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ABSTRACT

In this paper, the problem of fundamental frequency estima-
tion for real harmonic sinusoids is addressed. By making use
of the subspace technique and Markov-based eigenanalysis,
an optimally weighted harmonic multiple signal classification
(OW-HMUSIC) estimator is devised. The fundamental fre-
quency estimates are computed in an iterative manner. The
performance of the proposed method is derived. Computer
simulations are performed to compare the proposed approach
with nonlinear least squares and HMUSIC methods as well as
Craḿer-Rao lower bound.

Index Terms— Fundamental frequency estimation, sub-
space method, harmonic signal, Markov optimum weighting,
multi-pitch

1. INTRODUCTION

Fundamental frequency estimation of harmonic sinusoids is
a classical but active problem in spectral analysis research,
finding applications in a wide range of areas such as speech
and audio signal processing, automotive control systems and
angular speed determination of rotating targets in radar. Due
to the importance of this problem, kinds of optimum funda-
mental frequency estimators have been devised [1] – [3]. In
most cases, these methods are based on the weighted least
squares refinement, which is susceptible to accuracy of the
respective frequency estimates and their covariance estimate.
The nonlinear least squares (NLS) estimator is statistically
efficient. However, due to the decoupling difficulty [4], it
cannot deal with the multi-pitch scenario. In [4] – [5], the
harmonic multiple signal classification (HMUSIC) algorithm
is proposed for single-pitch and multi-pitch estimation. How-
ever, the HMUSIC estimation accuracy cannot attain Cramér-
Rao lower bound (CRLB) [6].

To improve the HMUSIC performance, we propose the
optimally weighted HMUSIC (OW-HMUSIC) estimator with
the use of the Markov-based eigenanalysis. First, we tackle
the single-pitch estimation. There have been a number of
weighted subspace-based estimators [7] – [8] using the co-
variance matrix in the literature. Nevertheless, it is pointed
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out in [9] that the subspace methods based on data matrix
perform better than those utilize covariance matrix, espe-
cially when the number of data points is relatively small.
In addition, it is difficult for such estimators to deal with
harmonic frequency estimation due to their subspace-fitting
schemes. Thus, different from them, our estimator is based
on the singular value decomposition (SVD) of data matrix
and the HMUSIC estimation. To facilitate the statistical error
analysis, we modify the HMUSIC formulation. Then we an-
alyze the perturbation of the orthogonality error, and derive
the optimum weighting matrix. The fundamental frequency
estimates are computed in an iterative manner. Furthermore,
we extend the OW-HMUSIC algorithm to the multi-pitch
case. Simulation results show that there is obvious improve-
ment of the proposed scheme over [4] – [5]. Especially in
the single-pitch scenario, the OW-HMUSIC performance can
attain the CRLB. In this work, we perform estimation for the
real harmonic sinusoids instead of the complex ones.

The rest of this paper is organized as follows. The pro-
posed estimators for single-pitch and multi-pitch sinusoids
are developed in Section 2. The statistical properties of the
orthogonality error is analyzed, and the optimum weighting
matrix is derived. Its theoretical estimation performanceis
also analyzed. In Section 3, simulation results are included to
show the performance of the proposed approach by compar-
ing with the NLS and HMUSIC methods as well as CRLB.
Finally, conclusions are drawn in Section 4.

2. ALGORITHM DEVELOPMENT

2.1. Single-Pitch Estimation

Consider the real harmonic sinusoidal signal:

x(n) = s(n) + q(n), n = 0, 1, · · · , N − 1, (1)

s(n) =

L
∑

l=1

αl cos(lω1n+ φl), (2)

whereω1, Al andφl are unknown parameters representing
the fundamental frequency, the amplitude and initial phaseof
the(l−1)-th harmonic, respectively, whileq(n) is an uncorre-
lated Gaussian random process with mean zero and variance



σ2. The objective is to estimateω1 from theN samples of
x(n).

We first define [8]

xc(m1,m2) = x(m1 +m2 +M), (3)

xb(m1,m2) = x(m1 +M − 1−m2), (4)

y(m1,m2) =
1

2
[xc(m1,m2) + xb(m1,m2)], (5)

for m1 = 0, 1, · · · , N − 2M , m2 = 0, 1, · · · ,M − 1, and
express (5) in matrix form as

Y = S+Q, (6)

whereY is theM×(N−2M+1) data matrix with elements
[Y]m,n = y(n − 1,m − 1), L < M < (N + 1)/2. The
matricesS andQ are the noise-free and noise components of
Y, respectively. Following [8],S can be factorized as:

S = AΓHT , (7)

where

Γ = diag(α1, α2, · · · , αL), (8)

A = [a1, a2, · · · , aL] , (9)

al =

[

cos(
lω1

2
), · · · , cos((M −

1

2
)lω1)

]T

, (10)

andH is an(N − 2M + 1) × L matrix. On the other hand,
Y can be decomposed using SVD as

Y = UΛVT = [Us Un]

[

Λs 0

0 Λn

]

[Vs Vn]
T , (11)

whereUs ∈ R
M×L, Λs ∈ R

L×L, Vs ∈ R
(N−2M+1)×L

and Un ∈ R
M×(M−L), Λn ∈ R

(M−L)×(M−L), Vn ∈
R

(N−2M+1)×(M−L) are the components of signal and noise
subspaces, respectively. Then the real-valued HMUSIC es-
timate ofω1, denoted bŷω1, is obtained by minimizing the
orthogonality error betweenA andUn:

ω̂1 = argmin
ω̃

P (ω̃) = argmin
ω̃

||ATUn||
2
F, (12)

with ω̃ being the variable forω1, and|| · ||F denotes the Frobe-
nius norm. Like the complex-valued HMUSIC algorithm in
[5], this kind of estimator is not statistically efficient. To over-
come this problem, we introduce Markov optimum weight-
ing. Due to the non-uniqueness of the columns ofUn (in
fact, any linear combination of these vectors still spans the
noise subspace), we cannot analyze their statistical proper-
ties. Thus, it is necessary to reformulate the HMUSIC cost
function with a different but equivalent form as follows:

ω̂1 = argmin
ω̃

||ATUn||
2
F

= argmin
ω̃

||ATUnU
T
n ||

2
F

= argmin
ω̃

eTe, (13)

wheree denotes the orthogonality error vector of the form
e = vec(ATUnU

T
n ) with vec being the vectorization oper-

ator. Using the results of [10] and additional manipulation,
we derive the first-order perturbation ofe originating from
UnU

T
n as:

e ≈ −vec
(

ATUsΛ
−1
s VT

s ∆YTUnU
T
n

)

= −(UnU
T
n )⊗ (ATUsΛ

−1
s VT

s )vec(∆YT )

= −
1

2
(UnU

T
n )⊗ (ATUsΛ

−1
s VT

s )(T1 +T2)q

= Dq, (14)

where⊗ stands for the Kronecker product,∆Y is the pertur-
bation ofY, whileq, T1 andT2 are defined as

q = [q(0), q(1), · · · , q(N − 1)]
T
, (15)

T1 =
[

0(MN ′)×M T′
1

]

, (16)

T2 =
[

T′
2 0(MN ′)×M

]

, (17)

with N ′ = N − 2M + 1. TheT′
1 andT′

2 are defined as

T′
1 =

[

ET
1 · · · ET

M

]T
, T′

2 =
[

ET
M · · · ET

1

]T
, (18)

with Ei = [0N ′×(i−1) IN ′×N ′ 0N ′×(M−i)], i = 1, · · · ,M .
Based on the above perturbation eigenanalysis, the Markov
optimum weighting matrix is determined as [11]

W =
[

E
{

eeT
}∣

∣

ω̃=ω1

]†

σ2 ≈
(

DDT
)†

, (19)

where† stands for pseudoinverse. Thenω1 is estimated as

ω̂1 = argmin
ω̃

J(ω̃), (20)

whereJ(ω̃) = eTWe. Noting thatW is a function of the
unknownω1, the following relaxing procedure is employed:

• Step 1. SetW as the(ML)-order identity matrix.
• Step 2. Find̂ω1 by searching for the minimum of (20).
• Step 3. ComputeW using (19).
• Step 4. Repeat Steps 2 and 3 until a stopping criterion

is reached.

The above estimator is termed as the OW-HMUSIC method.

2.2. Multi-Pitch Estimation

In the multi-pitch scenario, the signal model becomes

x(n) =

K
∑

k=1

L
∑

l=1

αk,l cos (lωkn+ φk,l) + q(n), (21)

with ωk, {αk,l} and{φk,l} being unknown fundamental fre-
quency, amplitudes and initial phases of thek-th pitch. Here
we assume that the number of harmonics,L, is the same for
all pitches for simplicity. However, the following approach,



when combining with the joint order estimation technique [5],
can also deal with the case of different harmonic numbers.

To estimateωk, first we construct the same data matrix as
(6), whose left singular vectors associated with its(M −KL)
smallest singular values span the noise subspaceUn. Then
the HMUSIC estimates are got from theK main minima of:

P (ω̃) = ||ATUn||
2
F. (22)

Taking the HMUSIC estimates as initial values, constructing
the weighting matrix of (19) for each of them, and search-
ing for its closest minimum of (20), we can solve the OW-
HMUSIC estimates of the multi-pitch fundamental frequen-
cies in an iterative way similar to the single-pitch estimation.

2.3. Performance Analysis

The variance of the OW-HMUSIC approach is derived as
follows. From the above development, we can find that
the single-pitch and multi-pitch estimation are both uncon-
strained optimization problems with the cost functionJ(ω̃) of
(20). Definingξk = ∂e

∂ω̃

∣

∣

ω̃=ωk

, k = 1, · · · ,K, and applying
the variance formula for unconstrained optimization prob-
lems at sufficiently small noise conditions [12], we compute
the variance of the OW-HMUSIC frequency estimates as

var(ω̂k) = ξTk WΦWξk
/

(ξTk Wξk)
2 , k = 1, · · · ,K, (23)

whereΦ is the covariance matrix ofe:

Φ = cov (e)|ω̃=ωk
= E

{

eeT
}∣

∣

ω̃=ωk

≈ σ2
(

DDT
)
∣

∣

ω̃=ωk

. (24)

3. SIMULATION RESULTS

In this section, we perform Monte Carlo simulations to eval-
uate the fundamental frequency estimation performance of
the proposed approach. The estimation accuracy is evalu-
ated using the root mean square error (RMSE), defined as

RMSE =

√

1
SK

∑K

k=1

∑S

s=1(ω̂
(s)
k − ωk)2, withωk andω̂(s)

k

being the true fundamental frequency and its estimate, respec-
tively, andS being the number of trials. We use the number
of iterations as the stopping criterion in the OW-HMUSIC al-
gorithm, which is assigned as 3. The row number of the data
matrix is set asM = ⌊0.4 N⌋, which is found empirically
to result in good performance. All the results provided are
averages of 1000 independent runs.

First, we provide an example of single-pitch estimation.
The harmonic signal consists ofL = 4 sinusoids with funda-
mental frequency ofω1 = 0.5. The parameter setting is listed
in Table 1. Fig. 1 shows the RMSE of the NLS [4], HMUSIC,
OW-HMUSIC methods and CRLB, withN = 50 and 100.
It is seen that both NLS and OW-HMUSIC estimates attain
the optimum accuracy whenSNR ≥ 5 dB. For the OW-
HMUSIC algorithm, the empirical RMSE value also agrees

well with its theoretical calculation of (23), which is equal to
the CRLB. Furthermore, there is about3− 4 dB gap between
the RMSE of the HMUSIC scheme and CRLB.

l Frequency Amplitude Initial Phase
1 0.5 2.0 1
2 1.0 1.5 2
3 1.5 2.5 3
4 2.0 4.0 4

Table 1. Simulation Setting of Single-Pitch Estimation
The next example is about multi-pitch estimation. The

harmonic signal consists ofK = 2 pitches, each withLk = 2
tones. The parameter setting is listed in Table 2, and Fig.
2 shows the RMSE results withN = 50 and 100. From
these figures, we can see that the RMSE of NLS method keeps
nearly constant with SNR, which is similar to [4]. Although
the OW-HMUSIC performance cannot reach CRLB in the
multi-pitch estimation, it is superior to the HMUSIC scheme
by 3 − 4 dB. In addition, when the data length is larger, the
HMUSIC scheme performs better with respect to CRLB and
threshold SNR.

k lk Frequency Amplitude Initial Phase
1 1 0.3 2.0 1

2 0.6 1.0 2
2 1 0.5 2.0 3

2 1.0 1.0 4

Table 2. Simulation Setting of Two-Pitch Estimation

4. CONCLUSION

The OW-HMUSIC algorithm for fundamental frequency es-
timation of real sinusoids is proposed. In our approach, the
Markov optimum weighting is utilized in minimizing the or-
thogonality error, which is derived from the perturbation anal-
ysis of orthogonality error. Simulation results show that the
proposed method improves the accuracy of the conventional
HMUSIC scheme, and can attain CRLB for single-pitch es-
timation. Further works include harmonic order selection,
study of closely-spaced pitches in the multi-pitch scenario,
and the application in speech and audio signal processing.
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