it is shown that a special class of ECLP
called interpolatory is available whenever the LP compogss
filter satisfies

HV[—!—I(Z) = 1/\/(_1’ ®)

which includes the LP compression filterbeing interpola-
tory as a special case, is satisfied. It turns out that the-inte
polatory ECLP also provides a way to design non-redundant

forsomes € {1,...,q},

In this paper we normalize the lowpass filter so that itsFIR wavelet FBs from LPs with the conditio (3).

coefficients sum up tg/q. The LP compression filter is called
interpolatoryif Hy(z) = 1/,/q. We also assume that both LP
filters havepositive accuracy We recall that for an integer
m > 0, the filterh hasaccuracym if the number of zeros of -1 Theory

H(e'), the Fourier transform of, atw € I"\{0}ism [1.  |tis easy to see that a CLP exists if and only if there exists
The pair(ALp(2), So(2)) of the above LP operators can be 3 non-redundant FIR FBA¢ 1 p(2), Sorp(2)) such that the
considered as the polyphase representation of a FB. The fagist row of Ac p(2) is the same as the given LP compres-
that LP is redundant can be seen also from these polyphaggyn filter H(z). It is also easy to see that if such a non-
representations. The analysis operatpp(z) and the trivial  redundant FIR FB exists, then there exists Laurent polyno-

synthesis operat@y (=) clearly satisfy the perfect reconstruc- mials f (2), fu, (2), -+, fu,_, (2) such that
tion propertySy(z)Arp(z) = I4, butit is oversampled since
Arp(z) andSy(z) are not square matrices. They are of sizefy,(2)Hy, (2)+ fu, (2)Hy, (2) 4+ -+ fo,_, (2)Hy,_, (2) = 1.
(¢ +1) x gandg x (q + 1), respectively. (4)
For a given analysis operatby (), there existinfinitely =~ SINCeF(z) = [fy,(2), fu, (), , fu,_.(2)]" can be con-
many different synthesis operators that satisfy the peréec  sidered as the polyphase representation of a filter fsalye
construction property. It is well-known {][8,[9,111,112]) tha above condition betweeR(z) andH(z) is equivalent to the
the most general LP synthesis operapr (z) is given as the  biorthgonality of the filtersf andh. Furthermore it is easy to
form see that the filtef whose polyphase representation satisfies
(@) is necessarily lowpass (see, for example, [9]).
The next theorem shows that the above condition is also
sufficient to obtain a wavelet FB and that there is a simple
algorithm which produces the wavelet FB.

3. COMMITTEE ALGORITHM

SLp(2) = [ 6(x) +V(:)B(z) I, -V(HG) |, ()

with B(z) := 1 — H(2)G(2), V(2) := U.(2) + U4q(2)G(2),
whereu.(z) andu,(z) are the parameter matrices of sizel
andq x g, respectively, consisting of the Laurent polynomial Theorem 1 Suppose that the LP compression filter satisfies
entries. We note that the LP filters are biorthogonal if and4) for some Laurent polynomiafs, (z), fu, (2), - - , fu, . (2)-
only if B(z) = 0. Then there exists a CLP with a wavelet FB.



Proof:  LetV(z) = [fu,(2), fui(2),-++, fu,_.(2)]".  3.2. Algorithm
Then, fromdet(I, — V(2)H(z)) = 1 — H(2)V(z) = 0 and i )
Syp(2)ALp(z) = 1,, and from the form of.p(z) given in Theorem 1 provides a new method to de§|gn (non-re_dundant
@), the rank o, — V(2)H(=) has to be; — 1. Thus, there are FIR) wavelet FBs. In par_tlcular we optaln an algorl_thm to
exactlyq — 1 linearly independent columns of — V(=)H(z) construct a dual lowpass filter from a given lowpass filter.
of theseq — 1 columns. Suppose that titeth column can |yt 1, a lowpass filter with positive accuracy.

be written as a linear combination of the rest of the columnsg oyt 4, a dual lowpass filter with positive accuracy that is
Then there exists a coefficient vector biorthogonal toh.

¢ =ler, )b, = era, e Step 1:Find a lowpass filteyf that is biorthogonal té.
Step 2: Choose a lowpass filtgrwith positive accuracy.

_ / mT _ -
such tha(l, —V(z)H(z))[¢", 1, ¢"]" = 0. Thus the(k+1)-th Step 3: Compute the polyphase representatidn), G(z) (as

column of i column vectors), anH(z) (as a row vector) of, g, andh.
1o 00 Step 4: Setd as the filter whose polyphase representation is
s =sie(z) | 0 TS0 G() + F(2)(1 - H(2)G(2)).
0 0 < Igp We refer to the above as the committee algorithm as the
. , ) filters f andg (and the input) work together to build the dual
is zero vector. SincBp(z)ALp(z) = I, and of h. Thefilter f in Step 1 can be found, for example, by using
I, c 0 I, —c 0 ] the technique of Grobner basesl[14]. There are many pessibl
0 1 0 0 1 0 =1, choices for the filtey in Step 2, and one possibility is to take
0 < I,k 0 —c" I, the inputh asg. Once specifi¢f andg are chosen in Steps 1

and 2, the dual filted in Step 4 is uniquely determined.
We recall that for a highpass filtéy the number of zeros
of L(e™), the Fourier transform of, atw = 0 is referred

if we defineSc 1, p(z) as the submatrix of(z) obtained by
deleting its(k + 1)-th column, and\c1,p(z) as the submatrix

of 1 0 0 0 to as thenumber of (discrete) vanishing momeatghe filter
0 I, —c 0 [ [8]. It is well-known (see, for example, |[5]) that for a non-
A=) =1, 0 1 o | Acp(2) redundant FIR wavelet FB associated with the above pair of

lowpass filtersh andd with accuracyx ands respectively, the
synthesis wavelet filters have at leastanishing moments,
and the analysis wavelet filters have at leasanishing mo-
ments. Sincel is determined byf, g andh, expressings in
terms of the properties of more attainalfley andh is desir-
able if possible. The next theorem shows that it can be done
in a simple way. We omit its proof as it can be obtained by
scrutinizing the proof of Theorem 2 inl[9].

0 0 —c” Ik
by deleting its(k + 1)-th row, we haveScrp(2)AcLp(z) =
I,. Itis easy to see that the first row &f 1 p(2) is H(z).
Hence the CLP with the FB\c1,p(z),Scrp(z)) exists.

Let us now show that the FR\cp(z),ScLp(2)) is a
wavelet FB. Letl be the filter associated with the polyphase
representatiorG(z) + V(z)B(z). Since the FB is non-
redundant, it suffices to show that the filtérsandd have
positive accuracy (see for examgle [5]). Siricés assumed Theorem 2 Let 3; and 3, be positive integers. Suppose
to have positive accuracy, all we need to show is thatas that the accuracy ofy is 51, and the number of zeros of
positive accuracy, which is equivalent to (cf. Result Zifj [9 g — H(e)G(e) atw = 0is fo, whereH (¢*) andG(e™)
G(1) +V(1)B(1) = =1 wheret = [1,--- ,1]7 € R4. This ’

_ _ Va _ are Fourier transforms ok andg, respectively. Then the dual
is true since, no matter what the valiig) is, we have filter d in the committee algorithm has at leasin{;, 82}
G(1) + V(1)B(1) = G(1) + V(1)(1 — H(1)G(1)) accuracy, hence the analysis wavelet filters in the wavelet
FB generated by the paifh,d) have at leastnin{3;, 82}
" +v(1)(1 Lyrd 1) = Ly vanishing moments
Vi Vi Vi@V k |
where the fact that the LP filtetsandg have positive accu- We finish this section by illustrating our findings using an
racy is used for the second equality. example.

It is easy to see that if the LP compression filter satisfie§*xample: Letus consider the 1-D dyadic case with the Gaus-
the condition[(B) for the interpolatory ECLP, then the set ofSian filters suggested by Burt and Adelsoh [6]. We assume
Laurent polynomial{ f,(z) : v € T'} satisfying [@) always that we are given the lowpass filterof the formh = /2 h
exists as one can choogg, ,(z) = \/gandf,, ,(z) =0 where
for all & # . Hence our result here can be considered as a ~ 1 - _ 1
generalization of the interpolatory ECLP methodih [9]. h(0) =a, h(=1)=h(1)=7, h(=2)=h(2)= 7~
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Fig. 1. Scaling functions associated with the filtér&ndd
for a = 0.6 in the example.

whereq is a scalar parameter. For this lowpass filter, a sim-
ple computation shows that, as longag 0.25, the Laurent

polynomialsfy(z) = V2 15 andfi(z) = V2 22=1 (2 + 1)
satisfy the condition[{4). Below we assume thatt 0.25.

Although the filter f associated with the polyphase repre-
sentation[fo(z), f1(2)]" is always lowpass, its accuracy is

[1]

(2]

(3]

[4]

[5]

6

[7]

zero except the case = 0.75, hence it cannot be used as [€]

the dual lowpass filter for constructing wavelet FBs dingectl
unlessa = 0.75. However in the committee algorithm, an-
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