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ABSTRACT

The classical approach to sampling time-invariant spatial
fields uses static sensors distributed over space. We study a
new approach involving mobile sensors that move through
space measuring the field values along their paths. A single
moving sensor can take measurements over a wide spatial
area thus acting as a substitute for a potentially large number
of static sensors. A moving sensor encounters the spatial
field in its path in the form of a time-domain signal. Hence a
time-domain anti-aliasing filter can be employed at the mo-
bile sensor to limit the amount of out-of-band noise prior to
sampling. We analytically quantify the advantage of mobile
sensing over static sensing in rejecting out-of-band noise. We
also demonstrate via simulations the improvement in recon-
struction accuracy that can be obtained using mobile sensors
and filtering in a temperature measurement problem.

Index Terms— Spatial sampling, mobile sensing, anti-
aliasing filtering, spatial smoothing.

1. INTRODUCTION

Consider the problem of sampling and reconstructing a time-
invariant spatial field f̃(r) where r ∈ R

2. For example f̃(.)
could represent the temperature distribution in a room or the
concentration level of some air-pollutant in a city. Suppose f̃
can be expressed as

f̃(r) = f(r) + w(r), r ∈ R
2 (1)

where f ∈ L2(R2) denotes the field of interest and w denotes
non-bandlimited spatial noise. Suppose that f is spatially
bandlimited. If the noise w is absent, then the field f̃ = f is
bandlimited, and we know from classical sampling theory [1]
that we can recover it exactly from samples of the field mea-
sured by a network of uniformly spaced static sensors. In par-
ticular, the mapping f : R2 �→ R can be reconstructed exactly
from measurements of the form {f(mΔx, nΔy) : m,n ∈
Z} taken by static sensors located on a rectangular lattice of
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points, provided that the Fourier transform F (.) of the field f

is supported on a set Ω ⊂ [− π
Δx

, π
Δx

] × [− π
Δy

, π
Δy

]. How-

ever, if w �= 0 then the observed field f̃ is not bandlimited
and we expect to see some effects of spatial aliasing while
sampling the field using static sensors. There is no way to im-
plement a spatial anti-aliasing filter in a static sensing setup
[2]. Although it is possible to approximate a filter by averag-
ing across readings from neighboring sensors, such a scheme
is quite expensive to implement since it requires a high spatial
density of sensors. However, as we illustrate in this paper, in
a mobile sensing setup it is possible to filter the observed field
in time prior to sampling which induces filtering over space
in the direction of motion of the sensor. This leads to a signif-
icant improvement in the effective SNR in the reconstructed
field. Moreover, in some applications like pollution monitor-
ing in a city, mobile sensing is more cost-effective than static
sensing since a single mobile sensor can take field measure-
ments over a large area, and sometimes it is the only feasible
solution when static deployments are impractical.

Most works in the literature on sampling and reconstruc-
tion schemes for spatial fields have focused on static sensing
(see, e.g., [1], [3]). The advantages of mobile sensing over
static sensing have been noted in room impulse response mea-
surement for communication systems [4] and in suppressing
spatial aliasing in audio source localization [5]. In a differ-
ent context, moving antennae have been shown to provide ad-
vantages over static antennae in synthetic aperture radar [6].
Some works on mobile sensing focus on algorithms for adap-
tive path-planning [7], [8]. However, the problem of sampling
and reconstructing bandlimited fields using samples taken by
mobile sensors has not been studied from a signal process-
ing perspective. In a related work [9] we studied the problem
of designing sampling trajectories for mobile sensing, while
in this paper we illustrate some of the advantages of mobile
sampling over static sampling, in particular in the presence of
noise.

The paper is organized as follows. We introduce the sam-
pling setup in Section 2 and provide a detailed comparison of
the mobile and static sampling methods in Section 3. In Sec-
tion 4 we present simulation results demonstrating the perfor-
mance improvement with mobile sensing. In Section 5 we
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summarize our results and present avenues for future work.

2. MOBILE SAMPLING SETUP

2.1. Spatial smoothing via time-domain filtering

Let f ∈ L2(R2) denote a bandlimited spatial field with
Fourier transform F defined by

F (ω) =

∫
f(r) exp(−j〈ω, r〉), ω ∈ R

2

supported on a compact convex set Ω ⊂ R
2. A sensor moving

through this field receives as input a time-domain signal s(t)
representing the field f along the path of the sensor,

s(t) = f̃(r(t)) = f(r(t)) + w(r(t)) (2)

where r(t) ∈ R
2 denotes the position of the sensor as a

function of time t. It is known that if the sensor is mov-
ing at constant velocity then r(t) is an affine function of t

of the form r(t) = r0 + vt, and f(r(t)) is bandlimited [9]
in the sense that its Fourier transform is supported on the set
Ωs := {〈v, ω〉 : ω ∈ Ω} ⊂ R. Hence, prior to sampling at the
moving sensor we can pass s(t) through an anti-aliasing filter
whose passband is aligned with Ωs. This enables us to discard
the component of the out-of-band noise in the direction of mo-
tion of the sensor thus inducing spatial smoothing. However,
a caveat to note is the peculiar fact that for 2-dimensional spa-
tial fields such filtering allows us to perform spatial smoothing
only in the direction of motion of the sensor. In other words,
the anti-aliasing filters are thin, i.e., the effective spatial im-
pulse response of the filter is supported on a 1-dimensional
set.

2.2. Sampling trajectories and reconstruction

Although there are several possible choices of sensor tra-
jectories [9] for sampling a bandlimited field, we restrict
ourselves to equispaced straight lines parallel to the x-axis.
Thus for each i ∈ Z there is a sensor moving along the line
{(x, iΔy) : x ∈ R} taking measurements along its path.
Here Δy represents the spatial separation between adjacent
parallel trajectories. Assuming further that each mobile sen-
sor takes filtered samples at intervals of Δx spatial units
we obtain samples at points of the form {Λn : n ∈ Z

2}

where Λ =

(
Δx 0
0 Δy

)
. The samples are given by the

two-dimensional convolution μ[n] = (ν � hs)(Λn), n ∈ Z
2,

where hs represents the effective two-dimensional sampling
kernel induced by the sampling trajectories and the filtering
operation, and ν represents the field f̃ . Figure 1 shows the
system of sampling and reconstruction. Here hr(.) represents
the two-dimensional waveform used for reconstruction. In
the sequel we assume that the field f is bandlimited to Ω =
[−ρ, ρ]× [−ρ, ρ]. Hence we use an ideal sinc-reconstruction

ν(r) hs(.)
Λn : n ∈ Z

2

μ[n] hr(.) ν̂(r)

Fig. 1. Sampling and reconstruction setup.

kernel given by hr(x, y) =
ΔxΔyρ

2

π2 sinc
(
ρx

π

)
sinc

(
ρy

π

)
where

sinc(x) := sin(πx)
πx

. The kernel has the following representa-
tion in the Fourier domain

Hr(ω) =

{
ΔxΔy for 0 ≤ |ωx|, |ωy| ≤ ρ

0 else
(3)

where ω = (ωx, ωy)
T . The reconstructed field is given by

ν̂(r) =
∑

n∈Z2 μ[n]hr(r − Λn), r ∈ R
2.

3. COMPARISON WITH STATIC SENSING

As we mentioned earlier, it is not possible to implement a
spatial anti-aliasing filter in a static sensing setup. We now
study the reduction of out-of-band noise that can be obtained
by using a anti-aliasing filter in a mobile sensing scheme for
sampling a bandlimited field in noise. Suppose the field of
interest f is bandlimited to Ω = [−ρ, ρ]× [−ρ, ρ] as in Sec-
tion 2.2. We represent both the static and mobile sampling
schemes as shown in Figure 1 for specific choices of the pa-
rameters hs and Λ. We consider a static sampling scheme
that uses a rectangular sampling grid at the Nyquist sampling
rate i.e., Δx = Δy = π

ρ
, and we consider a mobile sampling

scheme as in Section 2.2 with the spacing Δy between the
sensor trajectories equal to the Nyquist interval π

ρ
. We con-

sider two extreme choices for the low-pass filter employed
prior to sampling in the mobile sensing scheme - the ideal
low-pass filter (LPF) with a sinc response, and a more prac-
tically feasible filter, the box-filter whose impulse response is
a rectangular pulse.

We now study the response of the sampling schemes to
noise. Suppose the input ν in Figure 1 represents weak-sense
stationary noise with spectral density Sν(ω), ω ∈ R

2. Then
the power spectral density of μ is given by,

Sμ(e
jω) =

∑
n∈Z2

Sν(Λ
−1(ω − 2πn))|Hs(Λ

−1(ω − 2πn))|2

ΔxΔy

.

The output signal is cyclostationary with an effective p.s.d. of

Sν̂(ω) =
1

ΔxΔy

|Hr(ω)|
2
Sμ(e

jΛω). (4)

3.1. Static sampling

In the case of static sensing we do not have any spatial fil-
tering and hence the sampling kernel is an impulse function
hs(x, y) = δ(x)δ(y) and is equivalently given in the Fourier
domain by,

Hs(ω) = 1 for all ω ∈ R
2. (5)
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Since we assume Nyquist rate sampling we also have Δx =
Δy = π

ρ
. Substituting (5) in (4) and integrating we obtain the

following expression for the noise variance σ2
stat:

σ2
stat =

1

4π2

∫
Ω

∑
n∈Z2

Sν(ω − 2nρ)dω. (6)

Since we are sampling at the Nyquist rate we do not observe
any signal distortion in this case.

3.2. Mobile sampling with ideal LPF

If the mobile sensors use the ideal sinc filter as the LPF prior
to sampling, the effective two-dimensional sampling kernel is
given by hs(x, y) = ρ

π
sinc

(
ρx
π

)
δ(y) which is equivalently

given in the Fourier domain by,

Hs(ω) =

{
1 for 0 ≤ |ωx| ≤ ρ

0 else.
(7)

We note that the filter Hs is frequency limited in the x-
direction. Further, since the spacing between the trajectories
is equal to the Nyquist interval Δy = π

ρ
it follows that as

long as the sampling interval along the trajectories satisfies
Δx < π

ρ
, we have the following expression for the noise

variance σ2
m1:

σ2
m1 =

1

4π2

∫
Ω

∑
n∈Z

Sν(ω − (0, 2nρ)T )dω. (8)

Comparing the expressions (6) and (8) we see that in the case
of mobile sampling, only spectral shifts at lattice points along
the x-axis contribute to the noise variance whereas in the case
of static sampling spectral shifts from all points in the two-
dimensional lattice contribute to the noise signal spectrum.
The exact value of the reduction in noise variance obtained
with mobile sampling can be computed if the true noise spec-
trum Sν(.) is known.

3.3. Mobile sampling with box filter

In the case of mobile sampling with the box filter, we ex-
pect some distortion in the reconstruction because the filter
response is not flat in the pass-band. The effective two-
dimensional sampling kernel in this case is hs(x, y) =
boxΔb

(x)δ(y) where

boxΔb
(x) :=

{
κ |x| < Δb

0 else

where 2Δb denotes the spatial width of the box-filter response

and κ = (2ρ)
1

2

[
Δ2

b

π2

∫ ρ

−ρ
sinc2

(
Δbω
π

)
dω

]− 1

2

. The sampling

kernel is equivalently given in the Fourier domain by

Hs(ω) =
κΔb

π
sinc

Δbωx

π
. (9)

The choice of κ ensures that
∫
Ω
Hs(ω)

2dω = 4ρ2 which is
consistent with the responses in (5) and (7).

Since the box filter is a non-ideal LPF, we expect some
distortion in the reconstructed field. As before, let us assume
that Δx < π

ρ
and that Δy = π

ρ
. Let F denote the Fourier

transform of the bandlimited field being sampled and F̂ de-
note the Fourier transform of the reconstruction obtained by
using an ideal reconstruction filter of the form (3). We have

F̂ (ω) =
κΔb

π
F (ω)sinc(

Δbωx

π
), ω ∈ Ω. (10)

Clearly, we see that the reconstructed field is a distorted ver-
sion of the original field even in the absence of noise. The
amount of distortion introduced for a given F can be com-
puted using relation (10). We can also quantify the variance
σ2
m2 of the noise in the reconstruction using relations (9) and

(4):

σ2
m2 =

κ2Δ2
b

4π4

∫
Ω

∑
n∈Z2

Sν(ω − (
2nxπ

Δx

, 2nyρ)
T )

sinc2(
Δb

π
(ωx −

2πnx

Δx

))dω.

Since it is inexpensive to increase the sampling rate used by
each moving sensor, we can let Δx → 0, whence we obtain,

σ2
m2 =

κ2Δ2
b

4π4

∫
Ω

∑
n∈Z

Sν(ω − (0, 2nρ)T )sinc2(
Δbωx

π
)dω.

(11)

If we now also allow Δb → 0, it is easy to see that κΔb

π
→ 1.

Hence the reconstruction in (10) becomes accurate and
the expression in (11) reduces to that in (8). This means
that we have limΔb→0 F̂ (ω) = F (ω) for ω ∈ Ω, and
limΔb→0 limΔx→0 σ

2
m2 = σ2

m1. This means that if the
sensors oversample at high rates along their path and use
a rectangular LPF with a short impulse response, we can
recreate the performance with an ideal LPF and Nyquist
sampling.

We note that if the noise spectral density were white (i.e.
Sν(ω) = 1 for all ω ∈ R

2), then the expressions for the vari-
ance in (6), (8) and (11) tend to infinity since unfiltered white
noise samples have infinite variance. However, in practice
environmental noise is never completely white. We have the
following result.

Proposition 3.1. Suppose the noise spectral density Sν(.)
takes a value of unity on the set [−υρ, υρ] × [−υρ, υρ] and
0 elsewhere for some ρ > 0. If υ is an odd number then the
variances in (6) and (8) reduce to

σ2
stat =

ρ2υ2

π2
, and σ2

m1 =
ρ2υ

π2
.

Thus if the noise spectrum is flat with a bandwidth along
each dimension equal to υ times the field bandwidth, then we
obtain a reduction in noise variance by a factor of υ when we
employ mobile sampling in place of static sampling.
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Fig. 2. Spatial temperature field on EPFL campus.

Table 1. Reconstruction errors with various schemes.
Data type Static

sensing
Mobile
sensing

Mobile sensing
with oversampling

Temperature 0.53% 0.45% 0.42% (no filter)
Simulated
(SNR 20 dB)

9.9% 1.5% 1.5% (with filter)

4. SIMULATIONS: MERITS OF MOBILE SENSING

We calculated the reconstruction accuracies that can be ob-
tained using static and mobile sampling schemes for measur-
ing the temperature field on the EPFL campus (Figure 2) ob-
tained from [3]. For static sensing, we considered sensors on
a rectangular grid as in Section 2.2. For mobile sensing we as-
sumed that the sensors move parallel to the x-axis and apply
an anti-aliasing filter prior to sampling. They take samples at
the same points on the rectangular grid as in the static case.
The percentage L2-error in the reconstructed fields obtained
via sinc-interpolation are shown in Table 1. The third column
represents the performance obtained with mobile sensing as-
suming that the sensors measure the field at all points on their
paths without any filtering. As the values in the table indi-
cate, mobile sampling outperforms static sampling, and over-
sampling along the trajectories improves the performance fur-
ther. The filtering operation in the mobile sampling scheme
reduces the amount of aliasing in the samples leading to a re-
duction in the reconstruction error. We note that the tempera-
ture field is not truly bandlimited and hence the performance
gains are more modest than what could be expected if the field
were truly bandlimited.

In the second row of Table 1 we consider the same scheme
for sampling and reconstructing a simulated bandlimited field
in noise with spectra as in Proposition 3.1, with the ratio of the
sides υ = 40. For such a field we see from the values shown
in Table 1 that the reduction in the average reconstruction er-
ror obtained with mobile sensing is more significant. We also
see that the ratio of the errors under the static and mobile re-
construction schemes is approximately υ

1

2 as expected by the
result of Proposition 3.1. In this example we allow filtering
in the oversampling scheme since the field of interest is ban-

dlimited. We see that in this case there is no improvement
in the reconstruction accuracy with oversampling. This is be-
cause there is no advantage in increasing the sampling rate
beyond the Nyquist rate.

5. CONCLUSION AND FUTURE WORK

We have analyzed the advantages of mobile sensing over
static sensing. Our results clearly demonstrate and quantify
the SNR improvement while using time domain anti-aliasing
filtering together with mobile sensing. In practice, it is pos-
sible that the physical process of moving the sensor through
the field may affect the characteristics of the field or intro-
duce noise and irregularities in the sensing process. In future
work, these effects must also be taken into account to com-
pletely characterize the advantages of mobile sensing over
static sensing in practice. Further investigation is required to
study mobile sampling schemes for time-varying fields and
non-bandlimited fields.
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