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Abstract— We introduce a novel generalization of the compound 

Gaussian (CG) (or Gaussian Scale Mixture [1]) distribution 

which extends the Gaussian component of the CG model to a 

multilinear distribution. The resulting model, which we call the 

Multilinear Compound Gaussian (MCG) distribution, subsumes 

both GSM [1] and the previously developed MICA [3-4] 

distributions as complementary special cases; thereby allowing 

us to model a richer class of stochastic phenomena. First we 

derive the structural characterization of the MCG distribution 

and develop some of its important theoretical properties. 

Thereafter we describe a parameter estimation algorithm for 

learning this model from sample data, and then deploy this for 

modeling textures, including natural (i.e. optical) and SAR 

images. Our simulation results demonstrate how, for each case, 

we obtain improved performance over the CG model; thus 

indicating the versatility of the MCG model in accurately 

modeling various natural phenomena of interest. 

Index Terms— GSM, MICA, MCG, Bayesian, Nonlinear 

I. INTRODUCTION 

The compound Gaussian (CG) model—also known as the 
Gaussian Scale Mixture or GSM [1] in the image processing 
community—is a well known statistical distribution that has 
been employed as a powerful low-level prior model for 
important applications such as the denoising [2] of natural 
images. In the radar community too, CG is known to be an 
accurate statistical model for the wavelet distribution of SAR  
images [5] with applications such as image reconstruction [6], 
and also forms the basis of the K-distribution [7-8] that is 
frequently used for modeling RCS returns from sea clutter 
data. Indeed CG is a very versatile statistical model that 
specializes to many well known distributions such as the α-
stable and symmetrized Gamma distributions [1] and which 
serve as useful prototypes of heavy-tailed processes—thus 
providing the probabilistic underpinnings for the generation of 
various sparse-structured stochastic phenomena such as 
described above. 

Consider a random variable   that can be decomposed into 
the following product form (pointwise product of 2 vectors): 

                                                                    (1) 

The probability density function of X is thus given by: 
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where Z is a normalizing constant for   (   ). 

In the special case where      (   ) is a Gaussian 
random vector with mean   and covariance matrix  , and   is 
a non-Gaussian random vector consisting of i.i.d. components, 
X in (1) is said to CG distributed random variable: 
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The problem that we are concerned with in this paper is 
the structure and properties of (1) when the conditional density 
  ( |   ) in (2) is replaced by a more general multilinear 
distribution of the following form: 

              ( |   )  
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where,   [       ]. The probability densities    
generalize Gaussian random variables in a manner specified 
below, while the multilinear term  ( ) captures the higher-
order statistical interactions between the components of X. 

In Section 2, we introduce a non-linear system model that 
serves as the basis of our theoretical development of the MCG 
model and its properties. We will see how the MCG model 
developed subsumes both CG and the previously developed 
multilinear ICA (MICA) distribution [3-4] as complementary 
special cases. Section 3 describes an algorithm for estimating 
the parameters of the MCG model.  We conclude by providing 
simulation results demonstrating the performance of the MCG 
distribution in Section 4 for Texture, Optical and SAR images. 

II. MULTILINEAR COMPOUND GAUSSIAN MODEL 

We first describe the construction of the MCG distribution in 

terms of a novel non-linear system model. Thereafter in 

section II-B we present some theoretical properties of the 

MCG model. 

A.  Structure of the MCG Distribution 

Let   [          ]     be an observed random 
vector distributed according to the MCG model (5). We now 
demonstrate how (5) can be synthesized via the generative 
model shown in Figure 1. The system F in Figure 1 consists of 
a core non-linearity   preceded by a linear system      
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  , where   [          ]     and 

  [          ]     is a Gaussian random vector 
consisting of i.i.d. components     (   ) whose density is 
denoted by  (  )  Vectors   [          ]

  and   
[          ]  respectively determine the mean and variances 
for the various Gaussian channels. Matrix 

  [          ]
      is assumed to be invertible and 

thus determines the interaction between the various Gaussian 

sources. Vector   [          ]
     is an instantiation 

of random variable   of the MCG model corresponding to (1). 
The constants    and    play an important role in determining 
the properties of the non-linear transformation  , as we show 
in the next section. All the operations in system F, other than 
the action of matrix A, are pointwise in the components of the 
vector. 

Given this, an important observation is that for a given 
   , pointwise invertibity of the non-linearity   results in a 
multilinear distribution of the following form (a full derivation 
is given in the extended version of this paper): 
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We have found the following linear-quadratic non-linearity 
to effectively capture the statistics of real data: 

      ( )  [      (  )       (  )  (  )]              (7) 

where, functions    and    are defined in the next section, 
  ( )       ( ),    ,    , and    . 

This non-linearity furnishes a natural generalization of the 
Gaussian distribution—in particular it consists of both a linear 
and quadratic channel and reduces to a multidimensional 
Gaussian distribution when only the linear channel is active. 

B. Theoretical Properties of MCG 

As described in the previous section, an important 
consideration is the characterization of the conditions under 
which equation (7) is invertible. This is because invertibility 
makes it possible to generate a multilinear distributions 
whereas in general one will obtain a mixture distributions 
which, though more general, are computationally less 
tractable. The following Lemma gives a characterization the 
invertibility of   in (7) for the case where d=1 (which 
therefore applies to the invertibility of the general case since   
is a component-wise transform). 

Lemma 1: Let     ( )     and     ( )     such that 

      are real constants. Then   in Equation (6) is invertible 

if and only if       . 

Proof: 

We consider first the converse case i.e. assume       : 

Case 1:      and     . Then equation (6) becomes: 
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 | |   (  )]  (since 
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Thus the only feasible solution is: 
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Case 2:      and       

In this case, | |   ( )      ( )[  | || |  (  )  
    

 | |   (  )]  
We once again solve:   

 | |  [  | || |  (  )      
 | |   (  )]   

to get the unique solution above together with the 

relationship:    ( )      (  ). 

 

Thus in both cases   is invertible thus proving sufficiency. 

 

Now assume that   is invertible. We then have 4 cases: 

Case 1:      and     . See above. 

Case 2:      and     . See above. 

 

Case 3:      and      

In this case we are forced to solve the original quadratic 

problem wherein: 

                             ( )              
To solve this, we consider 2 sub-cases: 

Case 3.1:    . Then: 
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Since     by assumption, the feasible solutions are:  
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Both (7-8) can be satisfied if: 

         (    )
                   (10) 

Since      by assumption, (10) is satisfied for any    . 

Thus in general there can be 2 solutions to equations (6) and 

so   is not invertible for case 3.1. 

 

Case 3.2:    . Here we solve: 
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Here the only feasible solution is: 
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 provided that      |  |   (    )
                              (12) 

In general (11) can be violated by choosing x accordingly 

and thus   is not invertible. 

 

Case 4:      and     . By a similar reasoning as applied 

to Case 3.1,   is not invertible in general for this case also. 

 

Thus   is generally invertible only for cases (1) and (2). This 

establishes the lemma.                         

 
From Lemma 1 we note that by setting      and     , 

MCG reduces to the CG distribution as a special case. The 
following Lemma details a complementary direction in which 
the above model can be extended. 

Lemma 2: Let   ( )    ( )  ( ) and   ( )    ( )  ( ). 

Then   in (4) is invertible if   ( )  ( )   . 

Proof: The proof follows by noting that the condition 

  ( )  ( )    ensures that one and only one of the two 

channels (i.e. the linear and quadratic channels as described 

in II-A) are active for a given value of s. Thus invertibility of 

  trivially follows. This establishes the lemma.            

 

We note that under Lemma 2, MCG reduces to the MICA 

distribution [3-4] which thus formally complements the CG 

model. Thus the MCG model subsumes both the CG and 

MICA distributions as special cases. 

Importantly the following lemma, whose proof is similar 

to that of the central theorem in [3], furnishes a closed form 

expression for the Jacobian | ( )|: 

Lemma 3: The Jacobian for the MCG model is: 

           | ( )|  | |∏    (  )
 
            (13) 

where  (  )          |  |                                                                        

We can easily show that Lemma 3 reduces to the central 
theorem in [3] for the special case of MICA distributions. The 
existence of the above closed form expression for | ( )| 
obviates the need for Monte-Carlo simulation for the 
estimation of system parameters. The following section delves 
into more details on the algorithmic aspects of parameter 
estimation for the MCG model. 

III. MCG PARAMETER ESTIMATION ALGORITHM 

Similar to the general strategy in [1], we take a two-stage 
approach to estimating the parameters of the MCG model. 
Given a set of N neighborhoods (of wavelet coefficients) of 
size MxM (where N>>M; for e.g. we choose N=2000, M=3 in 
our simulations below) which are organized in a matrix X, we 
estimate the optimum parameter   (for a given set of 
multilinear parameters) corresponding to each such sampled 
neighborhood. Each neighborhood is then normalized by the 
corresponding   parameter. Thereafter the optimum 
multilinear parameters are determined in the manner described 
below. This process is then iterated several times until 
convergence. 

In order to simply matters, we assume as in [1] that   is a 
scalar random variable. Let   [       ]  denote a 

neighborhood sampled from the image. To determine 
optimum   parameter for each neighborhood we solve the 
following equation w.r.t.  : 
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where,  ( )  
    √  

     | |

√  
     | |

. Since   is a scalar parameter, we 

can easily solve for   in a computationally tractable manner 
by employing a brute force approach of evaluating (14) for 
every value of   in a interval [0, max(X)] and choosing the   
that renders the R.H.S. of (14) closest to zero. Furthermore it 
is easy to verify—both analytically and numerically—that in 
the CG limit (i.e.          ) the optimum solution of 
(14) is exactly the closed form solution of   for the GSM case 
[1] as one would expect. 

 Having obtained the set of wavelet coefficient 
neighborhoods normalized by random variable  , we now 
detail how to update the remaining parameters of the MCG 
model. Firstly in our simulations, consistent with the CG 
model of the wavelet structure of natural images, we set     
and    . Thus the parameters that remain to be estimated 
are matrix  , vector  , and the scalars    and   . For 
estimating   and  , we employ a similar trick as used in [4]: 

let     ̃ ( 
   ) where    denotes the i

th
 vector of 

neighborhood coefficients, and where the subscript denotes 
that the non-linear function  ̃ depends on   [     ]; then 

set   √  ( where   
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   ), and set    to be the 

standard deviation of the ith component of the normalized and 

inverted wavelet coefficient neighborhoods {  } . Note that 
the computation of C and   assumed knowledge of    but did 
not involve any iterative procedure for estimation. 

 To compute the optimum   (given knowledge of the other 
multilinear parameters) we resort to an unconstrained iterative 
maximum-likelihood estimation approach based on the 
following descent equations: 
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A similar gradient equation can also be derived with respect to 
  . Thus the following algorithm summarizes our MCG 
parameter estimation procedure: 

0) Initialize   according to the CG model. From this 
initialize C and  . 

1) Re-estimate   by solving (14) 

2) Normalize X according to   computed above and re-
estimate C and   accordingly 

3) Estimate the optimum   via (15). Re-estimate C and 
  accordingly 

4) Iterate (1)-(3) until convergence. 



IV. SIMULATION RESULTS 

The above MCG parameter estimation algorithm was 
applied to a set of N=2000 neighborhoods of wavelet 
coefficients of size 3x3. We chose the bi-orthogonal 1.1 
wavelet and chose the horizontal sub-band in our simulations 
(although the results hold generally for any sub-band and 
choice of wavelet filters). Having learnt the optimal MCG 
parameters (including  ) from the training set, we 
subsequently sample multiple set of N wavelet neighborhoods 
and, for each case, compute the KLD (Kullback Leibler 
Divergence) between the normalized empirical histograms of 
the  -normalized version of each wavelet coefficient and the 
histogram as predicted by the CG and MCG models 
respectively. 

Tables 1-3 show respectively the average performance of 
CG and MCG models for the Herringbone texture [9], the 
hangers SAR image [10], and the Baboon Optical image. The 
results recorded here are statistically significant. The optimum 
value of   for each case is also displayed. Since        for 
the case of Baboon image, by Lemma 1 a unique inverse 
cannot be guaranteed; nevertheless the generative algorithm 
furnishes above one possible solution that is consistent with 
the MCG model. From the results it is clear that the MCG 
distribution outperforms CG in all cases. 

Thus MCG is a general model that can be used a building 
block for more complex probabilistic models of scene 

structure; and more generally opens up exciting new avenues 
for accurately modeling diverse stochastic phenomena. 
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Table 1:Herringbone Texture. Optimum   [                   ]. Each channel is a different node in the neighborhood structure. 

 

Table 2: Hangers SAR Image. Optimum   [                   ]. Each channel is a different node in the neighborhood structure. 

 

Table 3: Baboon Image. Optimum   [                    ]. Each channel is a different node in the neighborhood structure. 

 

Avg.KLD Channel1 Channel2 Channel3 Channel4 Channel5 Channel6 Channel7 Channel8 Channel9 

CG (GSM) 0.5163 0.5706 0.4407 0.4365 0.4119 0.4377 0.4312 0.5248 0.4782 

MCG 0.0266 0.0335 0.0226 0.0471 0.0611 0.0455 0.0320 0.0340 0.0326 

Avg.KLD Channel1 Channel2 Channel3 Channel4 Channel5 Channel6 Channel7 Channel8 Channel9 

CG (GSM) 0.6231 0.3568 0.4989 0.4783 0.2797 0.4303 0.4676 0.4311 0.5609 

MCG 0.0842 0.0353 0.0464 0.0784 0.0550 0.0556 0.0601 0.0587 0.0809 

Avg.KLD Channel1 Channel2 Channel3 Channel4 Channel5 Channel6 Channel7 Channel8 Channel9 

CG (GSM) 0.4036 0.3087 0.2989 0.2514 0.2756 0.2872 0.3322 0.2966 0.3174 

MCG 0.0353 0.0254 0.0256 0.0237 0.0231 0.0251 0.0233 0.0200 0.0274 

http://sipi.usc.edu/database/database.cgi?volume=textures

