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ABSTRACT

This paper investigates detection of English keywords ioraer-
sational scenario using a combination of acoustic and LVG&sed
keyword spotting systems. Acoustic KWS systems searchepred
fined words in parameterized spoken data. Correspondinfi-con
dences are represented by likelihood ratios given the keywmd-
els and a background model. First, due to the especially rnigin-
ber of false-alarms, the acoustic KWS system is augmentéad wi
confidence measures estimated from corresponding LVC 8Eelat
Then, various strategies to combine scores estimated bgcihes-

tic and several LVCSR based KWS systems are explored. We shofl;

that a linear regression based combination significantipexforms
other (model-based) techniques. Due to that, the relatineber of
false-alarms of the combined KWS system decreased by mare th
50% compared to the acoustic KWS system. Finally, an attersi
also paid to the complexities of the KWS systems enablinmtte
potentially be exploited in real-detection tasks.

Index Terms— KeyWord Spotting (KWS), Spoken Term De-
tection (STD), Confidence Measure (CM)

1. INTRODUCTION

KeyWord Spotting (KWS) is a technique used to detect keyword
(defined a-priori) in speech utterances. Such a technigessintial

in spoken document retrieval tasks; the current targesuserpolice
and other public/private security authorities.
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The acoustic KWS described above represents a secondipbégnt
proach towards open-vocabulary KWS, where a model of any key
word (composed of acoustic phone models) is built at the timee
keyword is entered [1]. Although this acoustic KWS approbak
not been thoroughly investigated and usually performs gvtinan
LVCSR based techniques, its simplicity, speed and robestte
OOVs can be of interest for real-time applications [3].

Due to inaccuracies of ASR technologies used in current KWS,
the detected keywords need to be accompanied by Confidence Sc
(CS) estimates. In the case of acoustic KWS, CSs are estimate
ratio between likelihood given a keyword model and liketit
given a background model. In the cases of word, sub-word and
phone recognition lattices generated by the LVCSR, the denée
can be represented by word, sub-word or phone posterioapiieb
ities, respectively, conditioned on an entire utteranat estimated
from those lattices by forward-backward re-estimation [6]

Compared to the acoustic KWS, LVCSR-KWS systems usually
yield much better detection performance, however, opggatiith
higher complexity (i.e., far above Real-Time (RT)). Thisperty is
particularly valid if an operating point corresponding ttoa num-
ber of missed keywords is required and there is no constoaitihe
LVCSR complexity (decoding time) so that rich output redtign
lattices can be generated. However, a search in even edjatich
word recognition lattices (generated with low pruning) ¢aad to
observing a small number of False-Alarms (FAs) but an exaglgs
high number of missed keywords. Such the behavior is notptece
able in most current real KWS detection tasks (e.g., sacorit

An acoustic KWS can be seen as a limited vocabulary Automati@nted), where a selected operating point usually allows faigher

Speech Recognition (ASR) system. Unlike ASR, the acoustitSK

number of FAs but ensuring a small number of missed words. In

does not need to recognize the whole sentence. The keywnrds dhese tasks, an acoustic KWS is a more adequate candidate.

searched in parameterized spoken data (acoustic feaftifes)n-
like acoustic KWS, Large Vocabulary Continuous Speech Beieo

In this paper, previously unexplored experimental work loa t
combination of the acoustic and various LVCSR (word and ghon

tion (LVCSR) based KWS systems (often called Spoken Term Derecognition lattice) based KWS systems is reported. Wegficgiose

tection systems) search keywords in the output of the LVA2R,
word recognition strings — lattices [2]. The vocabulary isetisu-
ally large, but closed. Therefore, words with low prior pabbities
(proper names, etc.) cannot usually be detected in the vemahr
nition lattices and are often denoted as Out-Of-Vocabu{@®V)
words. Possible modifications are provided by hybrid apghea
transcribing the speech into lattices of phones or sub-wuits

to augment the acoustic KWS by enriching acoustic CS estisnat
using conventional confidence measures derived from quones
ing LVCSR word recognition lattices. Then, several experits in
combining properly aligned individual CSs of various KWSt&ms
using different techniques are conducted. Compared todigstic
KWS, the best combination yields abdi{t% decrease in the num-
ber of FAs for the pre-defined operating point (ensuring ageably

which can deal with OOVs. However, the overall KWS detectionjow number of missed keywords). During the experiments, lse a

accuracy is usually lower [3]. Interesting improvements ¢
achieved by using additional features to boost the confielenores
of the search terms [4], or by combining word and phone insl§xe

*This work was partially supported by the Swiss National €eof Com-
petence in Research (NCCR) on “Interactive Multi-modabinfation Man-
agement (IM)2”; and by the European commissioth Framework Pro-
gramme (FP7) ICT Project “Together Anywhere, Together Angt (TA2).

kept in mind complexity issues of the combined KWS systemes du
to their potential applicability in a real detection task.

The paper is organized as follows: Section 2 describes ttze da
used in our KWS detection experiments and an evaluationienetr
used. Section 3 gives more details about employed LVCSR st
while Section 4 refers to the acoustic KWS. Results on coathin
of KWS techniques are given in Section 5, followed by dismrss



2. KWS TASK

2.1. Testdata

The study is carried out on6 kHz real unconstrained speech

recorded using close-talk microphones in a fairly clearirennment

(SNR~ 20dB). In total, about 70 minutes of recordings pronounced

in English by non-native (male/female) speakers are useg.tD a
chosen scenario, the microphones were not placed in froeadt
speaker, but rather close to the ears (i.e., to be less @jjsifihis
caused some degradation of the recorded speech qualigc{abp
due to a large variation of energy of the speech) and henacieren
the KWS task more challenging. In totakl0 occurrences of pre-
defined keywords composed of various phone lengths (i.e, 8 t
phones) appear in the experimental data and their timeigosiare
precisely annotated.

Background mode|

Fig. 1. General scheme of acoustic KWS.

Due to machine-learning techniques used later in our experi3-1. Simplified systems for fusion

ments, a training dataset is required. For this purposebsesi-

70 minutes) ofl6 kHz audio lectures annotated for ASR as well asoped KWS techniquedS W S1vcsr

KWS tasks is employed [7].

2.2. Evaluation metric

Since KWS is a detection task, performance can be charzeteby
Detection Error Tradeoff (DET) curves of misB.ss) versus false-

In order to take into account a potential employment of theetle
20051 system based on the 3rd pass
and exploiting weak pruning during the decoding is used daly
compare final KWS detection performances. In the followixges-
iments, a simplified LVCSR-KWS versions are employed:
(a) 2-pass AMIDA LVCSR system where generation of word recog-
nition lattices is pruned in a way to achieve decoding comipes
about 10xRT. Such a system is denotedsdd’ S;335E .

alarm (P;,) probabilities. In addition, we also present Equal Error (b) 2-pass AMIDA LVCSR system generating phone recognition

Rates (EERs) — a one number metric often used to optimize@msys
performance. To highlight achieved detection performansative
numbers of False-Alarms (FAs) are compared for an arbitagy-
ating point (which is meaningful for any potential secuidtyented
application). We also present Figure-Of-Merit (FOM) — nef8],
which yields an upper-bound estimate on spoken term deteati-
curacy averaged over 1 to 10 FAs per hour.

3. LVCSR - KWS

LVCSR used for the KWS detection is a 3-pass AMI[DA)stem
trained onl 6 kHz Individual Headset Microphone (IHM) recordings
from several meeting corpora (ICSI, NIST, AMI) [9]. In thestir
pass, PLP features are exploited and Acoustic Models (Abfmer

sented by HMMs are trained using a Minimum Phone Error (MPE)

procedure. In the second pass, Vocal Tract Length Nornializa
takes place together with Heteroscedastic Linear Disodmt Anal-
ysis, MPE and Speaker Adaptive Training (SAT). In the thiad$
posterior-based speech features estimated using a Neatabhk
(NN) system replace PLPs. For the decoding,0& dictionary is
used together with a 3-gram Language Model (LM). This syste

reaches a Word Error Rate (WER) of 2.9% on Wall Street Journ

lattices subsequently used in KWS detection. Although tloedw
recognition lattices provide significantly better detewtiperfor-
mances than phone lattices (e.g., [10]), the phone latEbess to

be useful for the later systems’ combination. This systedersted
asKW S1EE, . Similar to the 2nd pass, 3-pass based KWS (with
phone lattices) Is used only to compare final detection peidoces
(e, KWST¥EE R system).

(c) 8 kHz simplified LVCSR system employing the same dictionary
and LM as the AMIDA LVCSR. It uses Acoustic Models (AMs)
trained in non-discriminative manner without any speakiapsation
technique. AMs are trained on hundreds of hours of Conviersalt
Telephone Speech (CTS) recordings. The KWS detection {déno
asKW S22, ) is done on word lattices and the overall complex-
ity is about 5xRT.

4. ACOUSTIC KWS

As an acoustic KWS, one of currently the best HMM-NN based
phone ASR system is employed [11]. More specifically, thengho
recognizer exploits context-independent phone modelstwhre
represented by phone posteriors estimated using Neuraldxet
NNs). For training the NNs, unconventional features (knoas
RAPSs) are used. TRAPs are derived from relatively long temlp

(WSJ) Hub2 test set (composed from the November 92-1248 uttetrajectories which are represented by critically banédigpectral

ances/2.5 hours, 5k dictionary, 3-gram LM).

energies. TRAPs are split into two parts — Left and Right €gtst

To compare detection performanges of individual KWS sys-(LC-RC). Outputs of NNs trained separately on LC and RC @aes
tems, the full AMIDA LVCSR system is used so that word recog-then merged using another NN called Merger. Merger-NN predu

nition lattices are derived in the 3rd pass with “weak” pngi
Overall complexity of the decoding process is about 20xRE- P

3-state phone posterior estimates for beginning, centéead of a
phone. Such the setting has shown to well estimate overateh

defined keywords are then searched as an index in the decaudd w posteriors by precise modeling the whole temporal trajgoidiile

recognition lattices. Such the resulting KWS system is tetho
as KW S0 kT
keywords (i.e., no detection of OOVs as searched key-wptts)
presented KWS scenario does not in fact make differencedsstw
OOVs and in-vocabulary words.

Lhttp://www.amiproject.org

the sizes of NNs are limited. The NNs for generating the phmse

Although the dictionary contains all pre-defined terior estimates are trained on a large scaleédtHz meeting data.

During KWS detection, word models of searched keywords are
created from corresponding phone models (i.e., 3-stategbpos-
terior estimates are transformed into 3-state Hidden MaNod-
els (HMM) with emission probabilities given by the MergeNN
Parallelly concatenated keyword models are then accoragdni



% System EER [%] | FAs [%]

Original (FOM ~ 24%) 17.82 100
Enriched(FOM ~ 25%) 17.30 91

Table 1. Equal-Error-Rates (EERs) and relative number of False
Alarms (FAs) of the original and enriched acouskiéV S:25T, sys-
tems for the operating point given by EER {;ss = 17.82%) of the
original acoustic KWS.
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—=> Miss probability [%]

p(W;) is a word posterior probability of the hypothesized wvg
(selected from the dictionary) and is computed for each éréimm

10

5 1 the Acoustic Model (AM) and Language Model (LM) scores of the
) ‘ - L word recognition lattice using the forward-backward aitjon.
001 01 12 5 10 20 40 60 First, for each wordw detected by the acoustic KWS and as-

> False Alarm probabilty [%] signed with some acoustic CS (further denoted'as co.s:(w)), an

Fig. 2. DET plot — KWS detection performances of different individ LVCSR-CS (denoted a8 Srveosr(w)) is computed
ual systems: (@)K W Satanse, (b) KW SEEE R, (¢) KW ST/ sk,
(d) KW SR, e
! CSrvosr(w) = H(W | tn € (ts,te)) = > H(W | tn).

tn=ts

: . 2
filler and background models (represented by simple phoogslo  ;_ andt, denote starting and end times of each detected keyword
to create a decoding network, as shown in Fig 1. Likelihoods 0, respectively. Then('S.yvcsr(w) is used as a binary (lenght-

the detected keywords are taken from the last state of egotoké  ingependent) threshold for acoustic confidefits,cou.(w) of the
model (computed using Viterbi decoder) and compared wetike-  given wordw

lihood obtained from the background model. Confidence S8

of each detected keyword is then given as a log-likelihodid tze- CSacoust(w), if CSrvesr(w) < Thr

tween these two likelihoods [1]. Such the acoustic KWS isotieth CSacoust(w) = { —00, elsewhere.

as KW S1*ET and is able to run much faster than LVCSR-KWS 3)

(far below 1xRT). Eqg. 3 is valid for log-likelihood ratios used to represéhfacous:.
Fig. 2 compares DET curves of the KWS detection on a teswWith regards to complexity of the acoustic KWS augmentech wit

dataset using different individual systems. The best vassiof CSpvcosr, H(W | t,) is estimated from faster KW S35,

LVCSR-KWS systems are shown. The plot indicates that in ohse system, where pruned word recognition lattices are gesgiiatthe

low Py,, KW S33FEL, significantly outperforms other KWS sys- 2nd passT'hr is tuned on the training dataset.

tems (achieved FOM- 37%). However, such the system yields in- Tab. 1 compares detection performances for the acoustic KWS

sufficient performances for low,,;ss. This is caused by the fact without and with enriching origina®'S,coust by CSrvcsr. Al-

that some occurrences of keywords are not found even in weakithough EER of the enriche®& W S:2ET, did not decrease signif-

pruned word recognition lattices generated in the 3rd p&ther icantly, it yields 9% relative decrease in the number of Féang-

LVCSR-KWS systems perform worse and yield similar negativeputed for the operating point given by EER of the original st

properties for lowPy;.s. Acoustic KW S1ZET  reaches signifi-  KWS).

cantly worse detection performances for Id&%,, but can operate

up to Ppiss ~ 10% (achieved FOM~ 24%). 5. SYSTEM FUSION

In the last experiments, several conventional techniquesea-
4.1. Augmenting acoustic KWS using LVCSR confidence mea- ploited to fuse the acoustic and the LVCSR-KWS systems. More
sures specifically, neural network, Maximum Entropy and lineagres-
As shown in Fig. 2, the acoustic KWS can operate on much large$ion techniques are employed to combine Confidence Scorg (CS
scale of DET curve than LVCSR-KWS systems. However, the deestimates of the keywords detected by hitherto describdididual
tection performance is significantly worse, especially tudigh ~ KWS systems. In the first step, CSs are properly aligned gdftap
number of FAs. In the following experiments, we attempt te im correspond to the same keywouddetected in the same time inter-
prove acoustic KWS by enriching its Confidence Score (CS) estVval wl;*. In the case of non-existing CSs (i.e., a keyword is detected
mates using conventional LVCSR confidence measures. Siece tby only some systems), missing CSs are setdo, similar to Eq. 3.
LVCSR word recognition lattices are generated for the tasaset,  Then, following techniques for systems’ fusion are expdore
frame-based confidence measures estimated from thesedatan NN - A feed-forward backpropagation Neural Network with one-hid
directly be exploited to enrich the acoustic CSs (i.eko¥ S:2EL,  den layer: A hidden layer comprise8 nodes with tangent sigmoid
system). as a transfer function. Input is represented by CSs (logd)aze
LVCSR confidence measure — which yields the amount of uncerdiscriminate betweef/1 depending on the true/false occurrence of
tainty associated with a dictionaly’ for a given time instance @ given keyword in the transcription. Training of the NN ispe
t = t, is used formed on the training dataset (list of training keyword$eds from

the list of test keywords).

MaxEnt - Maximum Entropy criterion: It uses conditional maxi-

HW [ ta) = - Zi:p(W' [ tn) log2(p(Wi [ 1)) (1) mum entropy models whicﬁyhave been shown to provide good per-



—(aﬁ Acous‘tic KWS SyStem EER [0/0] FAs [%]
(b) LVCSRKWS | | 1, - acoustic KWSFOM ~ 24%) 17.82 100
e 1, - enriched acoustic KWEOM ~ 25%) | 17.30 91
_ ---(e) LR fusion 1, +2 14.59 49
£ 1, +2+3 14.58 48
;—E 1lq + 2+ 3+ 4(FOM ~ 40%) 14.47 49
5 1, + 2 + 3 + 4(FOM ~ 41%) 14.46 46
.rzﬁ Table 3. LR fusion — Equal-Error-Rates (EERs) and relative number
n 20 s of False Alarms (FAs) of the acoustic and LR fused KWS systems
' " for the operating point given by EERPf.:;ss = 17.82%) of the
e acoustic KWS:1, - original acousticK W S:25T, 1, - enriched
5 acoustligfgvs;zﬂt, 2 - KWSIVEE,, 3 - KWSH R, 4 -
KWSIvVesr. -
%6 G117 & d0 % d @ oSt

—=> False Alarm probability [%]
Fig. 3. DET plot — KWS detection performances of combined KWS
systems: (@K W SLZEL, (b) KW SZeELL, | (c) MaxEnt fusion, (d)
NN fusion, (e) LR fusion.

System EER [%] | FAs [%]
acoustic KWS| 17.82 100
MaxEnt 18.54 120
NN 19.32 134
LR 14.46 46

Table 2. Fusion — Equal-Error-Rates (EERs) and relative numbe
of False Alarms (FAs) of combined KWS systems for the opegati
point given by EER BPiss = 17.82%) of the acoustic KWS.

formance in speech and language processing (language intndel
parsing). Similar to NN, the same training data is employed.

LR - Linear Regression: individual CSs are linearly combined: R
sulting CScr is given asCSLr = 3, an- CSn, Wherea,, are
weighting constantsaf, € (0, 1)) andC'S,, are confidence scores
from individual KWS systemsa,, are also estimated on the training
dataset. In order to avoid problems with negative infinitjyea, the
LR approach uses posterior probabilities for the combamati

5.1. Experimental results
All NN, MaxEnt and LR classifiers are trained for 4 individual

KWS systems: KW SLeET = gy §1Q2 BT KW SeRE. - and
KW S} 8&r, . As in the previous experiments, we attempt to em-

ploy less complex versions of LVCSR-KWS systems. Achieved
DET performances are given in Fig. 3. For the comparison pur-

poses, we also show DET curves of the original acoustic KWS a

well as of the best LVCSR-KWS system. EERs and relative num-

ber of FAs (computed for the operating point given by EER @&f th
acoustic KWS wheré,,;ss = 17.82%) are given in Tab. 2. Com-
bined CSs obtained using NN and MaxEnt classifiers perfortebe
for lower Py, (due to good performances of LVCSR-KWS systems)
as shown in Fig. 3. However for lowd?,,;ss (as well as for EER-
operating point), NN and MaxEnt yield worse performancemnth
simple acoustic KWS. Unlike NN and MaxEnt, the LR classifigr s
nificantly improves detection performances over all opeggpoints

of the DET curve (achieved FOM 41%).

Tab. 3 shows detection results for the LR fusion. Each indi-
vidual KWS system increases the overall EER as well as dsesea
the relative number of FAs. Tab. 3 also compares the LR fusfon
the acoustic KWS (and its enriched version) with the LVCSR&
systems. The enriched acoustic KWS yields better perfocesnot
only as an individual system but also when used in the fusion.

6. DISCUSSIONS AND CONCLUSIONS

This paper summarizes experimental results achieved withsa

tic and LVCSR-KWS systems exploited on conversational @udi
recordings. The individual LVCSR-KWS systems yield sigrafitly
better performances than the acoustic KWS for low numbealeéf
alarms. However for practical applications, an operatiogntpen-
suring rather low number of missed keywords is required. (éog

the security oriented applications). Then, the acousticKaMtper-
forms the LVCSR-KWS systems.

r Furthermore, keyword confidence scores estimated by the
acoustic KWS are enriched by frame-based word entropy — a con
fidence measure computed from the corresponding LVCSR tautpu
Resulting acoustic KWS system is then combined with “reédy’
low-complex LVCSR-KWS systems, which yields (in the case of
linear regression) a large improvement over any individiyyatem
used. Model based combination (NN, MaxEnt) did not bringni§ig
icant improvements, which was mainly caused by an inequalit
the training data. For previously selected operating paird rela-
tive number of false-alarms decreased by more than 50% caahpa
to the acoustic KWS.
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