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ABSTRACT

We introduce a new sparse recovery paradigm, called NORMED
PURSUITS, where efficient algorithms from combinatorial and con-
vex optimization interface for interpretable and model-based solu-
tions. Synthetic and real data experiments illustrate that NORMED
PURSUITS can significantly enhance the performance of both hard
thresholding methods and convex solvers in sparse recovery.

1. INTRODUCTION

In many applications, we are interested in recovering a high-
dimensional signal x∗ ∈ Rn from an underdetermined set of linear
observations y ∈ Rm (m < n), generated via a known Φ ∈ Rm×n:

y = Φx∗ + ε. (1)

In (1), ε ∈ Rm denotes an additive noise term with ‖ε‖2 ≤ σ.
Signal sparsity in a known representation is a useful prior to

circumvent ill-posed nature of (1). Therefore, assuming x∗ is itself
k-sparse (i.e., it has at most k non-zero coefficients), the following
problem emerges as a natural estimator of x∗:

argmin
x∈Rn

‖x‖0 subject to ‖y − Φx‖2 ≤ σ. (2)

Here, ‖x‖0 denotes the `0-“norm” that counts the nonzero elements
in x. Unfortunately, (2) is NP-hard. In contrast, convex approaches
relax (2) by replacing the ‖ · ‖0 with the sparsity-inducing ‖ · ‖1-
norm. For example, the Basis Pursuit (BP) approach in [1] converts
(2) into the following:

argmin
x∈Rn

‖x‖1 subject to ‖y − Φx‖2 ≤ σ. (3)

Hard thresholding algorithms [2–6] provide a different perspec-
tive to (2) by considering an `0-constrained optimization problem:

argmin
x∈Rn

‖y − Φx‖22 subject to ‖x‖0 ≤ k, (4)
where a putative k-sparse solution is iteratively refined using locally
greedy decision rules. Similar to above, the Lasso algorithm [7] can
be also thought as a relaxation of (4):

argmin
x∈Rn

‖y − Φx‖22 subject to ‖x‖1 ≤ λ, (5)

where λ > 0 is a parameter that governs the sparsity of the solution.
While both `0 and `1 sparse recovery formulations above have

similar theoretical guarantees, it is incorrect to view the convex `1-
norm as a convex relaxation of the `0-set, which extends to infinity
(c.f., Fig. 1). For instance, `1-norm in (5) not only acts as a geo-
metrical proxy to k-sparse signals, but also provides a scale that the
hard thresholding methods in (4) cannot exploit. Unsurprisingly, the
convex methods typically outperform the hard thresholding meth-
ods. Fig. 1(a) provides an illustrative toy example in R2 (σ = 0),
which has two 1-sparse solutions (A) and (B). In this example, a
hard thresholding method can greedily choose solution (A) on x1-
axis due to greedy selection satisfying y = Φx∗. In contrast, BP
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Fig. 1. Geometric interpretation of the selection process of (a)
convex- and combinatorial-based methods and (b) the proposed
framework for a simple test case y = Φx∗ where ‖x∗‖0 = 1. The
admissible set of greedy solutions with the norm constraint lie on the
segments inside the boxes.

method would choose (B) as it has a smaller norm (or scale) than
(A).

Interestingly, hard thresholding methods can exploit further
combinatorial prior information on the support of the sparse signals
to provably outperform the `1 methods in theory and in practice [8].
In this setting, a key ingredient is efficient combinatorial algorithms
that can perform model-based projections. Hence, the extend of the
model-based approach is not clearly understood. In parallel, a sig-
nificant effort has gone into customizing convex norms that induces
model-based sparsity in the literature [9–11].

Contributions: Currently, there are no attempts in directly
incorporating norm constraints into the model-based recovery
framework of [8]. To this end, we propose a unique optimization
paradigm, dubbed NORMED PURSUITS, where both combinatorial
(hard-thesholding) and norm constraints are active in sparse recov-
ery. While combinatorial constraints enforce a union-of-subspaces
model with sparsity parameter k, norm constraints further restrict
the candidate set of concise solutions to have a given norm. Thus, we
can capture both 1-sparse solutions in our toy example of Fig. 1 via,
say, an `1-norm constraint (i.e., (B) with any constraint ‖x‖1 ≤ λ,
λ ∈ [1, 2))—in case of solution ambiguity, combinatorial selection
rules dictate the sparse solution.

NORMED PURSUITS accommodate a manifold of convex norm
and combinatorial constraints that enhance the signal recovery per-
formance; apart from the `1-norm constraint, a non-exhaustive list
of candidates include `2, `∞ and total variation (TV) constraints.

We present theoretical approximation guarantees of NORMED
PURSUITS and provide empirical evidence that they outperform the
state-of-the-art approaches. As a special case of NORMED PUR-
SUITS, we highlight the combinatorial selection and least absolute
shrinkage (CLASH) operator [12], which uses `1-norm constraints.

Notation: [x]i denotes the i-th element of vector x and xi rep-
resents the estimate of x in the i-th iteration of the algorithm. The
index set of n dimensions is denoted as N = {1, 2, . . . , n}. Given
a set S ∈ N and a vector x ∈ Rn, xS represents a n-dimensional



vector where [xS ]S = [x]S and [xS ]N\S = 0. Given X ⊆ N ,
X c denotes the set complement of X such that X ∪ X c = N and
X ∩ X c = {∅}. We denote the cardinality of S as |S|. The sup-
port set of a vector x is denoted by supp(x) = {i : [x]i 6= 0}.
‖ · ‖q denotes the `q-norm where ‖x‖q =

(∑n
i=1 |[x]i|q

)1/q , for
x ∈ Rn. The gradient of f(x) := ‖y − Φx‖22 is computed as
∇f(x) = −2ΦT (y − Φx).

Preliminaries: We assume x∗ ∈ Ck, where Ck is a combina-
torial sparsity model. Moreover, we assume Φ satisfies the RIP-
condition. These properties are defined below:

Definition 1 (Combinatorial sparsity model (CSM)). We define a
combinatorial sparsity model Ck = {Sj : ∀j, Sj ⊆ N , |Sj | ≤ k}
with sparsity parameter k as a collection of index subsets Sj ofN .

Definition 2 (Restricted Isometry Property (RIP) [13]). A matrix Φ
satisfies the RIP with constant δk ∈ (0, 1) if and only if:

(1−δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1+δk)‖x‖22, ∀x ∈ Rn s.t. supp(x) ∈ Ck.

2. EUCLIDEAN PROJECTIONS ONTO CONSTRAINTS

2.1. Projections onto combinatorial sets

The Euclidean projection of a signal w ∈ Rn on the subspace de-
fined by Ck is provided by:

PCk (w) = arg min
x:x∈Ck

‖x− w‖2. (6)

Lemma 1 relates PCk (·) operator to discrete optimization:

Lemma 1 (Modularity of Euclidean projections onto CSMs [12]).
The support of the Euclidean projection onto Ck in (6) can be ob-
tained as a solution to the following discrete optimization problem:

supp (PCk (w)) = arg max
S:S∈Ck

F (S;w), (7)

where F (S;w) , ‖w‖22−‖wS −w‖22 =
∑
i∈S |[w]i|2 . Moreover,

let Ŝ ∈ Ck be the maximizer of the discrete problem in (7). Then, it
holds that PCk (w) = wŜ , which is hard thresholding.

Many CSMs are encoded via matroids and totally unimodular
(TU) models where (7) can be solved efficiently.

2.2. Projections onto convex norms

Given w ∈ Rn, the Euclidean projection onto a convex `∗-norm ball
of radius at most λ defines the optimization problem:

P`∗(w, λ) = arg min
x:‖x‖∗≤λ

‖x− w‖2. (8)

In this work, we focus on the `1, `2, `∞, and TV norm constraints.
An efficient projection onto the `1-norm ball requires onlyO(n)

expected time complexity [14]; however, we use an O(n logn) im-
plementation in our framework, as described in [14]. It is trivial to
calculate the projection onto the `2 and `∞-norm balls with radius λ
in O(n) time complexity.

We adopt the discrete TV norm definition in [15]. With the mi-
nor modifications, we can obtain the projection onto the TV-norm
ball with the constraint, where the signal support is restricted to S,
by using the algorithms described in [15]. The complexity of these
projections are on the order of the cost of applying the adjoint of Φ.

Algorithm 1 NORMED PURSUITS

Input: y, Φ, λ, PCk , Tolerance, MaxIterations
Initialize: x0 ← 0, X0 ← {∅}, i← 0
repeat

1: X̂i ← supp(PCk (∇Xci f(xi))) ∪ Xi
2: vi ← arg minv:v∈Vi ‖y − Φv‖22
3: γi ← PCk (vi) with Γi ← supp(γi)
4: xi+1 ← arg minw:w∈Wi ‖y − Φw‖22 with Xi+1 ←

supp(xi+1)
i← i+ 1

until ‖xi − xi−1‖2 ≤ Tolerance‖xi‖2 or MaxIterations.
Nomenclature: Vi , {v : supp(v) ∈ X̂i, ‖v‖∗ ≤ λ},

Wi , {w : supp(w) ∈ Γi, ‖w‖∗ ≤ λ}.

3. EXPLOITING BOTH CLASSES OF CONSTRAINTS

In this section, we define a broad class of sparse recovery algorithms,
using different combinatorial models and norm constraints, which
constitute the NORMED PURSUITS:

x̂NORMED PURSUITS = arg min {f(x) : ‖x‖∗ ≤ λ, supp(x) ∈ Ck} ,

where ‖·‖∗ is a convex norm, such as ‖·‖1, ‖·‖2, ‖·‖∞ and ‖·‖TV.
The CLASH algorithm in [12] is a special case with ∗ = 1.

We provide a pseudo-code of a NORMED PURSUITS variant in
Algorithm 1. The presented instance is based on the Subspace Pur-
suit algorithm [3], and it is trivial to come up with other variants
by using the existing hard thresholding methods for computational
trade-offs [2–6] (left to the reader). At each iteration, the algorithm
goes through the following motions:

1) Active set expansion (Step 1): We identify the support where
the projected gradient onto Ck can make most impact on the loading
vector in the support complement of its current solution. We then
merge this support with the support of the current solution.

2) Descent with the norm constraint (Step 2): We decrease the
data error f(x) as much as possible on the active set with the ‖ · ‖∗-
norm constraint by exploiting the convex projector of the norm.

3) Combinatorial selection (Step 3): We project the constrained
solution onto Ck to arbitrate the active support set.

4) De-bias with the norm constraint (Step 4): We de-bias the
result on the current support with the ‖ · ‖∗-norm constraint.

NORMED PURSUITS features the following guarantee:

Theorem 1. [Iteration invariant] The i-th iterate xi of NORMED
PURSUITS in Algorithm 1 satisfies the following recursion

‖xi+1 − x∗‖2 ≤ ρ‖xi − x∗‖2 + c1(δ2k, δ3k)‖ε‖2,

where c1(δ2k, δ3k) , 1√
1−δ2

2k
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. Moreover,

when δ3k < 0.3658, the iterations are contractive (i.e., ρ < 1).

The proof of Theorem 1 is a direct extension of the CLASH proof
in [12], and is omitted due to lack of space. Surprisingly, Theorem
1 shows that the isometry requirements of NORMED PURSUITS are
competitive with those of mainstream hard thresholding methods,
even with the additional norm constraints.

Extensions: A key strength of NORMED PURSUITS is the abil-
ity to explicitly enforce sparsity using efficient combinatorial pro-



Method NORMED PURSUITS Formulation
Elastic net [9] x̂ = arg min {f(x) : ‖x‖0 ≤ k, ‖x‖2 ≤ λ}
Fused Lasso [10] x̂ = arg min {f(x) : ‖x‖0 ≤ k, ‖x‖TV ≤ λ}
Group Lasso [11] x̂ = arg min {f(x) : x ∈ Ck, ‖xG‖0 ≤ k}

Fig. 2. NORMED PURSUITS problem formulation of [9–11]. Here,
‖xG‖0 ≤ k represents sparsity constraints over groups.

Original TVDN ‖x‖TV ≤ λ NORMED PURSUIT

25.72dB 25.92dB 26.78dB

27.36dB 27.16dB 28.19dB

Fig. 3. Results from real data.

jections,1 while using the norm constraints to regularize the sparse
coefficient values. The current sparse recovery literature offers a
variety of convex optimization formulations that attempt to capture
the strength of combinatorial models via exclusively norm informa-
tion [9–11]. In Fig. 2, we present the corresponding NORMED PUR-
SUITS formulations of [9–11].

4. EXPERIMENTS

4.1. Real Data

In this subsection, we evaluate the following formulation:

x̂TV-PURSUIT = arg min {f(x) : ‖x‖TV ≤ λ, ‖Ψx‖0 ≤ k} , (9)

where Ψ represents an orthonormal wavelet transform.
Compressive sensing with TV-NORMED PURSUIT: To study

the compressive sensing recovery performance of NORMED PUR-
SUITS, we use the classical cameraman and brain2 images of n =
256 × 256 pixels. We compressively measure both images with the
spread spectrum technique [16]. That is, the sensing matrix Φ con-
sists of a random pre-modulation followed by a random selection
of m = 0.25n complex Fourier coefficients. The performance of
NORMED PURSUIT (9) is compared with: i) the TV version of Ba-
sis Pursuit where the TV norm is substituted for the `1-norm, ii) the
TV-constrained version of Lasso (5). We choose the Daubechies-4
wavelet for Ψ and k = m. The parameter λ in (9) and (5) was cho-
sen to obtain the best reconstruction for each method. Fig. 3 shows

1with combinatorial algorithms that go beyond simple selection heuristics
towards provable solution quality as well as runtime/space bounds.

2BRAINIX database: http://pubimage.hcuge.ch:8080/.

the reconstruction obtained with the three methods. NORMED PUR-
SUIT (9) outperforms all the other methods with an improvement of
at least 0.8 dB on the signal-to-noise ratio.

CASSI recovery with TV-NORMED PURSUIT: We test the
performance of our approach using the Coded Aperture Snap-
shot Spectral Imager (CASSI) data [17].3 We reconstruct three-
dimensional spatio-spectral data cube from measurements. While
we obtain the full set of images, we only provide the result at the
wavelength 549 nm due to lack of space. Full results are available
at http://lions.epfl.ch/TV-Normed-Pursuit. We also illustrate results
using the three algorithms mentioned above in Fig. 3. In general, the
contours are better resolved with NORMED PURSUIT compared to
the other methods studied. Moreover, in our subjective evaluation,
the contrast is improved overall across all the wavelengths.

4.2. Synthetic Data

In this subsection, Φ is populated with independent and identically
distributed (iid) Gaussian random variables with zero mean and vari-
ance 1/m. The nonzero coefficients of x∗ are generated iid accord-
ing to the standard normal distribution with ‖x∗‖2 = 1.

Recovery with CLASH. We generate random realizations of
the model y = Φx∗ for n = 200, m = 64 and k = 23, where
k is known a-priori. We then sweep λ and examine the signal re-
covery performance of CLASH compared to the following methods:
i) Lasso (5) using a Nesterov first order method, ii) Basis Pur-
suit [1] using the SPGL1 implementation [18], iii) Subspace Pursuit
(SP) [3], and iv) NORMED PURSUIT with `2-norm constraint. Note
that, if λ is large, norm constraints have no impact in recovery and
CLASH and iv) must admit identical performance to SP.

Figure 4(a) illustrates that the combination of hard thresholding
with norm constraints can improve the signal recovery performance
significantly over convex-only and hard thresholding-only methods.
CLASH perfectly recovers the signal when λ ∈ [1, 1.2]. When λ <
‖x∗‖1, the performance degrades.
±1-signal recovery with NORMED PURSUITS. We instantiate

(1) where ε satisfies ‖ε‖2 = 0.1, and n = 125, m = 65, k = 25.
Here, the coefficients of x∗ are randomly assigned to ±1 values.
To reconstruct x∗ from y, we test NORMED PURSUITS with (i) `1-
norm, (ii) `2-norm and, (iii) `∞-norm.

We illustrate the signal recovery results in Fig. 4(b). We notice
that the reconstruction performance varies by using different norm
constraints; in the case of signed signals, we deduce that `∞ norm
provides the best results as compared to `1 and `2-norm constraints.

Norm-constraints do not always help. In the model (1), we
assume x∗ ∈ Ck has k nonzero coefficients in C-contiguous blocks
on an undirected, acyclic chain graph; the CSM Ck is dubbed as the
(k, C)-clustered sparsity model—c.f. [19] for details.

In Fig. 4(c), we observe that structure prior information provides
great advantage in signal reconstruction compared to Lasso (5) for-
mulation and the CLASH algorithm with simple sparsity model as-
sumption. Here, the noise energy level satisfies ‖ε‖2 = 0.05, and
n = 500, m = 125, and k = 50. As λ increases, while CLASH
performance improve, norm constraints have no effect in the model-
based recovery procedure; the structure dominates the norm con-
straints, providing the enough information for robust recovery up to
the noise level.
‖ · ‖TV provides a strong norm constraint. Here, x∗ follows

the (k, C)-clustered sparsity model where the clustered nonzero el-
ements have approximately flat values. We consider the noiseless
case y = Φx∗ for n = 500, m = 100 and k = 50.

3http://www.disp.duke.edu/projects/CASSI
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Fig. 4. For each λ, we run 100 Monte-Carlo iterations and pick the median value of signal data error ‖x̂− x∗‖2.

We now compare (9), where Ψ is identity, with: i) the Lasso
method, ii) Basis Pursuit in (3) using the SPGL1 implementation,
iii) the TV-constrained version of Lasso (5) where ‖x‖1 ≤ λ is
replaced with ‖x‖TV ≤ λ and, iv) Fused Lasso [10] with TV and
`1-norm constraints, where the true regularization parameters are
assumed known. Figure 4(d) provides empirical evidence that hard
thresholding with the TV-norm constraint outperforms the other al-
gorithms in terms of signal reconstruction, where sparsity constraints
assist norm-constrained optimization in the estimation performance.

5. CONCLUSIONS

We introduce a sparse signal recovery paradigm, dubbed NORMED
PURSUITS, where efficient algorithms from combinatorial and
convex optimization can efficiently interface for interpretable and
model-based sparse solutions. NORMED PURSUITS has the ability
to explicitly enforce sparsity using efficient combinatorial projec-
tions, while using the norm constraints to regularize the sparse
coefficient values, whereby enhancing the performance of the class
of hard thresholding methods. Alternatively, we can view NORMED
PURSUITS as a sparsity guided active set method in convex op-
timization (note that the `1 methods themselves typically do not
exploit the fact that they are looking for sparse solutions).
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