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ABSTRACT

The smoothing of n-gram models is a core technique in lan-
guage modelling (LM). Modified Kneser-Ney (mKN) ranges
among one of the best smoothing techniques. This technique
discounts a fixed quantity from the observed counts in order
to approximate the Turing-Good (TG) counts. Despite the
TG counts optimise the leaving-one-out (L1O) criterion, the
discounting parameters introduced in mKN do not. Moreover,
the approximation to the TG counts for large counts is heavily
simplified. In this work, both ideas are addressed: the estima-
tion of the discounting parameters by L1O and better func-
tional forms to approximate larger TG counts. The L1O per-
formance is compared with cross-validation (CV) and mKN
baseline in two large vocabulary tasks.

Index Terms— Leaving-One-Out, Language Modelling,
Cross Validation, modified Kneser-Ney smoothing

1. INTRODUCTION

Languagemodelling (LM) consists in estimating a probability
distribution for arbitrary word sequences. A LM is expected
to distribute high probability to correct sentences while giv-
ing reasonable probabilities to unseen or unlikely sentences.
This is, however, a challenging task since words occurring in
a corpus are dominated by the singletons. Hence, a compet-
itive LM must calculate probability estimates for unseen or
infrequent events, the so called small probabilities [1, 2].

Several techniques and attempts have emerged for LM,
although few of them are competitive. Recent efforts include
maximum entropy (MaxEnt) [3] and neural networks [4].
However, one of the most widespread techniques is the n-
gram models [5]. Despite their simplicity, n-gram models
are fast and competitive in terms of both perplexity (PPL)
and word-error rate (WER). Experimentally, the n-grams
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performance is mainly achieved by how they estimate small
probabilities, the so-called smoothing techniques [5]. In con-
trast, from a theoretical point of view some authors claim that
n-gram models approximate MaxEnt models [6].

The Kneser-Ney (KN) smoothing technique stands out be-
cause of its performance [5]. This technique approximates the
Turing-Good (TG) counts [1], by discounting a fixed param-
eter b to observed counts. This parameter, like TG counts, is
estimated by leaving-one-out (L1O) [1, 2]. The discounted
probability is redistributed among all events according to a
generalised smoothing distribution [7].

Several techniques derive from the initial absolute dis-
counting KN smoothing. On the one hand, the standard KN
discounting approximates all the TG counts by means of
one single discounting parameter [2]. On the other hand,
the modified KN (mKN) discounting [5] uses 3 parameters
b1,b2,b3+; for discounting singletons, doubletons and larger
n-gram counts, respectively. Although the mKN parameters
are heuristically estimated by Chen’s approximation [5], they
report better performance than the KN smoothing [5]. PPLs
are slightly improved by extending the mKN method to a
larger number of discounting parameters [8], despite they are
estimated optimising the joint L1O PPL. Recently, an alter-
native estimation by cross-validation (CV) [9] for the former
extension incurred further improvements. However, it is yet
to investigate the estimation of several discounting parame-
ters with the foundation of the smoothing method, namely, the
(conditional) L1O criterion. On the one hand, this is due to a
lack of closed form solutions; and on the other hand, a global
optimisation by numerical methods would incur unfeasible
training times. In this paper, we optimise the conditional L1O
PPL locally for each n-gram level obtaining improvements
of 4% of PPL. Furthermore, we compare the L1O with the
recent CV scheme in [9], showing that both obtain similar
results. The mKN baseline is also extended to estimate more
than 3 discounts by generalising Chen’s heuristic formula [5].

Finally, the large counts are widely ignored in the dis-
counting scheme since they are usually discounted by a fixed
value. In this work, we extend mKN smoothing with different
discounting schemes for the larger counts, namely: a logarith-
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mic absolute discounting and a linear absolute discounting.
These schemes are inspired by the MaxEnt models [6].

2. DISCOUNTING MODEL

Given an n-gram hw, where h is the context of words preced-
ing the observed one w; the absolute discounting scheme pro-
posed by the KN technique subtracts a fixed quantity from the
observed counts N(h,w) in order to gain a probability mass
γ(h) that is redistributed accordingly to a generalised dis-
counting distribution p(w | h̄); where h̄ denotes a generalised
context obtained by dropping the leftmost context word. The
generalised discounting distribution is recursively smoothed
using the same scheme but with different counts [7]. This
model is referred to as interpolated KN smoothing.

In this paper, we propose a twofold extension to the
model. On the one hand, we use B different discounts for
the B smaller counts [8]. On the other hand, we add a coeffi-
cient parameter c+ and a discounting function, g(r), for large
counts. The proposed model is expressed as follows

p(w | h) = q(w | h) + γ(h)p(w | h̄) (1)

where γ(h) is the gained probabilitymass, and where q(w | h)
is the discounted “probability1” for the n-gram hw, i. e.

q(w |h)=

⎧⎪⎨
⎪⎩

N(h,w)−bB−c+g(N(h,w))
N(h) N(h,w) ≥ B

N(h,w)−bN(h,w)

N(h) 0<N(h,w)< B

0 otherwise

(2)

with the parameters {bB1 , c+} for each distribution in the
smoothing hierarchy (n, n − 1, . . . , 1). The gained probabil-
ity mass is

γ(h) = θ(h)
N(h) =

∑B−1
r=1 brnr(h)+bBn+(h)+c+ng(h)

N(h) (3)

where {nr(h)}
B−1
r=1 stands for the so-called count-of-counts

(CoC), i.e. the number of n-grams that have occurred exactly
r times preceded by the context h; where n+(h) is the CoC
for the large counts, n+(h) =

∑
r≥B nr(h) ; and, finally,

ng(h) is defined as ng(h) =
∑

r≥B nr(h)g(r) by analogy.
In this work, 3 different discounting functions are anal-

ysed: the logarithm, g(r) = log(r); a linear function, g(r) =
r; and the standard function g(r)=0. The latter case is equiv-
alent to an extension of mKN smoothing [8, 9] for B = 3.

3. DISCOUNTING PARAMETER ESTIMATION

Given the model defined in the previous section, three esti-
mation methods are considered: leaving-one-out (L1O), cross
validation (CV) and Chen’s approximation.

1Since counts are discounted, it is actually not a probability by itself.

3.1. Chen’s approximation

Although Chen’s approximation was introduced [5] to esti-
mate the 3 parameters of the mKN smoothing; it is easily ex-
tensible to more discounts as follows:

br = r − (r + 1)bnr+1

nr
, (4)

where b denotes the Kneser-Ney approximation given by b =
n1/(n1 + 2n2) with n1, n2 being the CoC for singletons and
doubletons, respectively. The parameter c+ is fixed to 0 in
this case, which corresponds to the standard function.

3.2. Cross Validation (CV)

In this method [9], a held-out set approximates the test PPL,
and, then, we maximise its log-likelihood criterion defined as

FCV =
∑

hw C(h,w) log p(w|h) (5)

where C(h,w) denotes the held-out count of the n-gram hw.
Similarly to [9], we optimise FCV by means of the im-

proved resilient Back-Propagation (Rprop) [10], which re-
quires to compute the gradient of FCV . For a given count
r, the gradient for br is the same as that presented in [9]. As
for the new additional parameter c+ the gradient is given by

∂FCV

∂c+
=

∑
hw C(h,w) 1

p(w|h)
∂

∂c+
p(w|h) (6)

and subsequently for the higher n-gram order level

∂
∂c+

p(w|h)=
ng(h)
N(h) p(w|h̄)−

{
g(N(h,w))

N(h) N(h,w)≥B

0 otherwise
(7)

For lower orders, the gradient is premultiplied by the dis-
counted mass from the higher orders, similarly to [9].

3.3. Leaving-one-out (L1O)

Similarly to standard KN smoothing, in this method, the dis-
counting parameters are set to maximise the (conditional)
L1O log-likelihood (or equivalently minimise the L1O PPL),
which is known to be a reliable estimate of the test PPL [2]

F1 =
∑

hw N(h,w) log p1(w|h) (8)

where p1(w|h) stands for the L1O probability, which is ob-
tained by leaving each n-gram occurrence hw out for testing
and training a model with the remaining data. For the model
proposed in section 2, the L1O probability is

p1(w | h) = q1(w | h) + γ
N(h,w)
1 (h)p(w | h̄) (9)

where

γr
1(h) =

⎧⎪⎨
⎪⎩

θ(h)
N(h)−1 r > B
θ(h)−bB−c+g(B)+bB−1

N(h)−1 r = B
θ(h)−br+br−1

N(h)−1 otherwise

(10)
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Corpus Set Words OOV Domain

Quaero EN
train 348.0M 1.28% blog+forum

held-out 41.8K 0.45% transcriptions
test 1.2M 0.49% transcriptions

Quaero FR
train 243.4M 1.15% blog+forum

held-out 46.7K 0.45% transcriptions
test 700.4K 0.01% transcriptions

Table 1. Statistics for the corpora splits, including Out-
of-vocabulary rates (OOV). Vocabulary sizes are 150K, and
200K for Quaero EN(glish) and FR(ench), respectively.

with b0 = 0, and where for the “otherwise” cases, if N(h) =
1, then 0/0 is fixed2 to b1. Finally q1(w | h) is equal to

q1(w|h)=

{
N(h,w)−1−bB−c+g(N(h,w)−1)

N(h)−1 N(h,w)>B
N(h,w)−1−bN(h,w)−1

N(h)−1 otherwise
(11)

Although, the L1O criterion is eligible for a global op-
timisation of the parameters for all orders at once, the re-
quired computational resources render this approach unfeasi-
ble. Hence, we optimise Eq. (8) for each order independently,
in n local optimisation rounds, like standard KN smoothing.
This speeds up the training and each local optimisation is
convex. Since, there is not known closed-form solution, the
Rprop is used like CV [9].

In this case, the gradient of F1 in Eq. (8) is given by

∂F1

∂br
=
∑

hw
N(h,w)
p1(w|h) [p(w|h̄)

∂γN(h,w)(h)
∂br

− ∂
∂br

q1(w|h)] (12)

where we omit the partial derivatives of γr(h) and q1(w|h)
for simplicity sake and space constraints. However, they are
easily obtained from Eqs. (10) and (11).

4. EXPERIMENTS

In order to compare the proposed estimation methods as well
as the different functional schemes, we ran several exper-
iments on two different large vocabulary corpora, namely,
Quaero-EN 3, and Quaero-FR. A summary of some statistics
about the corpora are reported in Table 1.

For our experiments, we did not use LM interpolation to
avoid masking the discount optimisation effects. We used 4-
grams in oder to report comparable results to [9].

For assessing the performance of the 3 proposed estima-
tion techniques, we used the PPL in the test set for both cor-
pora. Furthermore, 3 different discounting functions were
analysed for discounting large counts: the standard function;
a logarithmic function; and, a linear function. Finally, differ-
ent number of discounting parameters were analysed, ranging

2Actually, we take a fraction ε < 1 of unique event out to test while the
remaining fraction is kept for training; and we take the limit ε → 1.

3Quaero research programme, see http://quaero.org.

Model mKN Chen’s Approx. L1O CV
Quaero-EN 20.7 20.7 20.5 20.5

Table 3. Word Error Rates for Quaero-EN (LM rescoring)

from the standard mKN (3 discounts) to 40. This experimen-
tation is reported in Table 2.

Several conclusions are drawn from Table 2. Firstly, CV
works slightly better than L1O. This supports the conclusion
that CV does not over-train unless an large number of dis-
counts is used [9]. The discrepancy between CV and L1O
is due to the different optimisation criterion used for each
method. In CV, a global optimiation for all parameters is
peform to minimise the highest order CV PPL, whereas L1O
uses n local optimisation that minimise the L1O PPL for
earch order. Secondly, although most of the performance is
obtained using 10 discounts, the linear discounting function
seems a better model for discounting larger counts. Finally,
it is surprising that the PPL is improved by simply increasing
the number of discounting parameters, which are estimated
with Chen’s approximation. When compared with mKN (3
discounts), increasing the parameters to 40 improves the PPL
up to 2.3% for Quaero-EN . This improvement is larger if we
use L1O (4.4%) and even larger for CV (5.5%).

In order to assess whether the PPL improvements imply
better systems, we have computed WER for Quaero-En. We
have created lattices for the test data using the state-of-the-art
acoustic models of the single best system described in [11]
and a standard mKN LM. Then, we applied an LM re-scoring
step using models with 40 discounts and a linear discounting
function estimated with the three methods: Chen’s approxi-
mation, L1O and CV. Table 3 reports recognition results on
the Quaero evaluation corpus 2010 [11]. Significance tests
were not reported because of test size (41.0K words). Note
that the Chen’s approach improves the PPL but not the WER.
Concerning to L1O and CV, both obtain the very same result,
improving the WER in 0.2 points.

5. DISCUSSION

Independent of the optimisation criterion, a reasonable esti-
mation of the discounting parameters yields most of the im-
provements. Both methods, CV and L1O, obtain the same
performance in terms of WER; although in terms of PPL, L1O
is slightly worse than CV even though L1O is convex. This
is probably due to the fact that we are optimising the L1O
PPL for each order level independently and not in one sin-
gle global optimisation as CV. This local optimisation is less
exact when estimating the test PPL. A global L1O optimisa-
tion at a highest order, like CV, would better approximate the
test perplexity. However, it will require unfeasible computa-
tional resources. Moreover, a subsampling of the training data
could speed up the method, but then the subsampling would
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Quaero-EN Chen’s approx. Leaving-one-out Cross Validation
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Num. of discounts
Disc. function standard standard logarithmic linear standard logarithmic linear

3 209.3 202.4 200.3 200.2 200.7 198.1 197.4
10 206.3 200.7 200.2 199.8 198.4 197.9 197.1
20 205.3 200.3 200.1 199.8 198.0 197.7 197.2
40 204.4 200.1 200.0 199.8 197.8 197.7 197.3

Quaero-FR Chen’s approx. Leaving-one-out Cross Validation
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Num. of discounts
Disc. function standard standard logarithmic linear standard logarithmic linear

3 183.2 179.4 178.3 178.5 177.4 175.9 175.8
10 180.9 178.2 178.2 178.3 175.5 175.2 175.0
20 180.0 178.0 178.2 178.2 175.3 175.1 175.0
40 179.4 178.0 178.2 178.2 175.2 175.1 175.0

Table 2. Perplexities in the test set for several estimation techniques and for 3 discounting functions: standard extended mKN
smoothing (g(r) = 0), logarithmic discounting (g(r) = log(r)); and linear discounting (g(r) = r). The number of discounting
parameters (B) are 3, 10, 20 and 40.

also affect the training counts during the optimisation process
rendering this method unsatisfactory when compared to the
CV, that does not modify the training counts. Note that the
time required for computing the gradient in the CV case de-
pends on the number of n-grams that occur in the held-out set,
whereas the for the L1O it depends on the n-grams that occur
on the training data. Therefore, the CV is much faster than the
L1O. Specifically, the CV does not incur a significant delay
with respect to the standard smoothing techniques as long as
the size of the held-out set is small.

The extension of the Chen’s approximation does not ob-
tain WER improvements although it reports PPL improve-
ments. From our point of view, this is surprising since this
method does not accurately approximate the test PPL, but
makes rough approximations instead. Our conclusion is that
the test PPL, despite being non-convex, is smooth and flat as
a function of the discounting parameters except for extreme
values such as 0.

Regarding the functional form of the discounting for large
counts, the proposed functions do not better approximate the
TG counts since improvements in terms of PPL are negligible.

In summary, the KN discounting family introduces two
main advantages: the absolute discounting scheme and the
generalised smoothing distribution. From this work, it is con-
cluded that only small improvements are obtained extending
the discounting scheme, although a more extensive experi-
mentation might be necessary. In [5], it is claimed that the su-
periority of the mKN/KN discount is mainly due to the gener-
alised smoothing distribution, and consequently we think that
if there is room for improvement for this family of discount-
ing techniques, it is on the generalised discounting distribu-
tion, and not in the discounting parameters, at least, ignoring
the generalised distribution, no matter whether this optimisa-
tion is based on CV or on L1O.
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