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ABSTRACT

tion when the number of components is unknown is an impogent
ample of such problems. Lgt = (y1, 2, ..., yn)" be avector of

This paper addresses the problem of summarizing the posteri v ohservations, where the supersctigtands for vector transposi-

distributions that typically arise, in a Bayesian framekyowhen

dealing with signal decomposition problems with unknowmber

of components. Such posterior distributions are defined orni®on

of subspaces of differing dimensionality and can be samfstad

using modern Monte Carlo techniques, for instance the asingly

popular RJI-MCMC method. No generic approach is availalde;-h
ever, to summarize the resulting variable-dimensionalptesnand
extract from them component-specific parameters.

tion. In signal decomposition problems, the model spacéiista or
countable set of modelsyt = { My, k € K}, whereK C Nisan
index set. Itis assumed here that, undéy,, there aré&: components
with component-specific parametets; € ® C R?. We denote
by 6, = (0r.1,...,0rk) € OF the vector of component-specific
parameters. In a Bayesian framework, a joint posterioritligion

is obtained through Bayes’ formula for the model indeand the
_vector of component-specific parameters, after assigniity gis-

We propose a novel approach to this problem, which consists iirjputions on them :

approximating the complex posterior of interest by a “sigfiptbut
still variable-dimensional—parametric distribution. €Tlllistance

between the two distributions is measured using the Kullbac

Leibler divergence, and a Stochastic EM-type algorithrivedr by
the RJ-MCMC sampler, is proposed to estimate the paramdtees
proposed algorithm is illustrated on the fundamental dignacess-
ing example of joint detection and estimation of sinusoidsvhite
Gaussian noise.

Index Terms— Bayesian inference; Posterior summarization; 1 1

Trans-dimensional MCMC; Label-switching; Stochastic EM.

1. INTRODUCTION

Nowadays, owing to the advent of Markov Chain Monte Carlo
(MCMC) sampling methods [1], Bayesian data analysis is icbns

[k, 0r) o< p(y|k, Ox)p(Ox|k)p(k),

whereo indicates proportionality. This joint posterior distrtmn,
defined over a union of subspaces of differing dimensionatim-
pletely describes the information (and the associated rtaingy)
provided by the datg about the candidate models and the vector
of unknown parameters.

lllustrative example: sinusoid detection

In this example, it is assumed that undkf,, y can be written

as a linear combination of sinusoids observed in white Gaus-
sian noise. The unknown component-specific parameters are
0, = {ap,wk, dr}, Wwhereay, wy and ¢, are the vectors of
amplitudes, radial frequencies and phases, respectivélfg use
the hierarchical model, prior distributions, and Revdesibump

ered as a conventional approach in machine leaming, sgmal \;cnvc (RJ-MCMC) sampler [3] proposed ifi[4] for this problem:
image processing, and data mining problems—to name but & feW,q interested reader is thus referred 16 [3, 4] for moreikdeta

Nevertheless, in many applications, practical challerrgesain in
the process of extracting, from the generated samplesfitjgarof
interest to summarize the posterior distribution.

Summarization consists, loosely speaking, in providingw f
simple yet interpretable parameters and/or graphics temieuser
of a statistical method. For instance, in the case of a spal@me-
ter with a unimodal posterior distribution, measures oftamn and
dispersion (e.g., the empirical mean and the standard ti@vjzor
the median and the interquartile range) are typically mrediin ad-
dition to a graphical summary of the distribution (e.g., stbgram
or a kernel density estimate). In the case of multimodalribist
tions summarization becomes more difficult but can be chwig
using, for instance, the approximation of the posterior Baassian
Mixture Model (GMMs) [2].

This paper addresses the problem of summarizing postasior d

tributions in the case of trans-dimensional problems,“tlee prob-
lems in which the number of things that we don’t know is onehef t
things that we don't know" |3]. The problem of signal decorapo

Figure[1 represents the posterior distributions of bothnita-
ber of components and the sortgtiradial frequenciess;, givenk
obtained using the RJ-MCMC sampler. Each row is dedicated¢o
value ofk, for 2 < k < 4; observe that, other models have negligi-
ble posterior probabilities. In the experiment, the obedrsignal of
length N = 64 consists of three sinusoids with amplitudes =
(20, 6.32,20)" and radial frequencies), = (0.63,0.68,0.73)".
TheSNR £ % is set to the moderate value DfiB, where
Dy, is the desigh matrix and? is the noise variance.

Roughly speaking, two approaches co-exist in the liteeator
such situations: Bayesian Model Selection (BMS) and Bayesi
Model Averaging (BMA). The BMS approach ranks models ac-
cording to their posterior probabilitigs(k|y), selects one model,

10wing to the invariance of both the likelihood and the prioder per-
mutation of the components, component-specific marginsigpiors are all
equal: this is the “label-switching” phenomenohi[5.16, Hentifiability con-
straints (such as sorting) are the simplest way of dealirtly this issue.
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Fig. 1. Posteriors of: (left) and sorted radial frequencies;,, given
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so to speak.

The paper is organized as follows. Secfibn 2 introducestitre p
posed model and stochastic algorithm. Sedfibn 3 illusrtite ap-
proach using the sinusoid detection example already disclis the
introduction. Finally, Sectiohl4 concludes the paper andgirec-
tions for future work.

2. PROPOSED ALGORITHM

Let F' denote the target posterior distribution, defined on the
variable-dimensional spacé ymax (k) x ©F. We assume
that F admits a probability density function (pdf) with respect to
the kd-dimensional Lebesgue measure on efich x ®F, k € K.
To keep things simple, we also assume B®at R,

Our objective is to approximate the exact posterior dengity
using a “simple” parametric mode},,, where n is the vector

k (right). The true number of components is three. The vdrticaof parameters defining the model. The pgf will also be de-

dashed lines in the right figure locate the true radial freqgies.

and then summarizes the posterior under the (fixed-dimeaBio
selected model. This is at the price of loosing valuablermttion
provided by the other (discarded) models. For instanceheneix-
ample of Figuré1l, all information about the small—and tfene
harder to detect—middle component is lost by selecting thstm
a posterioriprobable modeM,. The BMA approach consists in
reporting results that are averaged over all possible mspdels,
therefore, not appropriate for studying component-spepidirame-
ters, the number of which changes in each nthdel

fined on the variable-dimensional spaXe(i.e., it is not a fixed-
dimensional approximation as in the BMS approach). We assum
that a Monte Carlo sampling method is available, e.g. a RM@C
sampler [[3], to generatd/ samples fromf, which we denote

byx® = (k®,0)),fori = 1,..., M.

2.1. Variable-dimensional parametric model

Let us describe the proposed parametric model from a gévesrat
point of view. As in a traditional GMM, we assume that therais
certain number of “Gaussian components” in the (approximate)
posterior, each generatinglavariate Gaussian vector with mepan
and covariance matriX;, 1 <[ < L.

More information concerning these two approaches can be An X-valued random variable = (k,6y), with0 < k < L,

found in [3] and references therein. To the best of our kndgde
no generic method is currently available, that would allovstim-
marize the information that is so easily read on Fiddre 1 i t
very simple example: namely, thidiere seem to be three sinusoidal
components in the observed noisy signal, the middle onengpavi
smaller probability of presence than the others

1.2. OQutline of the paper

In this paper, we propose a novel approach to summarize stepo
rior distributions over variable-dimensional subspates typically
arise in signal decomposition problems with an unknown remb
of components. It consists in approximating the complexeyas
distribution with a parametric model (of varying-dimensadity),
by minimization of the Kullback-Leibler (KL) divergence tveeen
the two distributions. A Stochastic EM (SEM)-type algonit{€],

is generated as follows. First, each of the&eomponents can be ei-
ther present or absent according to a binary indicator blrig €
{0,1}. These Bernoulli variables are assumed to be independent,
and we denote by, € (0; 1] the “probability of presence” of th&!
Gaussian component. Second, given the indicator variahles
Zlel & Gaussian vectors are generated by the Gaussian compo-
nents that are preserg;(= 1) and randomly arranged in a vector
0, =0r1,...,0kk).

We denote byy, the pdf of the random variabte that is thus
generated, withy, = (w1, 3, m;) the vector of parameters of the
Gaussian component,< [ < L, andn = (n1,...,nL).

Remark. In contrast with GMMs, where only one component is
present at a time (i.ek, = 1 in our notations), there is no constraint
here on the sum of the probabilities of presence.

driven by the output of an RJ-MCMC sampler, is used to estmat 2.2. Estimating the model parameters

the parameters of the approximate model.

Our approach shares some similarities with the relabeligg-a
rithms proposed in [6. 7] to solve the “label switching” pletn, and
also with the EM algorithm used in![9] in the context of adegti
MCMC algorithms (both in dixeddimensional setting). The main
contribution of this paper is the introduction of an oridimariable-
dimensional parametric model, which allows to tackle diyethe
difficult problem of approximating a distribution defined eova
union of subspaces of differing dimensionality—and thusvjgtes
a first solution to the “trans-dimensional label-switcHipgoblem,

2See, however, the intensity plot provided in Secfibn 3 (teiduot on
Figure[4) as an example of a BMA summary related to a compesysattific
parameter.

One way to fit the parametric distributiog,(x) to the poste-
rior f(x) is to minimize the KL divergence of from ¢»,, denoted by
Drr(f(x)|lgn(x)). Thus, we define the criterion to be minimized
as

f(x)

an() &

T() 2 Dir (F@)llan(x)) = / f (x) Tog

Using samples generated by the RJ-MCMC sampler, this icriter
can be approximated as

M
T = Jm) =~ 3" log (4ax)) + .



At the r™ iteration,
S-step draw allocation vectora*"™) ~ p ( | x@), 77“*1)),
fori =1,..., M.
M-step estimater;") such that
M

A" = argmax,, Zlog D (x(i), P |'r/) .

i=1

Fig. 2. SEM algorithm.

whereC is a constant that does not dependrpnOne should note
that minimizing7 () amounts to estimating such that
M )
7 = argmax, Z log (q,, (x(z))) . @)
=1
Now, we assume that each element of iReobserved sam-
ple xy), forj = 1, ..., k', has arisen from one of the Gaussian
components contained if3,. At this point, it is natural to introduce
allocation vectorg corresponding to th&" observed sampte,
fori = 1,..., M, as latent variables. The elemanjf) = lindi-

cates thaky) is allocated to thé!" Gaussian component.

can be computed up to a normalizing constant, we devised an
Independent Metropolis-Hasting (I-MH) algorithm to const a
Markov chain withp(z" | x| /(") as its stationary distribution.

2.3. Robustified algorithm

Preliminary experiments with the model and method desdritvéhe
previous sections proved to be disappointing. To undedsidy, it
must be remembered that the pgf we are looking for is only an
approximation(hopefully a good one) of the true posteriarFor in-
stance, for high values @&f, the posterior typically involves a diffuse
part which can not properly represented by the parametrideio
(this can be seen quite clearly fbr= 4 on Figurel). Therefore,
for any 7, some samples generated by the RJ-MCMC sampler are
outlierswith respect tay, (i.e., the true posterior can be considered
as acontaminatedersion ofg,) which causes problems when using
a maximum likelihood-type estimate suchfas (1).

These robustness issues were solved, in this paper, using tw
modifications of the algorithm (only in the one-dimensiocase up
to now). First, robust estimates [10] of the means and veesmof
a Gaussian distribution, based on the median and the iraeiigu
range, are used instead of the empirical means and variantes
M-step. Second, a Poisson process component (with unifioten-i
sity) is added to the model, in order to account for the ddfpart
of the posterior and allow for a numbérof Gaussian components
which is smaller than the maximum obsened .

Hence, given the allocation V‘?Ct”@ and the parameters of the  Remark. Similar robustness concerns are widespread in the cluster-
modeln, the conditional distribution of the observed samples, i.e ing literature; see, e.g[, [11] and the references therein.

the model’s likelihood, is

()
px12", m) = T[N 1,0, B,0)-
J J

Jj=1

It turns out that the EM-type algorithms, which have beerduse

in similar works [6, 7| 9], are not appropriate for solvingstprob-
lem, as computing the expectation in the E-step is intriclere
explicitly, in our problem the computational burden of themsna-
tion in the E-step over the set of all possible allocationtwexz

3. RESULTS

In this section, we will investigate the capability of theoposed
algorithm for summarizing variable-dimensional postedstribu-
tions. We emphasize again that the output of the trans-diioral
Monte Carlo sampler, e.g. RJ-MCMC in this paper, is considers
the observed data for our algorithm. Regarding the factith#tis
paper we provide results for the sinusoids’ radial freqies)cthe
proposed parametric model consists of univariate Gaussiampo-

increases very rapidly wittk. In fact, even for moderate values
of k, say,k = 10, the summation is far too expensive to compute
as it involvesk! ~ 3.610° terms. In this paper, we propose to

nents. In other words, the space of component-specific peam
® = (0; ) C R. Butwe believe that our algorithm is not limited to

use SEMI|[B], a variation of the EM algorithm in which the Egste
is substituted with stochastic simulation of the latenialgles from
their conditional posterior distributions given the pas estimates
of the unknown parameters. In other words,fce 1, ..., M, the
allocation vectorz®) are drawn fronp(- | x(¥, /(). This step is
called the Stochastic (S)-step. Then, these random sam@esed
to construct the so-called pseudo-completed likelihooatkvheads

A
» (x(l),z“) |,7) = [[~; (xy) L, Ez@)
=1 ’ ’
1z(z9) e 1-&?)
—or Lm' @ =m0 @)

=1

whereZ is the set of all allocation vectors aﬁéf) = 1if and only

if there is aj € {1,...,k®} such thatzgz) = 1. The proposed

SEM-type algorithm for our problem is described in Figure 2.
Direct sampling fromp( - | x¥, /(")), as required by the S-step,

is unfortunately not feasible. Instead, since

@ 5@ | 5™

p(zm |x<i), ﬁ(r)) x p(x 7")

the problems with one-dimensional component-specificrpaters.
Therefore, in this section, it is assumed that each Gaussiapo-
nent has a mean, a variances®, and a probability of presenceeto
be estimated.

Before launching the algorithm, first, we need to initialthe
parametric model. It is natural to deduce the numbef Gaussian
components from the posterior distribution lof Here, we set it
to the 90*" percentile to keep all the probable models in the play.
To initialize the Gaussian components’ parameters, ju@and s2,
we used the robust estimates of the posterior of the sortidlra
frequencies givelk = L.

We ran the “robustified” stochastic algorithm introduce®et-
tion[2 on the specific example shown in Figlife 1, for 50 iteratj
with L = 3 Gaussian components (the posterior probabilityof
3} is approximately 90.3%). Figuid 3 illustrates the evolutif
model parameterg together with the criterion7. Two substan-
tial facts can be deduced from this figure; first, the increadie-
havior of the criterion7, which is almost constant after tH®"
iteration. Second, the convergence of the parameters afiric
model, esp. meansand probabilities of presenee though using a
naive initialization procedure. Indeed after #&" iteration there is
no significant move in the parameter estimates. Table 1 predee
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Fig. 3: Performance of the proposed summarizing algorithm on th
sinusoid detection example. There are three Gaussian cenfo
in the model.

Comp| pu s m KBMS | SBMS
1 0.62 | 0.017 1 0.62 0.016
2 0.68 | 0.021 | 0.22 — —
3 0.73 | 0.011 | 0.97 | 0.73 0.012

Table 1. Summaries of the variable-dimensional posterior distrib
tion shown in Figur€&ll; The proposed approach vs. BMS.

intensity pdf

intensity

Fig. 4. The pdf of fitted Gaussian components (top), the histogram
intensity of all radial frequencies samples (middle), ahd his-
ogram intensity of the allocated samples to the Poissont pwo-
cess component (bottom).

SEM-type algorithm have been proposed, in order to cope thith
lack of robustness of maximum likelihood-type estimateke Tel-
evance of the proposed algorithm, both for summarizing ande-
labeling variable-dimensional posterior distributionas been illus-
trated on the problem of detecting and estimating sinusoi@aus-
sian white noise.

We believe that this algorithm can be used in the vast domain

of signal decomposition and mixture model analysis to ecban-

) ) ) ference in trans-dimensional problems. For this purposeegliz-
summaries provided by the proposed method along with the ONGng the proposed algorithm to the multivariate case andyaira its

obtained using the BMS approach. Contrary to BMS, the methodonyergence properties is considered as future work. Amdthpor-

that we proposed has enabled us to benefit from the informafio
all probable models to give summaries about the middle hae
detect component. Turning to the results of our approadaritbe
seen that the estimated means are compatible with the tdial ra
frequencies. Furthermore, the estimated probabilitiepre$ence
are consistent with uncertainty of them in the variable-atisional
posterior shown in Figurgl 1. Note the small estimated stahde-
viations which indicate our robustifying strategies haeeiouseful.
The pdf's of the estimated Gaussian components are shown i)
Figure[4 (top). Comparing with the posterior of sorted rhéfie-

(1
[2

4
quencies shown in Figufé 1, it can be inferred that the preghas- “
gorithm has managed to remove the label-switching phenoman
a variable-dimensional problem. Furthermore, the intgrot of 5]
the allocated samples to the point process component istddph
Figure[4 (bottom). This presents the outliers in the obsksamples  [6]

which cannot be be described by the Gaussian component® Not
that without the point process component these outlierddvoei al-
located to the Gaussian components which can, consequgietly

[7]

in a significant deterioration of parameter estimates. 8]

4. CONCLUSION [0
In this paper, we have proposed a novel algorithm to summans- [10]
terior distributions defined over union of subspaces ofdifig di-  [11]

mensionality. For this purpose, a variable-dimensionahmetric
model has been designed to approximate the posterior aksite
The parameters of the approximate model have been estirhgted
means of a SEM-type algorithm, using samples from the postér
generated by an RJ-MCMC algorithm. Modifications of ouriatit

tant point would be to use a more reliable initializationgerdure.
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