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ABSTRACT

This paper concerns cross-lingual acoustic modeling in the case
when there are limited target language resources. We build on an
approach in which a subspace Gaussian mixture model (SGMM)
is adapted to the target language by reusing the globally shared
parameters estimated from out-of-language training data. In current
cross-lingual systems, these parameters are fixed when training the
target system, which can give rise to a mismatch between the source
and target systems. We investigate a maximum a posteriori (MAP)
adaptation approach to alleviate the potential mismatch. In partic-
ular, we focus on the adaptation of phonetic subspace parameters
using a matrix variate Gaussian prior distribution. Experiments on
the GlobalPhone corpus using the MAP adaptation approach results
in word error rate reductions, compared with the cross-lingual base-
line systems and systems updated using maximum likelihood, for
training conditions with 1 hour and 5 hours of target language data.

Index Terms— Subspace Gaussian Mixture Model, Maximum
a Posteriori Adaptation, Cross-lingual Speech Recognition

1. INTRODUCTION

In the subspace Gaussian mixture model (SGMM) [1], the model
parameters are derived from a set of state dependent parameters,
and from a set of globally shared parameters which capture the
phonetic and speaker variation. This is in contrast to conventional
HMM/GMM based speech recognition systems in which the state
model parameters are estimated directly. Decoupling the globally
shared and state-specific parameters results in a decrease in the total
number of free parameters in the model. Additionally, it is possible
to estimate the global parameters using out-of-domain or out-of-
language data when there is limited labeled acoustic data for the
target domain or language.

This idea has been explored in the application of SGMMs to
multilingual speech recognition [2], where the globally shared pa-
rameters were estimated by tying across multiple languages to im-
prove estimation accuracy. It has also been used in cross-lingual
settings [2, 3], where the global parameters were reused by the tar-
get language system, with only state dependent parameters being
re-estimated. Experiments have shown that significant performance
improvements could be achieved when training data for the target
language is very limited, since the number of parameters to be esti-
mated is much smaller [3].
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However, sharing the global parameter set across multiple lan-
guages can introduce a mismatch with the target language system,
owing to differences in phonetic characteristics, corpus recording
conditions, and speaking styles. Since the amount of training data
may not be sufficient to allow the global parameters to be updated
using maximum likelihood (ML), in this paper we employ maximum
a posteriori (MAP) adaptation. In particular, we train the target lan-
guage system using MAP adaptation of the phonetic subspace pa-
rameters with a matrix variate Gaussian prior distribution based on
the phonetic subspace parameters estimated in the multilingual sys-
tem. In experiments with a cross-lingual framework [3], we have
observed that the MAP adaptation approach results in a considerable
reduction in word error rate (WER).

2. SGMM ACOUSTIC MODEL

In an SGMM [1], the HMM state is modelled as:
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where 0, € R denotes the ¢-th D-dimensional acoustic frame, 7
is the HMM state index, m is a sub-state [1], I is the number of
Gaussians, and X; is the i-th (globally shared) covariance matrix.
Vim € RS is referred to as the sub-state vector, and S denotes the
subspace dimension. The matrices IM; and the vectors w; span the
model subspaces for the Gaussian means and weights respectively,
and are used to derive the GMM parameters given sub-state vectors
(equations (2) and (3)). Similarly, N; defines the speaker subspace
for Gaussian means, and v(®) € R7 is referred to as the speaker
vector where 7" denotes the dimension of the speaker subspace.

3. MAP ESTIMATION OF THE PHONETIC SUBSPACE

In ML estimation of the phonetic subspace [1], the auxiliary function
for M; is given by:
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jmi(t) denotes the Gaussian component posterior for acoustic
frame o¢, and Yjmi = Y, ¥jmi(t). If a prior term is introduced,
then the auxiliary function becomes:

QM) = Q(M;) + 7log P(M;), (6)

where P(M;) denotes the prior distribution of matrix M, and 7 is
the smoothing parameter which balances the relative contributions
of the likelihood and prior. Although any valid form of P(M;) may
be used, in practical MAP applications a conjugate prior distribution
is often preferred for reasons of simplicity. In this paper, P(M;) is
set to be a Gaussian distribution which is conjugate to the auxiliary

Q(M;).

3.1. Matrix Variate Gaussian Prior

The Gaussian distribution of random matrices is well understood [4].
A typical example of its application in speech recognition is maxi-
mum a posteriori linear regression (MAPLR) [5] for speaker adapta-
tion, in which a matrix variate prior was used for the linear regression
transformation matrix. The Gaussian distribution of a D x S matrix
M is defined as:
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1
2
+ (@7 (M — M)Q (M — M)T)), )

where M is a matrix containing the expectation of each element of
M, and 2, and Q. are D x D and S x S positive definite matrices
representing the covariance between the rows and columns of M, re-
spectively. | - | and ¢r(-) denote the determinant and trace of a square
matrix. This prior distribution is conjugate to auxiliary function (4).
This matrix density Gaussian distribution may be written as:

Vec(M) ~ N (Vec(M),Q, ® Q.), ®)

where Vec(-) is the vectorization operation which maps a D x S
matrix into a D.S X 1 vector, and @ denotes the Kronecker product of
two matrices. In this formulation, only ©, ® €. is uniquely defined,
and not the individual covariances €, and Q., since for any o > 0,
(a2, 292, ) would lead to the same distribution. However, this is
not of concern in the current application to MAP adaptation.

3.2. Prior Distribution Estimation

For MAP estimation, the prior distribution P(M,;) for each M,
should be estimated first. This requires the estimation of the mean
matrices M, and the row and column covariances .- and Q.. Given
a set of samples generated by P(M,), the ML estimation of the
mean, and the row and column covariances, is described by Du-
tilleul [6]. In MAPLR such samples are derived from clusters in
the speaker independent model based on a regression tree [5]. In
the case of cross-lingual SGMMs, the MAP formulation is based
on the assumption that the multilingual estimate of the global sub-
space parameters serves a good starting point, which has been em-
pirically verified earlier [3]. Recall that in the current cross-lingual
system, the subspace parameters are obtained from an initial mul-
tilingual system trained on the source languages, and fixed during
training of the state-specific parameters on the target language data.
For its MAP counterpart, we set these multilingual parameters to be
the mean of the prior P(M;) and update both the state-specific v jm

and the global M;. With a sufficiently large value of 7 in (6), we can
shrink the system back to the cross-lingual baseline, whereas 7 = 0
corresponds to the ML update.

The covariance matrices for each P(M,) are global, estimated
from the multilingual parameters by ML [6]. To be specific, sup-
pose the set of multilingual phonetic subspace matrices is {M;, 7 =
1,...,I}. We first compute the global meanas M = 1 3~/ M.
The two covariance matrices, 2, and €., are then estimated by com-
puting the following two equations iteratively until convergence:
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Q,, Q. can be initialised as identity matrices, and several iterations
are found to be sufficient for convergence. Hence the prior P(M;)
is parameterized by M, 2., and ..

Povey [7] has discussed using a global prior over all the subspace
matrices and presented a similar formulation. The principal differ-
ences in this work are that we are using multilingual subspace pa-
rameters as priors, and we have applied it in a cross-lingual setting.
In addition, we also note that it is possible to estimate the covari-
ances using a data driven approach. For instance, a fully Bayesian
treatment [8] can be applied, by which covariances can be estimated
by maximizing the marginal likelihood

argsggaéz/P(0|Mi)P(MZ-|Mi,QT,QC)dMi, (10)

where O denotes all the acoustic frames. The likelihood P(O|M;)
can be approximated by its lower bound, i.e. the auxiliary function
(4), and as we use the conjugate prior to the auxiliary function, the
analytical form of the marginal likelihood is available. Hence, this
approach is expected to be feasible in practice. We have not experi-
mentally investigated this approach in this paper.

3.3. MAP Adaptation of the Phonetic Subspace

The detailed analytical solution of the MAP estimate of subspace
parameters with Gaussian prior is given by Povey [7] (App. J). Here,
we summarize the main ideas. By substituting (4) and (7) into (6),
the auxiliary function of MAP can be rewritten as:
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The solution is not readily available by taking the derivative of
Q(M;) with respect to M; and setting it to be zero. Instead, we in-
troduce an intermediate transform T = U7 L~! that simultaneously
diagonalises 3, L and Q- L where

b3 L=p” (Cholesky decomposition), (12)
S=L'Q L7, (13)
S = UAU”T (Eigenvalue decomposition). (14)

It is the case that TZ; 'T = I and TQ'T = A, where I is the
identity matrix, and A is a diagonal matrix holding the eigenvalues



Table 1. WER (%) of baseline monolingual and cross-lingual base-
line systems with 1 hour and 5 hour training data, S denotes the
dimension of phonetic subspace.

1 hour training data WER  #states  # sub-states
Mono-GMM 412 620 -
Mono-SGMM S =20 | 38.0 620 2k
Cross-SGMM S = 20 35.0 620 12.8k
Cross-SGMM S = 40 32.7 620 4.4k

5 hour training data WER  #states  #sub-states
Mono-GMM 343 1561 -
Mono-SGMM S =20 | 31.1 1561 6.7k
Cross-SGMM S = 20 28.6 1561 12k
Cross-SGMM S = 40 26.8 1561 12k

of matrix S. If we further define M; = TTM;, then equation (11)
can be rewritten as

O(M))  tr (M;TT(EjlYi n TQ,:11\7L-9;1))

- %tr (M;QiM;T + TAM;Q;1M;T). (15)
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Now we can take the derivative of Q(M;) with respect to M;:

LQ(N,L') = T(S7'Y, + 707 ' MQ; 1) — MQ, — TAM,Q;
oM,

Setting this derivative to be zero, we obtain the row by row solution

of M; as

m, = g, (Qi + 720, (16)

where m; is the n¢p row of M;, Ar is the nyp, diagonal element of
A, and g, is the ny, row of matrix T(Z;lYi + TQfll\_/L-Qc_l).
The final solution of M; can then be obtained by M; = TTM;.

As noted before, by setting 7 — co, we shrink the system back
to the cross-lingual baseline, and 7 = 0 corresponds to the ML esti-
mate. If Q, = Q. = I, the MAP estimate is equivalent to applying
{>-norm regularization on M; with the model origin set to be the
multilingual estimate (cf. equation (11)). In this paper, we also study
the roles of ;- and . individually, by setting the other to be I.

4. EXPERIMENTAL RESULTS

We have carried out experiments using a cross-lingual acoustic
model trained using the GlobalPhone corpus [9]. We chose German
to be the target language, and Spanish, Portuguese and Swedish
as source languages. In low-resource cross-lingual experiments,
we selected two random subsets of transcribed audio in the target
language, of 1 hour and 5 hours duration, containing speech from
8 and 40 speakers respectively!. We estimated the globally shared
parameters in a multilingual fashion by tying M;, w;, and ¥, across
the three source language SGMM systems. The number of Gaus-
sians I was 400 (cf. equation (1)). The models were evaluated on a
development data set which containing about 2 hours of speech. For
decoding, we used a trigram language model with a 17,000 word
lexicon that was provided with the corpus. The language model
(LM) had a perplexity of 442 on the development set, with an out of
vocabulary (OOV) rate of 5.2%. Further details of this cross-lingual
system can be found in [3].

1Allhough German should not be considered a low resource language, the Glob-
alPhone corpus provides a controlled and standardised experimental environment for
experiments of this nature.

Table 2. WER (%) of MAP adapted systems.

System 1 hour 5 hour
Cross-lingual baseline(S = 20) 35.0 28.6
with ML update (7 = 0) 335 27.7
with MAP update (I ® I) 32.1 26.7
with MAP update (I ® €2.) 322 26.8
with MAP update (2, @ I) 322 26.8
with MAP update (2, @ Q) 322 26.9
Cross-lingual baseline(S = 40) 32.7 26.8
with ML update (7 = 0) 333 27.8
with MAP update (I ® I) 31.1 25.6
with MAP update (I ® €2.) 31.3 25.9
with MAP update (2, ® I) 31.1 255
with MAP update (2, ® Q) 31.4 25.8

4.1. Baseline results

The results of monolingual and cross-lingual German systems, with
different amounts of training data and sizes of phonetic subspace,
are given in Table 1. In the monolingual systems, all the parame-
ters are estimated from the 1 or 5 hours of available training data.
In cross-lingual SGMM systems, the globally shared parameters are
taken from a multilingual system trained on Spanish, Portuguese and
Swedish, and only sub-state vectors v ., and weights c;», (equation
1, 2) are updated during model training. The GMM and SGMM sys-
tems for the same amount of training data use the same phonetic de-
cision tree. Hence, the performance differences are purely owing to
better parameter estimation. For SGMM systems with S = 40, reg-
ularized state vector estimation by ¢; -norm penalty [10] is applied to
improve numerical stability; we have also observed that such regu-
larisation brings gains in accuracy [3]. For comparison, the monolin-
gual GMM and SGMM systems with the entire 14.8 hours of target
language training data available in GlobalPhone achieve 25.7% and
24.0% WER®.

4.2. MAP adaptation results

Our MAP experiments started from the cross-lingual SGMM sys-
tems in Table 1, with the MAP update of M; performed for several
iterations until convergence, while w; and X; were kept fixed. We
compare different configurations of the row and column covariances
for the priors as shown in Table 2, where the results are obtained
by tuning the smoothing parameter 7 to be optimal on the develop-
ment set. As mentioned before, setting 7 = 0 is equivalent to an
ML update of M;. When S = 20, ML update provided consider-
able improvements with both the 1 hour and 5 hour data, since the
number of parameters to be updated is relatively small. But for sys-
tems with .S = 40, which have a much larger number of parameters,
we observed an increase in WER. MAP update, on the other hand,
provided consistent reductions in WER.

For systems with S = 20 MAP update gave an additional 1%
absolute WER reduction compared with ML update, in both train-
ing conditions. For their counterparts with S = 40, MAP update
resulted in 1% absolute reduction in WER compared with the base-
line, whereas the ML update increased the WER. This is consistent
with our expectation that MAP can overcome the model overfitting
encountered by ML. Again we used ¢;-norm regularized (sub-)state
vector estimation [10] to improve numerical stability. However, we
do not observe any improvement in WER by using full row and col-
umn covariance matrices compared to the identity matrices used in

2The weak LM and lexicon of high OOV rate lead to relatively poor baseline systems.
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Fig. 1. Eigenvalues of row and column covariance matrices .., Q.
for both 20 and 40 dimensional subspace.

the priors. Setting just one of two covariance matrices to be the iden-
tity, did not result in a significant difference.

To obtain a better understanding of these results, we have plotted
the eigenvalues of 2, and Q. for systems with S = 20 and S = 40
(Figure 1). This shows that the eigenvalues of column covariances
decrease rapidly, and that the first few eigenvectors corresponding
to the top eigenvalues account for most of the variance. This was
unexpected, as priors with such a covariance structure will constrain
the model to model subspace of lower effective dimension, and limit
its ability to learn from the data. In addition, the ad hoc approach
we have employed to approximate the covariances of the prior may
not be optimal. We cannot guarantee that the global covariance from
the multilingual subspace will work well for the target system. In
future work, we shall investigate the estimation of €2,., Q. using the
Bayesian approach of equation (10).

Finally, figure 2 shows the effect of the smoothing parameter 7
for both training and testing for a system with .S = 40 and 5 hours
of training data. Here, we only show the MAP systems with row
and column covariance matrices in the priors to be both identity or
full, denoted as “(I, I)” and “(R, C)”, respectively. When 7 is small,
the log-likelihood is close to that of ML system, and as 7 increases,
the log-likelihood decreases accordingly, but it is bounded by the
baseline system which corresponds to 7 — co. On the other hand,
by tuning the value of 7, the WER of a MAP adapted system can
be smaller than both baseline and ML system. Other MAP adapted
systems in Table 2 show a similar trend. Note that the absolute value
of optimal T depends on the prior distribution and also the amount
of training data which means its range varies for different systems.

5. CONCLUSION

In this paper, we investigated the MAP adaptation of the phonetic
subspace parameters in an SGMM acoustic model for cross-lingual
speech recognition. In this approach, a matrix variate Gaussian prior
is introduced to the subspace parameter estimation in order to avoid
model overfitting in limited resource conditions. In our cross-lingual
speech recognition experiments the phonetic subspace parameters
estimated in the multilingual system served as priors for the target
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Fig. 2. Effect of smoothing parameter 7 in MAP adapted system on
the log-likelihood in the training stage and WER in the testing stage.

language systems. Experiments on the GlobalPhone corpus indi-
cated that considerable reductions in WER are given by this MAP
adaptation approach. In future work, we plan to apply the MAP
adaptation algorithm presented in this paper to the speaker subspace
of an SGMM acoustic model in a cross-lingual setting. In addition,
a Bayesian estimation of the prior parameters will be experimentally
explored, as well as the adaptation of the weight projections.
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