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ABSTRACT

We propose an extension to the recent approaches in

topic-mixture modeling such as Latent Dirichlet Allocation

and Topic Tracking Model for the purpose of unsupervised

adaptation in speech recognition. Instead of using the 1-best

input given by the speech recognizer, the proposed model

takes confusion network as an input to alleviate recogni-

tion errors. We incorporate a selection variable which helps

reweight the recognition output, thus creating a more accu-

rate latent topic estimate. Compared to adapting based on just

one recognition hypothesis, the proposed model show WER

improvements on two different tasks.

Index Terms— language model, latent topic model, topic

tracking, confusion network.

1. INTRODUCTION

Adaptive and topic-mixture models have been explored by

researchers in order to describe text corpora. Cache-based

models exploit the property that words that appear earlier in

the document are more likely to appear again [1]. Another

popular approach is to model the underlying topic mixtures

and interpolate between topic dependent word distributions

[2]. One example of such an approach is Latent Dirichlet

Allocation (LDA) which identifies topics from an unlabeled

corpus in an unsupervised manner [3]. The topic mixtures

can be used for document retrieval or document classification.

These techniques can also be applied to help automatic speech

recognition by adapting the Language Model (LM). For the

task of speech recognition in academic lectures, Hsu and

Glass [4] used a Hidden Markov Model with LDA (HMM-

LDA) [5] which can model content words as well as syntactic

words. In our previous work, we developed the Topic Track-

ing Language Model (TTLM) to explicitly capture the time

evolution of topics throughout a recording session [6]. In [7],

LDA is used with a class-based cache model to also incorpo-

rate topic history. However, the aforementioned approaches

adapt the language model using the 1-best recognition results.

§Shinji Watanabe is now with Mitsubishi Electric Research Laboratories.

Unlike text corpora where word observations are considered

certain, ASR output is actually a set of uncertain observations

with associated posterior probabilities. Despite error rates

as high as 30-40% in some large vocabulary tasks, previous

works typically use the most likely output from the speech

recognizer. The improvement from the adaptation tends to

diminish compared to the perplexity gains on text corpora,

and sometimes it becomes even worse than the baseline.

In this work, we expand on our previous work by intro-

ducing a latent selection variable into existing methods such

as TTLM and LDA to deal with confusion network inputs in-

stead of the conventional bag-of-word inputs. The model then

“selects” the word that best suits the current model parame-

ters within a Gibbs sampling framework. Since topic-mixture

models are capable of improving recognition results, incor-

porating latent topics should be able to reliably reweight the

network. By using this model extension, we were able to im-

prove the topic tracking capability and our ultimate recogni-

tion results in two different speech recognition tasks.

The rest of this paper is organized as follows. In the next

section, we give a brief overview of TTLM which we will use

as the basis to explain our proposed model. We then explain

our extension of TTLM to cope with possible recognition er-

rors. In Section 4, we explain our experiments and discuss the

performance of our model. Finally, in Section 5 we provide

some concluding remarks and describe some future plans.

2. TOPIC TRACKING LANGUAGE MODEL

In our previous work [6], we proposed TTLM which, unlike

the original LDA, can capture the time evolution of topics.

A long session of speech input is divided into chunks t =
1, 2, ..., T that is modeled by different topic distributionsφφφt =
{φtk}Kk=1 where K is the number of topics. The current topic

distribution depends on the topic distribution of the past H
chunks and precision parameters αth as follows:

P (φφφt|{φ̂φφt−h, αth}Hh=1) ∝
K∏

k=1

φ
(α∗φ̂k)t−1
tk (1)

where (f ∗ g)t �
∑H

h=1 fthgt−h and φ̂tk is the mean of the
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kth topic distribution at chunk t.
TTLM can be applied on the 1-best hypothesis to re-

cover the latent topic probability distributions. With the topic

distribution, the unigram probability of a word wm in the

chunk can be recovered using the topic and word probabili-

ties P (wm) �
∑K

k=1 φ̂tkθkwm
, where θkwm

is the unigram

probability of word wm in topic k. The updated unigram

can be used to scale n-grams via Minimum Discrimination

Information (MDI) adaptation [8]. The adapted n-gram can

be used for a 2nd pass recognition for better results.

The original TTLM can also adapt the topic dependent

unigrams. However, it was found that adapting the unigrams

can cause degradations due to data sparsity when the chunk

size is small. Due to this concern and for simplicity, we omit

any discussions on unigram adaptation in this paper. The set

of topic dependent unigrams, denoted by θ, is trained using

LDA on the training corpus and kept fixed throughout.

3. TOPIC TRACKING LANGUAGE MODEL USING
CONFUSION NETWORK INPUTS

Similar to TTLM, we start by breaking the speech input into

chunks. However, we will use the resulting confusion net-

work from the first pass recognition instead of the 1-best hy-

pothesis. Consider a confusion network with M word slots.

Each word slot m can contain different number of arcs Am,

with each arc containing a word wma and a corresponding

arc posterior dma. As mentioned earlier, since the TTLM can

help produce better transcriptions, there should be merit in us-

ing the latent topics discovered in the model to reweight the

recognition outputs. Instead of fully trusting the 1-best hy-

pothesis, the goal is to have the model be able to select the

best arcs that can describe the chunks according to the latent

topics. To accomplish this, we associate a binary selection

parameter sma, where sma = 1 indicates that the arc is se-

lected. Sm represents the arc index a where sma = 1. Se-

lected arcs are considered to be correct words which should

be generated from the current topic. The other arcs are con-

sidered errors generated from a separated error unigram θe.

We denote Wt, Zt, St as the sequence of words, topics, and

selections in chunk t respectively, while the subscript m de-

notes the index within the chunk. A graphical representation

of the Topic Tracking Language Model with Confusion Net-

work inputs (TTLMCN) is show in Figure 1. The generative

process of the TTLMCN can be summarized as follows:

1. Draw φφφt from Dirichlet((α ∗ φ̂k)t)

2. For each word slot m in chunk t

(a) Draw Sm from Multinomial(Dtm)

(b) Draw zm from Multinomial(φφφt)

(c) For each arc a in word slot m

• If sma = 1, draw wma from Multinomial(θtzm )

• If sma = 0, draw wma from Multinomial(θe)

A

z

w

Chunk t

M

S D

A

arc posteriors

arc selector

error unigram

z

w

Chunk t-1
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topic probability

M

precision of topic probability

topic dependent 
unigram

latent topic
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Fig. 1. Graphical representation of TTLMCN. Shaded and un-

shaded nodes indicate observed and latent variables, respectively.

Note that φ can depend on the φs of several preceding chunks. How-

ever, for figure clarity, we depict only the case when H = 1.

From this generation process, for each chunk t, we can

write the joint distribution of words, latent topics and arc se-

lections conditioned on the topic probabilities, unigram prob-

abilities, and arc posteriors as follows:

P (Wt, Zt,St|θe, θ,φφφt, Dt)

=
N∏
m

φtzm

Am∏
a

dsma
ma θsma

zmwma
θ1−sma
ewma

(2)

3.1. Inference

We infer latent topics and “correct” words based on collapsed

Gibbs sampling [9]. We start from the joint distribution and

substituting Eqs. 1 and 2 :

P (Wt, Zt, St|φ̂φφt−1, Dt, αt, θ, θe)

=

∫
P (Wt, Zt, St|θe, θ,φφφt, Dt)P (φφφt|φ̂φφt−1, αt)dφt

=
Γ(αt)∏

k Γ((α ∗ φ̂k)t)

∏
k Γ(ntk + (α ∗ φ̂k)t)

Γ(nt +
∑H

h=1 αth)

×
∏
m

∏
a

dsma
ma θsma

zmwma
θ1−sma
ewma

(3)

where Γ() is the Gamma function, nt denotes the number of

word slots in chunk t, and ntk denotes the number of words

assigned to topic k in chunk t.
From Eq. 3, we can derive the Gibbs sampling equations

of Zt and St. (Appendixes of [6] can be used as an outline for

the derivations.)

P
(z)
tmkj � P (zm = k|Sm = j, ...)

∝ ntk\m + (α ∗ φ̂k)t

nt\m +
∑H

h=1 αth

θkwmj

(4)

P
(s)
tmkj � P (Sm = j|zm = k, ...) ∝ dmjθkwmj

(5)
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where \m implies counts excluding the mth word slot. These

two equations make sense intuitively: the probability of pick-

ing a topic depends on how often the topic occurs (with some

influence from previous chunks). The probability of selecting

an arc depends on the posterior and the corresponding topic

dependent unigram.

αth can be updated by the maximum likelihood estimation

of the joint distribution in Eq. 3 as follows:

αth ← αth

∑
k φ̂t−hk(Ψ(ntk + (α ∗ φ̂k)t)−Ψ((α ∗ φ̂k)t))

Ψ(nt +
∑

h′ αth′)−Ψ(
∑

h′ αth′)
(6)

where Ψ() is the Digamma function. By iterating Eqs. (4)-

(6), we can obtain Zt and αth which can then be used to esti-

mate the means of the topic distribution as follows:

φ̂tk =
ntk + (α ∗ φ̂k)t
nt +

∑
h′ αth′

(7)

These means can be used to update the n-gram just like in

the original TTLM. Extending to LDA is very similar in con-

cept. One thing of note is the handling of epsilon transitions

which indicates a deletion of the word slot. However, uni-

grams trained on text corpora would not naturally include ep-

silon transitions. We incorporate this by adding an additional

entry to the unigrams with probability pε and rescale the rest

of the probability masses accordingly. pε is considered a tun-

ing parameter indicating the trade-off between insertions and

deletions. The word counts should also exclude word slots

that select epsilon transition arcs.

3.2. Posterior Interpolation

Even though arc selection based on latent topics makes in-

tuitive sense, basing these selections on unigrams instead of

n-grams causes many incorrect arcs to be selected. One pos-

sible fix is to have a high pruning threshold for generating

the confusion network. This leaves only the most confusable

choices which helps reduce selection errors. However, the

correct arcs might also be pruned out, limiting the usefulness

of this model. Thus, we use a simple interpolation scheme to

reinforce the original posterior by modifying the Gibbs sam-

pling of the arc selection in Eq. 5 as follows:

P ′(Sm = j|zm = k, ...) = P
(z)
tmkjP

(s)
tmkj + (1− P

(z)
tmkj)dmj

(8)

4. EXPERIMENTS

We conducted experiments on two different speech recog-

nition tasks; the MIT OpenCourseWare (MIT-OCW) [10]

and the Corpus of Spontaneuos Japanese (CSJ) [11]. The

TTLM implementation followed the framework described in

System P1 P3 WER % change

BASE 611.5 208.2 41.4 -

LDA 543.2 187.8 41.3 0.2

LDACN 549.2 202.4 41.0 1.0

TTLM 521.7 184.9 41.0 1.0

TTLMCN 504.4 179.4 40.6 2.0

TTLMCNI 503.4 178.88 40.5 2.2

ORACLE 482.9 171.9 39.4 4.8

Table 1. Test set performance on the MIT-OCW task. P1 and P3

denote 1-gram and 3-gram perplexity respectively.
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Fig. 2. WER performance on each individual lecture.

[6]. Each recording was divided into chunks that were then

processed sequentially. The error unigram θe was set to be

uniform. For both tasks, we show the performance of the

existing baselines: unadapted LM (BASE), LDA, and TTLM.

We also show the performance of LDA and TTLM with

our proposed extensions to accept confusion network inputs

(LDACN and TTLMCN). The posterior interpolation method

was also examined for the TTLMCN case (TTLMCNI). For

the MIT-OCW task, we also conducted an oracle experiment

(ORACLE) where the means of the latent topic were learned

from the original transcripts to indicate the best case scenario

for language model adaptation based on TTLM.

4.1. MIT-OpenCourseWare Corpus

MIT-OCW is mainly composed of lectures given at MIT.

Each lecture is typically two hours long. We segmented the

lectures using Voice Activity Detectors into utterances aver-

aging two seconds each. In order to be consistent with our

previous work in [6], we set the size of each chunk to 64

utterances, although our more recent work [12] incorporates

multiple chunk sizes for additional performance gain. The

training data consists of 147 lectures (128h of speech, 6.2M

word). The development set contains one lecture (1 hour),

while the evaluation was done on three lectures (3.5 hours).

Table 1 summarizes the recognition results on this task.

Incorporating confusion network inputs improved perfor-

mance for both LDA and TTLM algorithms. The posterior

interpolation also improved the performance slightly. Figure
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Fig. 3. A heat map of topic distributions over time on an excerpt

of TEST3. Blue pixels represent lower probability, while red pixels

represent higher probability. Y-axis corresponds to different LDA

topics. X-axis corresponds to 4 successive time chunks.

System Dev WER Test WER % change

BASE 17.7 20.8 -

LDA 16.5 19.8 4.8

LDACN 16.4 19.6 5.8

TTLM 16.3 19.7 5.2

TTLMCN 16.1 19.5 6.5

TTLMCNI 16.1 19.4 6.7

Table 2. Performance on the CSJ task.

2 shows the performance of each algorithm for each indi-

vidual lecture. One important thing to note is that on Test1,

TTLM actually did worse than the non-adapted LM. This was

partly due to the high WER of the ASR. Another cause was

that the chunks in Test1 typically contained fewer words than

the other lectures, which intensified the WER problem. Incor-

porating confusion network inputs alleviated the problem and

improved the recognition results compared to the baseline.

However, there was still a sizable gap from the oracle exper-

iments indicating room for possible improvements. We also

looked into the difference between the topic probability distri-

butions estimated by each model such as one shown in Figure

3. We can see that the topic probability of TTLMCNI is more

similar to the oracle experiment than TTLM, especially in the

low probability regions. The average KL divergence between

the distributions obtained in TTLM and ORACLE was 3.3,

while the KL divergence between TTLMCNI and ORACLE

was 1.3, a noticeable improvement.

4.2. Corpus of Spontaneous Japanese

CSJ is mainly composed of conference presentations. The

acoustic model was trained on 234 hours of speech, while the

LM was trained on a larger set of 6.8M words. We used “CSJ

testset 2” for development and “CSJ testset 1” for testing.

Each set contains ten presentations where each presentation

averages around 15 minutes. We used one utterance as one

chunk to simulate a more real-time friendly scenario. Unlike

in our previous work [6] where the Minimum Discrimination

Information n-gram scaling factor was fixed at 0.5, we also

tuned this parameter using the development set.

Table 2 shows the performance on the CSJ task. The

confusion network extensions continued to show similar im-

provements even though the baseline WER was already low

compared to the MIT-OCW task. The TTLMCNI showed the

best improvement of 6.7% compared to the baseline LM.

5. CONCLUSION

We described an extension for the TTLM in order to handle

errors in speech recognition. The proposed model used a con-

fusion network as input instead of just one ASR hypothesis

which improved performance even in high WER situations.

Experiments on MIT-OCW and CSJ tasks showed improve-

ments on the WER. The gain in word error rate was not very

large since the LM typically contributed little to the perfor-

mance of LVCSR. However, the topic probability estimates

improved considerably. As future work, we would like to ex-

plore other ways of reincorporating the n-gram into the selec-

tion which might decrease the gap in performance between

our model and the oracle.
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