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ABSTRACT out in [9] that the subspace methods based on data matrix
In this paper, the problem of fundamental frequency estimaF-’_erform better than those utilize covariance matrix, espe-
tion for real harmonic sinusoids is addressed. By making us(é'a”y vyhen Fh? ”“_”.‘ber of data pom.ts Is relatively small.
of the subspace technique and Markov-based eigenanalysLQ, addlt!on, It s dn‘hcult. for.such es'umatqrs to deal W.Ith
an optimally weighted harmonic multiple signal classifioat armonic frequency estimation due to their subspacesittin

(OW-HMUSIC) estimator is devised. The fundamental fre.Schemes. Thus, different from them, our estimator is based
guency estimates are computed in an iterative manner. T the singular value decomposition (SVD) of data matrix

performance of the proposed method is derived. Comput&nd the HMUSIC estimation. To facilitate the statisticaber

simulations are performed to compare the proposed approa@lﬁalys's' we modify the HMUSIC formulation. Then we an-

with nonlinear least squares and HMUSIC methods as well & yze the perturpatlc_)n of the_ orthogonality error, and weri
Cramér-Rao lower bound. the optimum weighting matrix. The fundamental frequency

estimates are computed in an iterative manner. Furthetmore

Index Terms— Fundamental frequency estimation, sub-we extend the OW-HMUSIC algorithm to the multi-pitch
space method, harmonic signal, Markov optimum weightingease. Simulation results show that there is obvious improve
multi-pitch ment of the proposed scheme over [4] — [5]. Especially in

the single-pitch scenario, the OW-HMUSIC performance can

1. INTRODUCTION attain the CRLB. In this work, we perform estimation for the

real harmonic sinusoids instead of the complex ones.
Fundamental frequency estimation of harmonic sinusoids is The rest of this paper is organized as follows. The pro-
a classical but active problem in spectral analysis resgarcposed estimators for single-pitch and multi-pitch sindsoi
finding applications in a wide range of areas such as speechre developed in Section 2. The statistical properties ®f th
and audio signal processing, automotive control systerds arorthogonality error is analyzed, and the optimum weighting
angular speed determination of rotating targets in radae D matrix is derived. Its theoretical estimation performaise
to the importance of this problem, kinds of optimum funda-also analyzed. In Section 3, simulation results are inaude
mental frequency estimators have been devised [1] — [3]. IBhow the performance of the proposed approach by compar-
most cases, these methods are based on the weighted le@gf with the NLS and HMUSIC methods as well as CRLB.
squares refinement, which is susceptible to accuracy of theinally, conclusions are drawn in Section 4.
respective frequency estimates and their covariance &t&im
The nonlinear least squares (NLS) estimator is statigfical
efficient. However, due to the decoupling difficulty [4], it 2. ALGORITHM DEVELOPMENT
cannot deal with the multi-pitch scenario. In [4] — [5], the
harmonic multiple signal classification (HMUSIC) algorith  2-1. Single-Pitch Estimation
is proposed for single-pitch and multi-pitch estimatiorow
ever, the HMUSIC estimation accuracy cannot attain Gram
Rao lower bound (CRLB) [6].

To improve the HMUSIC performance, we propose the
optimally weighted HMUSIC (OW-HMUSIC) estimator with
the use of the Markov-based eigenanalysis. First, we tackle s(n) = ZO” cos(lwin + ), @)
the single-pitch estimation. There have been a number of =1
weighted subspace-based estimators [7] — [8] using the CQynerey,,, A, and ¢, are unknown parameters representing
variance matrix in the literature. Nevertheless, itis p&th  the fundamental frequency, the amplitude and initial pledse

The work described in this paper was supported by a grant €y the(/—1)-th harmonic, respectively,_whilﬁ(n) isan uncorre-
(Project No. 7002570). lated Gaussian random process with mean zero and variance

Consider the real harmonic sinusoidal signal:

Z(n>:5(n)+q(n)v n=0,1,---,N—-1, (1)
L




o%. The objective is to estimate; from the N samples of wheree denotes the orthogonality error vector of the form

x(n). e = vec(ATU, UL with vec being the vectorization oper-
We first define [8] ator. Using the results of [10] and additional manipulation
we derive the first-order perturbation eforiginating from
ze(mi,ma) = z(my +mg + M), 3) U, U7 as:
zp(mi,me) = z(m1 + M — 1 —ma), (4)

e ~ —vec(ATUA;'VIAY'U,UY)
= —(U, U @ (ATUA; 'V )vec(AYT)

fOI‘m1:0,1,~~~,N72M,m2:0,1,~~~,M71,and — _EUUT ATU A—lvT T T
express (5) in matrix form as 2( nUn) @ AV)(T+To)a
= Daq, (14)

ylm1,ma) = 3lec(mi, ma) + o (my, ma)l, (6)

Y=5+Q, (6)

_ o where® stands for the Kronecker produdtY is the pertur-
whereY is theM x (N —2M + 1) data matrix with elements  ,ion ofy while q, T, andT, are defined as

[Y]mn = yln—1,m —1), L < M < (N +1)/2. The

matricesS andQ are the noise-free and noise components of a=[q0), q(1), ---, q(N — 1)]T , (15)
Y, respectively. Following [8]S can be factorized as: T, = [O(MNI)XM Ti] ’ (16)
S = ATH”, (7) Ty =[T% Oniyxm] 17)
where with N’ = N —2M + 1. TheT} andT}, are defined as
T =di .. 8
B lag(al,ag, ,ar), (8) T/1 _ [ElT EZ]\HTa T/2 _ [EZJ\} E{]T, (18)
A—[al7a25"'aaL]7 (9)
I 1 T with E; = [On/i—1) Invsxny Onrsci—iy), @ = 1,--- , M.
a; = |cos(—~), -+, cos((M = 5)lwr)| . (10)  Based on the above perturbation eigenanalysis, the Markov
optimum weighting matrix is determined as [11]
andH is an(N — 2M + 1) x L matrix. On the other hand,
Y can be decomposed using SVD as W — [E {eeT}‘~ r o? ~ (DDT)T (19)
O=w1 )

A; O
Y = UAVT = [U, U,] { 0 A, } [Va Vil (1) wheret stands for pseudoinverse. Thenis estimated as

whereU, € RM*L A, € RLXL v, ¢ RV-2M+1)xL w1 = argmin J(®), (20)
andU, € RMX(M-L) A ¢ RIM-L)x(M-L) vy _ ¢ “

RN=2M+1)x(M=L) gre the components of signal and noisewhereJ(0) = e” We. Noting thatW is a function of the
subspaces, respectively. Then the real-valued HMUSIC esmnknownw, the following relaxing procedure is employed:
timate ofw,, denoted byw;, is obtained by minimizing the

orthogonality error betweeA andU,: Step 1. SeW as the(M L)-order identity matrix.

Step 2. Findu; by searching for the minimum of (20).
Step 3. ComputdV using (19).

Step 4. Repeat Steps 2 and 3 until a stopping criterion
is reached.

@1 = argmin P(@) = argmin [[ATU,[[3,  (12)

with & being the variable fav,, and||- ||r denotes the Frobe-
nius norm. Like the complex-valued HMUSIC algorithm in The apove estimator is termed as the OW-HMUSIC method.
[5], this kind of estimator is not statistically efficiento dver-
come this problem, we introduce Markov optimum weight-
ing. Due to the non-uniqueness of the columnd®f (in
fact, any linear combination of these vectors still spares thin the multi-pitch scenario, the signal model becomes
noise subspace), we cannot analyze their statistical prope

2.2. Multi-Pitch Estimation

ties. Thus, it is necessary to reformulate the HMUSIC cost K L
function with a different but equivalent form as follows: z(n) = Z Z ak, cos (lwen + dr) + q(n), (21)
k=11=1
0= in ||[ATU,|? _ .
wi argmn I Il with wg, {ag, } and{¢x;} being unknown fundamental fre-

= argmin [|[ATU, U712 quency, amplitudes and initial phases of thth pitch. Here
v " we assume that the number of harmoniksis the same for
= argmine e, (13)  all pitches for simplicity. However, the following apprdac



when combining with the joint order estimation techniqule [5 well with its theoretical calculation of (23), which is edqua

can also deal with the case of different harmonic numbers. the CRLB. Furthermore, there is ab@ut 4 dB gap between
To estimateu, first we construct the same data matrix asthe RMSE of the HMUSIC scheme and CRLB.

(6), whose left singular vectors associated witl{ k6 — K L) ]

smallest singular values span the noise subspage Then

Frequency Amplitude Initial Phase

: o 1 0.5 2.0 1
the HMUSIC estimates are got from ti&main minima of: > 10 15 °
(@) = [|ATU, I} (22) >0 2 :

Taking the HMUSIC estimates as initial values, construgtin
Fhe welghtmg matr|>§ qf (19) for each of them, and search- The next example is about multi-pitch estimation. The
ing for its closest minimum of (20), we can solve the OW-

. NI harmonic signal consists éf = 2 pitches, each witll;, = 2
HMU.SIC gsﬂm_ates of the mult|-p|tch _fundamental f__requen-tone& The parameter setting is listed in Table 2, and Fig.
cies in an iterative way similar to the single-pitch estimat

2 shows the RMSE results withh = 50 and 100. From
. these figures, we can see that the RMSE of NLS method keeps
2.3. Performance Analysis nearly constant with SNR, which is similar to [4]. Although

The variance of the OW-HMUSIC approach is derived adh® OW-HMUSIC performance cannot reach CRLB in the

follows. From the above development, we can find thafnulti-pitch estimation, it is superior to the HMUSIC scheme
the single-pitch and multi-pitch estimation are both unconPY 3 — 4 dB. In addition, when the data length is larger, the
strained optimization problems with the cost functib@) of HMUSIC scheme performs better with respect to CRLB and

Table 1. Simulation Setting of Single-Pitch Estimation

(20). Definingéy, = 9¢|._ . k=1,---, K, and applying threshold SNR.
the variance formula for unconstrained optimization prob- k 1l Frequency Amplitude Initial Phase
lems at sufficiently small noise conditions [12], we compute 1 1 0.3 2.0 1
the variance of the OW-HMUSIC frequency estimates as 2 0.6 1.0 2

. T T 9 2 1 0.5 2.0 3
Var(wk) = Sk W(I’ng/( kwfk) ak =1, 5K7 (23) 2 1.0 1.0 4
where® is the covariance matrix af: Table 2. Simulation Setting of Two-Pitch Estimation

T
® = cov(e)lyo, = Elee’ [, 4. CONCLUSION
o2 (DDT)\UU:%. (24)

The OW-HMUSIC algorithm for fundamental frequency es-
timation of real sinusoids is proposed. In our approach, the
Markov optimum weighting is utilized in minimizing the or-

In this section, we perform Monte Carlo simulations to eval-thogonality error, which is derived from the perturbatioai

uate the fundamental frequency estimation performance S!S Of orthogonality error. Simulation results show th t
the proposed approach. The estimation accuracy is e\,‘,jug_roposed method improves the accuracy of the conventional

ated using the root mean square error (RMSE), defined 4sMUSIC scheme, and can attain CRLB for single-pitch es-
timation. Further works include harmonic order selection,

K S a(s) ; ~ (8) . . .. .
RMSE = SR ko1 2oam1 (@87 — wi)?, with w; andw,; study of closely-spaced pitches in the multi-pitch scemari
being the true fundamental frequency and its estimategresp gnd the application in speech and audio signal processing.
tively, and.S being the number of trials. We use the number

of iterations as the stopping criterion in the OW-HMUSIC al-
gorithm, which is assigned as 3. The row number of the data
matrix is set as\/ = [0.4 N |, which is found empirically [1] F. K.W. Chan, H.C. So, W.H. Lau and C.F. Chan, “Ef-
to result in good performance. All the results provided are ficient approach for sinusoidal frequency estimation of

averages of 1000_Lndependent zunsf. inale-pitch estimai gapped data,IEEE Signal Processing Lettersol.17,
First, we provide an example of single-pitch estimation. no.6, pp.611-614, Jun. 2010,

The harmonic signal consists 6f= 4 sinusoids with funda- [2] H. Li, P. Stoica and J. Li, “Computationa”y efficient
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