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ABSTRACT

Automatic speech recognition is known to deteriorate in the presence of
room reverberation and variation of vocal effort in speakers. This study
considers robustness of several state-of-the-art front-end feature extrac-
tion and normalization strategies to these sources of speech signal vari-
ability in the context of large vocabulary continuous speech recognition
(LVCSR). A speech database recorded in an anechoic room, capturing
modal speech and speech produced at different levels of vocal effort,
is reverberated using measured room impulse responses and utilized in
the evaluations. It is shown that the combination of recently introduced
mean Hilbert envelope coefficients (MHEC) and a normalization strat-
egy combining cepstral gain normalization and modified RASTA filtering
(CGN_RASTALP) provides considerable recognition performance gains
for reverberant modal and high vocal effort speech.

Index Terms— Feature normalization, robust acoustic features, ro-
bust speech recognition, room reverberation, vocal effort

1. INTRODUCTION

Room reverberation poses various detrimental effects on spectro-temporal
characteristics of speech signals, among which self- and overlap-masking
are most notable [1]. In a reverberant enclosure, sound waves arrive at
the receiver (e.g., ears or microphone) via a direct path, and via multiple
paths and directions after reflecting off walls and objects defining the
acoustic enclosure. The reflections arriving within 50 — 80 ms after the
direct sound are called early reflections, which tend to build up to a level
louder than the direct sound and cause an internal smearing effect known
as the self-masking effect. The echoes reaching the receiver after the
early reflections are called late reflections, which tend to smear the di-
rect sound over time and mask succeeding sounds. This phenomenon is
commonly referred to as the overlap-masking effect, and has been shown
to be the primary cause of degraded speech recognition performance in
both human listeners [1] and automatic speech recognizers [2, 3].

Not only can reverberation cause signal distortion, it also results in
increased vocal effort of the speakers [4]. This is due to the fact that room
reverberation decreases speech quality and intelligibility, which in turn
induces changes in the auditory feedback process. Consequently, speak-
ers increase their vocal effort to compensate for the drop in intelligibility.
This increase in vocal effort, which is a function of both reverberation
time (aka Tg0) and talker-to-listener distance [4], has been shown to be
a major source of speech signal variability that can ultimately deteriorate
performance of ASR.

Hence, in a reverberant environment, an ASR system has to deal with
both signal distortions introduced by reverberation itself and also the sig-
nal variability due to the increased vocal effort, which is induced by re-
verberation. Several studies have considered individual effects of room
reverberation [2,3,5-7] and increased vocal effort [8,9] on ASR, and re-
ported compensation strategies for their alleviation. However, to the best
of our knowledge, this study is the first to consider the individual as well
as the combined effects of reverberation and increased vocal effort on
ASR. Robustness of various conventional and recently proposed feature
extraction/compensation techniques are evaluated in the context of large
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vocabulary continuous speech recognition (LVCSR) under reverberation,
increased vocal effort, and their combination. In particular, motivated
by their encouraging performance in speaker identification (SID) under
reverberation, the recently proposed mean Hilbert envelope coefficient
(MHEC) features [10] are benchmarked against traditional MFCC pre-
ceded by long-term log spectral subtraction (LTLSS) [3] and Gammatone
subband based non-negative matrix factorization (NMF) [7], as well as
MEFCC implemented in ETSI advanced front-end (AFE) [11], in LVCSR
experiments. The feature extraction schemes are paired with a number
of popular cepstral normalizations and also recently proposed RASTALP
temporal filtering. It is noted that this represents the first attempt to eval-
uate MHEC in an ASR task and analyze robustness of RASTALP to re-
verberation.

It is shown that post-processing the MHEC with cepstral gain nor-
malization (CGN) [12] combined with modified low-pass RASTA filter-
ing [9], which has been recently introduced for robust ASR under noisy
Lombard effect conditions, results in considerable improvement in per-
formance under reverberant modal and high vocal effort speech.

2. MEAN HILBERT ENVELOPE COEFFICIENTS: MHEC

MHEC features (Fig. 1) have been shown to be an effective alternative
to MFCC for robust SID under reverberant mismatched conditions [10].
The fourth and fifth stages (in the dashed box) in Fig. 1 are optional and
employed to suppress the reverberation self and overlap-masking effects.

First, the pre-emphasized reverberant speech signal 7(¢) is decom-
posed into 26 bands through a 26-channel Gammatone filterbank. Next,
the Hilbert envelope e (¢, j) is calculated and smoothed using a low-pass
filter with a cut-off frequency of 20 Hz. In the next stage, the low-pass
filtered e, (¢, 7) is blocked into frames of 25 ms duration with a skip rate
of 10 ms. To estimate the temporal envelope amplitude in frame m, the
sample mean R(m, j) is computed. Note that R(m, j) is a measure of
the spectral energy at the center frequency of the ;" channel, and there-
fore provides a short-term spectral representation of the speech signal
r(t). Next, in each channel, the envelope trajectories are normalized us-
ing the long-term average computed over the entire utterance, yielding
R, (m, 7). This stage functions as an automatic gain control (AGC) and
is used to suppress any spectral coloration effect of the reverberation (or
the self-masking effect) in different frequency channels. Up to this stage,
only the self-masking effect due to early reflections has been suppressed.
The overlap-masking effect, which is the long-term effect of reverbera-
tion due to late reflections, can be modeled as an uncorrelated additive
noise [6], and hence can be compensated via spectral subtraction [13].
The output of this stage represents an estimate of the clean speech spec-
trum S (m, 7). The last stage (i.e., logarithm and DCT) is commonly used
in extraction of conventional cepstral features such as MFCCs. Here,
only the first 13 coefficients (including cp) are retained after DCT. The
final output is a matrix of 13-dimensional cepstral features, entitled the
mean Hilbert envelope coefficients (MHEC).

3. FEATURE NORMALIZATIONS

The following feature normalizations considered in this study are typi-
cally applied in cepstral or log spectral domain in an effort to reduce the
impact of speaker, channel, and environmental noise mismatch on speech
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Fig. 1. Block diagram of the MHEC feature extraction framework. The symbols represent the output signals at each stage.

systems.
Distribution normalizations:

e Moment normalizations: cepstral mean normalization (CMN),
cepstral mean/variance normalization (CVN), Gaussianization
(feature warping, warp) [14], histogram equalization (HEQ) [15],

e Range normalizations: cepstral gain normalization (CGN) [12],
quantile-based cepstral dynamics normalization (QCN) [16].

Temporal filtering:
e Relative spectral (RASTA) filtering [17],
e Modified low-pass RASTA filtering (RASTALP) [9].

Due to the deconvolution properties of the log spectral/cepstral domain,
signal distortions caused by changes in environmental acoustics, micro-
phone/channel path, as well as speech production changes can be mod-
eled as a variation in feature distribution means and variances. In this
sense, the distribution normalizations operating in this domain have po-
tential to reduce also the impact of reverberation, characterized by the
room impulse response (RIR), and increased vocal effort, reflected in
speech intensity and spectral slope.

RASTA band-pass temporal filtering suppresses speech signal com-
ponents that are assumed to vary either too slowly or quickly to be at-
tributed to speech. RASTA has also potential to reduce the impact of
reverberation [5] by smoothing the additional feature envelope peaks due
to the signal reflection from the room walls.

In our recent study, RASTALP — a modified RASTA filter that ap-
proximates the low-pass portion of the original RASTA by a smoothing
low pass filter [9] and the high-pass portion by CMN or other segment-
based normalizations [9, 18] was introduced. Compared to the origi-
nal high order band-pass RASTA filter, RASTALP is a filter of signif-
icantly lower (2"?%) order, which helps reduce transient effects typical
for RASTA filtering. The combination of CMN-RASTALP was shown
to outperform RASTA in LVCSR on neutral and high vocal effort tasks
presented in clean and noisy conditions [18].

4. EXPERIMENTAL RESULTS

4.1. Speech Corpus

The test samples are drawn from the Lombard effect portion of the UT-
Scope speech database that contains neutral (modal) speech and speech
produced with various levels of increased vocal effort [19]. Lombard ef-
fect (LE) represents a phenomenon where speakers adjust their speech
production in order to maintain intelligible communication in noisy en-
vironments [20]. It is reflected in the increase of vocal effort, mean fun-
damental frequency, and a number of other speech parameters [8]. While
the cause behind the vocal effort increase is different for Lombard speech
and speech produced in reverberant distant speaker-to-listener conditions,
the impact on speech production parameters is, due to the physiological
mechanisms, in many aspects similar. Increased subglottal pressure and
tension in the laryngeal musculature in higher vocal effort cause increase
of mean fundamental frequency Fy [21], which has been observed for
both Lombard speech [8] and distant speaker—listener speech [4]. In-
creased vocal effort is typically accompanied by the jaw lowering, which
results in the upward shift of the first formant F; in frequency [22]. Both
migration of spectral energy and spectral center of gravity to higher fre-
quencies, as well as flattening of the spectral tilt, are also typical for
increased vocal effort in loud and Lombard speech [8].

Three types of noisy backgrounds were played to subjects through
headphones in an ASHA certified anechoic sound booth to induce in-
creased vocal effort: (i) highway car noise (speed 65 mph, windows half
open) (ii) crowd noise, and (iii) pink noise. Highway and crowd noises
were produced through headphones at 70, 80, and 90 dB sound pressure
level (SPL), pink noise at 65, 75, and 85 dB SPL. Sessions from 31 native
speakers of US English (25 females, 6 males) are used in the ASR ex-
periments. Each session comprises 100 phonetically balanced read sen-
tences from the TIMIT database produced by each subject in the neutral
condition, and 20 TIMIT sentences produced in each of the nine noise
type/level conditions.

To simulate different reverberant conditions, RIR samples extracted
from the Aachen Impulse Response (AIR) Database [23] are convolved
with the test material. Two RIR’s with distinct source-to-microphone
distances (dsas) are used including meeting and office rooms. More in-
formation about the RIR’s is summarized in Table 1. Here, the DRR de-
notes the direct-to-reverberant ratio which is dependent on the distance
between the sound source and microphone.

4.2. Experimental Setup

A triphone recognizer utilizing HTK acoustic models and the SRILM
trigram language model (LM) is trained on the TIMIT database. The fea-
ture vector is formed using 13 static cepstral coefficients, including co,
and their first and second order time derivatives. To alleviate the acous-
tic/channel mismatch between TIMIT and UT-Scope, the 32-mixture tri-
phone models are adapted towards UT-Scope using combined maximum
likelihood linear (MLLR) adaptation and maximum a posteriori (MAP)
adaptation on a subset of clean neutral speech UT-Scope recordings.
Adaptation set subjects are excluded from evaluations. The test sets con-
tain sessions from 3 male and 19 female subjects.

The ASR setups are evaluated on (i) anechoic sets — neutral speech
and anechoic Lombard speech produced in 70, 80, and 90dB SPL of
simulated highway and crowd noise, and 65, 75, and 85 dB of pink noise
(noise was produced through headphones and does not appear in the LE
recordings); (ii) set (i) reverberated with the first RIR sample from the
AIR database (see the first row in Table 1) with Tgo = 250 ms; (iii) sets
from i reverberated with the second RIR sample from the AIR database
(see the second row in Table 1) with T5o = 480 ms. This yields a total of
30 evaluation sets. The initial ASR system utilizing MECC—CVN front-
end establishes performance on the anechoic neutral set at 91.7 % word
accuracy (Acc). Since our focus is on comparing the efficiency of the
front-end strategies in the context of acoustic modeling, the remainder
of the paper reports word accuracies obtained from the acoustic model
decoding with the LM bypassed.

4.3. Results and Discussion

In this section, efficiency of selected feature extraction strategies com-
bined with feature normalizations discussed in Sec. 3 is evaluated on
the anechoic and reverberated neutral/increased vocal effort speech sets.
Since the evaluation of all possible front-end combinations in all con-

Table 1. Properties of two selected RIR samples from AIR database.
Room Type | Dimension (m?) ‘ dsn (m) ‘ Tso (s) ‘ DRR (dB) ‘
8.0x5.0x3.1| 280 0.25 2.89
5.0x 6.4 %29 3.0 0.48 -0.89

Meeting
Office
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Table 2. Comparison of cepstral compensations in MFCC front-end; sorted by
performance in descending order.

Rank-Ordered MFCC-Norm Setups; Accuracy (%)

Anechoic Tso =250 ms Teo =480 ms
CGN;p, 580 QCN4;, 282  warpe 12.1
QCN4 57.8 HEQyp 28.2 HEQ_p 12.1

QCN4,, 573 CGNip 278 CGNp 120
CMN,  57.0 QCN4 277 QCN4p 120
CVNp 568 warprp 27.1 warp 11.4

CVN 56.3 CVNpp 26.2 CVN 11.3
CMN 55.6 CVN 26.1 HEQ 113
warp,p 554 warp 257 CVNp 113
HEQrp 553 CMN,, 254  QCN4 11.2
HEQ 54.7 HEQ 25.1 CMNp 109
warp 53.7 CMN 24.8 CMN 10.6
CGN 523 RASTA 21.6 RASTA 85
RASTA 504 CGN 19.5 CGN 5.6
none 45.1 none 3.3 none 1.8

ditions would yield an extensive number of results, the experiments are
broken down into three stages. First, a common feature extraction strat-
egy (MFCC) is paired with all available normalizations and evaluated on
anechoic and reverberated sets (mixture of neutral/increased vocal effort
samples). Second, selected feature extraction strategies are evaluated in
four setups (no normalization, CMN, CVN, and the best normalization
found in the first stage). CMN and CVN normalizations are chosen to
represent the common choice in many ASR engines. Third, feature ex-
traction strategies paired with respective best performing normalizations
are evaluated in detail separately for neutral and increased vocal effort
sets in anechoic, T50=250 ms, and T50=480 ms reverberation conditions.

Normalizations in MFCC front-end: performance of raw MFCC sys-
tem and MFCC combined with normalizations discussed in Sec. 3 is
summarized in Table 2 for anechoic and reverberated sets (neutral and in-
creased vocal effort samples are pooled together and given equal weight
in the overall word accuracy Acc). Setups denoted Norm_RASTALP or
Normp,p represent a combination of the normalization Norm followed
by RASTALP. QCN4 denotes a QCN setup where 4*" and 96" quan-
tiles represent the dynamic range to be normalized [16]. Table 2 dis-
plays front-end configurations sorted by their performance for the ane-
choic and the two reverberant conditions. It can be seen that with in-
creasing reverberation time 750, the ASR performance severely deteri-
orates for all setups. In all conditions, CMN_RASTALP outperforms
traditional RASTA. CGN_RASTALP and QCN4_RASTALP consistently
rank among the top four normalizations in all scenarios, and ten out of
twelve top front-ends utilize RASTALP filtering. Since CGN_RASTALP
precedes QCN_RASTALP in two out of three scenarios, it is selected to
accompany CMN and CVN in the subsequent evaluations.

Comparison of feature extraction strategies: front-ends mentioned in
the introduction and MHEC incorporating spectral subtraction (MHEC-
SS), MHEC with sub-band normalization (MHEC-SN), and MHEC com-
bining both SS and SN (MHEC-SS-SN) are paired with selected normal-
izations and evaluated on anechoic and reverberated sets in Fig. 2, 3, and
4. On anechoic data sets, once combined with any normalization, raw
MFCC reaches a superior performance. LTLSS, MHEC, and MHEC-
SN rank second behind MFCC. NMF provides inferior performance to
all other front-ends. On reverberated data (Tso = 250 ms), MHEC-
SS and MHEC-SN perform best, followed by NMF and MHEC. The
fact that MHEC-SS outperforms MHEC-SN for both reverberation times
supports the fact that the reverberation overlap-masking poses more dele-
terious impact on ASR performance than the reverberation self-masking
[1,6]. ETSI-AFE ranks last among the setups. On reverberated data
(Tso = 480ms), NMF establishes highest Acc, followed by the four
MHEC setups. When averaging the performance of individual front-
ends across the anechoic and reverberant conditions, CGNyp is most
beneficial for all extraction strategies, except for NMF, which benefits
most from CVN. Hence, in the subsequent performance analysis, NMF
is paired with CVN and all other front-ends utilize CGN,p.

Neutral versus increased vocal effort speech: Following the intuition,
increasing reverberation time results in steep performance degradation on
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Fig. 2. Comparison of front-end strategies combined with normalizations; ane-
choic neutral & increased vocal effort sets.
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Fig. 3. Comparison of front-end strategies combined with normalizations; rever-
berated neutral & increased vocal effort sets; (Tgo = 250 ms).

both neutral (Fig. 5) and increased vocal effort (Fig. 6) speech. Presence
of increased vocal effort further deteriorates a neutral-trained ASR. For
both neutral and increased vocal effort, MFCC paired with CGNy, p pro-
vides highest accuracy (67.7%) on anechoic data, followed by MHEC-
SN and MHEC (66.1%), and LTLSS (65.9%). NMF reaches the low-
est accuracy (56.9%). In reverberation of Ts9 = 250 ms, the top rank-
ing front-ends on neutral speech are MHEC-SS-SN (48.0%), MHEC-SS
(47.8%), followed by NMF (44.6%) and MHEC (44.2%). For increased
vocal effort, the top competitors are similar, with MHEC-SS-SN and
NMF (21.6%), MHEC-SS (21.5%), and MHEC (20.8%). In both cases,
ETSI-AFE provides lowest performance (lagging by over 10% on neu-
tral and 15% on increased vocal effort behind MFCC). In reverberation
of Tso = 480 ms, NMF reaches superior accuracy on both neutral and in-
creased vocal effort speech (31.1% and 12.1%), followed by MHEC-SS
(26.0% and 9.1%) and MHEC-SS-SN (25.9% and 9.0%). As in the pre-
vious case, ETSI-AFE provides the lowest performance of all systems.

25

Front-End Performance
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Word Accuracy (%)

N &
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Fig. 4. Comparison of front-end strategies combined with normalizations; rever-
berated neutral & increased vocal effort sets; (Tgo = 480 ms).
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Fig. 6. Accuracy as a function of Tgo: front-end strategies combined with
CGN_RASTALP or CVN normalization; increased vocal effort sets.

The experimental results can be summarized as follows. RASTALP
filtering consistently benefits ASR performance for neutral and increased
vocal effort speech in anechoic/reverberate conditions, appearing in ten
out of twelve most efficient normalizations paired with MFCC (Table 2).
Combination CGN-RASTALP outperforms CMN and CVN in seven out
of eight front-ends (ranking second behind CVN in NMF). MHEC-SN,
MHEC, and LTLSS reach the second best performance on anechoic data,
following MFCC. MHEC-based front-ends dominate in 759 = 250 ms,
being closely followed by NMF. NMF performs best in the highest rever-
beration time (7s9 = 480 ms), followed by the MHEC setups. NMF’s
impressive performance in the last condition is spoiled by its lagging
by more than 10% Acc behind MFCC in anechoic neutral conditions.
LTLSS provides comparable performance to MHEC setups on anechoic
data, but loses in reverberated conditions. ETSI-AFE lags behind MFCC,
MHEC and LTSS on anechoic data and is consistently worst on both neu-
tral and increased vocal effort reverberated data. This is not surprising
given that ETSI-AFE was designed with the focus on ASR under addi-
tive noise conditions.

5. CONCLUSION

This study analyzed individual and joint impact of reverberation and in-
creased vocal effort on automatic speech recognition. Robustness of sev-
eral traditional and state-of-the-art feature extraction techniques and nor-
malizations was evaluated on neutral (modal) speech and speech pro-
duced with various levels of increased vocal effort. Speech samples were
reverberated by measured room impulse responses with two different
reverberation times. Recently proposed mean Hilbert envelope coeffi-
cients (MHEC) and CGN_RASTALP normalization were, in conjunc-
tion, shown to outperform state-of-the-art long-term log spectral subtrac-
tion (LTLSS) MFCC and ETSI advanced front-end (ESI-AFE) cepstra
in all reverberant conditions and both speech modalities. MHEC pro-
vided better or comparable performance to nonnegative matrix factoriza-
tion (NMF) in reverberated conditions (750 = 250 ms) on neutral and

increased vocal effort speech. NMF provided superior performance in
strong reverberation (750 = 480 ms), yet, at the same time, failed in ane-
choic conditions (lagging by over 10% on neutral and 15% absolute word
accuracy on increased vocal effort behind MFCC). The results suggest
that the proposed combination of MHEC and CGN_RASTALP provides
a balanced contribution to recognition performance across various rever-
beration and vocal effort conditions and has a good potential to benefit a
broad scope of ASR applications.
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