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Abstract

We examine the use of active coherent sensingan increasingly available technology for sensing
the depth of scenes. A scene is a sparse signal but also exhibits significant structure which cannot
be exploited using standard sparse recovery algorithms. Instead, inspired by the model-based
compressive sensing literature we develop a scene model that incorporates occlusion constraints
in recovering the depth map. Our model is computationally tractable; we develop a variation
of the well-known model-based Compressive Sampling Matching Pursuit (CoSaMP) algorithm,
and we demonstrate that our approach significantly improves reconstruction performance.
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ABSTRACT

We examine the use of active coherent sensing—an increasingly

available technology—for sensing the depth of scenes. A scene is

a sparse signal but also exhibits significant structure which cannot

be exploited using standard sparse recovery algorithms. Instead, in-

spired by the model-based compressive sensing literature we develop

a scene model that incorporates occlusion constraints in recovering

the depth map. Our model is computationally tractable; we develop

a variation of the well-known model-based Compressive Sampling

Matching Pursuit (CoSaMP) algorithm, and we demonstrate that our

approach significantly improves reconstruction performance.

Index Terms— Depth sensing, array processing, compressive

sensing, signal model

1. INTRODUCTION

Over the years, advances in signal acquisition hardware, theory, and

algorithms have significantly improved our ability to coherently cap-

ture and process a variety of signal modalities. This enables increas-

ingly accurate distance measurements using technologies such as ul-

trasonic sensing [1] and millimeter wave (mmWave) radar [2]. Us-

ing non-penetrating coherent waves it is thus possible to measure the

depth-map of a scene and accurately reconstruct it.

This paper develops a scene model and an accompanying algo-

rithm to reconstruct the depth of a scene using measurements ob-

tained from an active coherent sensing system. Our approach is

inspired by recent work on model-based compressive sensing [3],

which enables reconstruction using application-specific models. In

contrast to simple sparsity models commonly used in such applica-

tions our model explicitly enforces occlusion constraints to produce

valid depth maps and provide robustness.

Our work is related to recent advances in depth-sensing combin-

ing LIDAR and compressive sensing [4, 5]. These approaches use

digital micromirror devices (DMDs) to spatially modulate light in

time-of-flight sensing systems and exploit the sparsity of the depth-

map in the reconstruction. In contrast, we exploit the coherency and

the bandwidth of the sensing system and use a more elaborate scene

model to sense and reconstruct the depth of the scene.

The next section provides a brief background on active coherent

sensing and model-based compressive sensing, establishing the no-

tation used in the remainder of this paper. Section 3 formulates our

signal acquisition and scene models and describes our model-based

reconstruction algorithm. Section 4 experimentally verifies our ap-

proach and Section 5 provides some discussion and concludes.

2. BACKGROUND

2.1. Active Sensor Arrays

Typical coherent active arrays consist of transmitting and receiving

components. These, depending on the sensing modality and the

available hardware, can be separate physical devices or the same

transducer. Each transmitter transmits a pulse, which is reflected

from the objects in the scene of interest and received by the receivers.

A coherent receiver receives the complete waveform of the reflec-

tion, which is processed to recover the desired information from the

scene of interest. This is in contrast to incoherent receivers, such as

visible-light sensors, which lack the ability to capture the complete

waveform of the reflection, only its time-averaged energy.

The ability to capture the reflected waveform allows coherent ar-

rays to measure the time-of-flight of the transmitted pulse from the

instance it is transmitted until the reflection is received. It is thus

possible to estimate the distance and the position of the reflectors in

the scene. Specifically, a transmitter s transmits a pulse ps(t) to the

scene. The pulse is reflected by a reflector at distance ds from the

transmitter and received by a receiver at distance dr from the reflec-

tor, delayed by τsr = (ds + dr)/c, where c is the speed of the trans-

mitted wave. Assuming the transmitter and the receiver are omnidi-

rectional, the received signal is yr(t) = xps(t− τsr), where x is the

reflectivity of the reflector. Often, it is more convenient to express

this delay in the frequency domain, i.e., Yr(ω) = xe−jωτsrPs(ω),

where uppercase denotes the Fourier transform. The propagation

equation is linear, i.e., the principle of superposition can be used to

describe the received signal from the transmission of multiple pulses

and the reflection from multiple reflectors. Sensor directionality is

straightforward to incorporate. We do not do so because it compli-

cates the model without providing further intuition.

To describe a radar imaging system, we consider the scene of

interest in its entirety. We discretize the scene using a grid of N
points and represent the reflectivity of each point using xn. Using

τsrn to denote the propagation delay from transmitter s to receiver r
through gridpoint n, the propagation equation becomes

Yr(ω) =
X

n

X

s

xne
−jωτsrnPs(ω). (1)

In this model the reflectivity is assumed constant as a function of

frequency. This assumption is partly necessary for the development

in the remainder of the paper. While it is straightforward to model

frequency-dependent reflectivity in (1), the approach developed later

in this paper needs to be modified to incorporate the model. Section 5

discusses a modification that could accommodate this model.

2.2. Model Based Compressive Sensing

Recent advances in compressive sensing have enabled significant

improvements in our ability to capture and reconstruct signals at the

rate of their complexity rather than the rate of the ambient space in

which the signal lies. This is achieved using a signal model. Stan-

dard compressive sensing formulations assume the signal is sparse

in some basis. The sparsity model, enforced at the reconstruction

algorithm, resolves the ambiguities in the underdetermined system
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Fig. 1. Array geometry in the far-field approximation

arising from acquiring the signal at a rate lower than the ambient

signal dimension.

Signal models other than sparsity can also be used to reduce

the sampling requirements and improve the reconstruction perfor-

mance. Manifolds, group sparsity, joint sparsity, and fusion frame

sparsity models are such examples [6–9]. A large number of these

models can be described by assuming the signal belongs to a union

of subspaces, a more general model with well-studied reconstruc-

tion algorithms and recovery conditions [3, 10–12]. Standard signal

sparsity is also a special case of a union of subspaces model.

Typically, the union of subspaces model is used in recovering a

signal x from measurements y acquired using a linear system

y = Ax, (2)

where A describes the acquisition system, usually under-determined.

The signal can be recovered, under certain conditions on A, by de-

termining a vector bx which belongs in the union of subspaces out of

the ones that can explain the measurements. Typical greedy algo-

rithms, such as the model based Compressive Sampling Matching

Pursuit (CoSaMP) and model-based Iterative Hard Thresholding

(IHT) [3] generalize their non-model-based counterparts [13, 14],

and attempt to optimize

bx = min
x

‖y −Ax‖2, s.t. x ∈ S, (3)

where S is the space of signals admissible to the model.

While there is a large variation, most greedy algorithms iterate

between two basic steps. First, they identify a candidate support for

the signal of interest and, second, they attempt to invert the system

over that support. Their model-based counterparts modify the sup-

port identification step, in accordance to the support model for the

signal of interest. Sufficient conditions for this modification to work

are described in [3].

3. DEPTH SENSING

3.1. Signal Acquisition Model

To measure the depth map of a scene we consider an active coherent

sensing array, as described in Sec. 2.1. For simplicity in the expo-

sition, we assume one transmitter illuminating the scene and mul-

tiple receivers sensing the reflections. Multiple transmitters can be

easily incorporated in a manner similar to [15]. To sense a 2- or 3-

dimensional scene we use a linear or planar array, respectively. We

are interested in the depth of each reflector in the scene, namely the

distance of the reflector from the array. A critical assumption in our

model is that the transmitted wave is not penetrating the objects of

interest in the scene, only reflected by them. We also assume away

secondary reflections. In other words, an object in the scene will

obscure or completely hide the objects behind it.

As a special case we examine a planar array under the far-field

approximation: the reflectors are far enough from the array such

that the reflected waves are approximately planar as they arrive at

the array. Figure 1 describes this approximation. Each point, n in

the scene is described by its distance from the array, denoted using

dn, and its 2-dimensional angle with respect to the normal of the

array plane, denoted θn = [θxn θyn]T . We also define the trans-

formation ψn = [sin θxn sin θyn]T . For a linear array sensing a

2-dimensional scene the only modification is that the angle is one

dimensional. Henceforth, we refer to the angleψn as the orientation

coordinates, in contrast to the depth coordinate dn.

We denote the location of each receiver r in the coordinate plane

of the array using vr = [xr yr]
T . Thus, under the far-field approx-

imation, the distance travelled by the signal from the transmitter to

scene point n and back to sensor r is equal to 2dn + xr sin θxn +
yr sin θyn = 2dn + vT

r ψn and the corresponding delay is equal to

(2dn + vT
r ψn)/c. Thus, the acquisition system is described by

Yr(ω) =
X

n

xne
−jω(2dn+v

T

r
ψn)/cP (ω), (4)

where we drop the dependence on s in (1) since we only use one

transmitter. We compactly denote the linear system in (4) using

Y(ω) = A(ω)x. (5)

Of course, the system is typically broadband. We discretize the fre-

quency space to ω1, . . . , ωF and describe the overall system using

Y = Ax,Y =

2

6

4

Y(ω1)
...

Y(ωF )

3

7

5

, A =

2

6

4

A(ω1)
...

A(ωF )

3

7

5

(6)

We should also note that for implementation purposes, the adjoint of

A is staightforward to compute from the adjoint of A(ω):

A
H
Y =

F
X

f=1

A
H(ωf )Y(ωf ). (7)

In many cases of uniform or other structured arrays, efficient com-

putation of A(ω) and its adjoint is possible. In these cases, (7) is

also more efficient than explicit computation of AH .

3.2. Scene Model

Since we assume the transmitted pulse does not penetrate the reflec-

tors in the scene, all the scene points xn in front or behind a visible

reflector do not reflect and, therefore, their reflectivity is equal to

0. For example, in a planar array, two points m,n with coordinates

ψm = ψn and dm 6= dn cannot both have non-zero reflectivity. In

other words, if we partition the coefficient space in groups, where

all the elements in the group have the same orientation coordinates,

then each group is 1-sparse. If the depth map itself is not dense in

number of objects, we can also impose further structure, namely that

onlyK of the groups are active, i.e., that there are objects along only

K of the orientation directions.

This is a union of subspaces model. Assuming the coordinate

space is discritized to Nx × 4Ny orientation points and Nd depth

points, the number of subspaces comprising the model is equal to

 

NxNy

K

!
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„

eNxNyNd

K

«K

, (8)



Algorithm 1 The modified model-based CoSaMP algorithm to en-

force the model described in this paper.

1: initialize Iteration count l = 0, Initial estimate bxl = 0.

2: while not converged do

3: Increase iteration count: l← l + 1
4: Compute residual:

R(ω) = Y(ω)−A(ω)bxl−1, for all ω

5: Compute proxy (gradient): p
l =

ωF
X

ω=ω1

A
H(ω)R(ω)

6: Identify support candidate:

T l = supp
“

trunc(pl,K)
”

∪ supp
“

bx
l−1
”

{supp(·) determines the support set of a vector; trunc(x,K)
selects the K coefficients of x according to our model and

sets the remaining to zero, as described in Algorithm 2}
7: Line search: Find τ to minimize

X

ω

‚

‚

‚

Y(ω)−A(ω)
“

bx
l−1 − τpl|T

”

‚

‚

‚

2

2
, s.t. x|

T c = 0

8: Form temporary estimate:

b
l =

“

bx
l−1 − τpl

”

˛

˛

˛

T

9: Compute final support: Sl = trunc(bl,K)
10: Truncate and update estimate: bxl = bl

˛

˛

Sl

11: end while

12: return Signal estimate bxl

where K = NxNy if the depth map is dense. We should note that

the upper bound on the number of subspaces on the left hand side

of (8) is the same as an unrestricted K-sparse scene model. This

implies (a) that the upper bound is loose and (b) that certain theo-

retical guarantees that depend on the number of subspaces cannot be

improved using that bound (e.g., see [3,11]). This, however does not

mean that the model is not an improvement over simple sparsity. As

we show in simulations, enforcing the model significantly improves

the results over an unrestricted sparsity model.

3.3. Reconstruction Algorithm

To enforce the acquisition model during reconstruction we use a vari-

ation of model-based CoSaMP [3], described in Algorithm 1.

The first difference is the use of line-search [16] to reduce the

cost in step 7 instead of a full least-squares minimization using the

pseudoinverse, in a manner similar to [15]. This makes the algo-

rithm significantly more efficient if the propagation matrix A(ω) is

only available in functional form and not explicitly. The modified

algorithm requires the applications of A(ω) and its adjoint, which is

usually easily computable in array applications.

The second difference is the modification of the support identi-

fication steps 6 and 9, according to the requirements of the model.

Specifically, the truncation operation trunc(x) is described in Al-

gorithm 2. The truncation first selects the single largest coefficient

in each orientation and then selects the K largest of those. Thus, it

ensures that only one coefficient in each orientation is ever selected,

enforcing the occlusion constraint.

Algorithm 2 The truncation operator trunc(x,K).

1: Input: Data x and desired sparsity K.

2: Find maximum value along each orientation ψ:

(u)ψ = maxd(x)d,ψ , (l)ψ = arg maxd(x)d,ψ

{Vectors u and l, indexed inψ store the maximum values along

each orientation and the corresponding distance, respectively}
3: Find the K largest of the maximum values S = supp(u|K)
{x|K keeps the K coefficients of x with the largest magnitude

and sets the remaining to zero.}
4: Compute index set T , containing the support of the K largest

values S and the distance of the maximum along the correspond-

ing direction, l|S .

5: return Truncated vector x|T

4. EXPERIMENTAL RESULTS

To validate our approach, we performed experiments on a simulated

mmWave system operating at a 3GHz frequency bandwidth, cen-

tered at 76.5GHz. To better illustrate the issues with classical ap-

proaches, our experiments are performed on a 2-D scene using a

linear array of 15 and 21 elements with 2m aperture size. The angle

spaceψ is discretized at a resolution of 0.01 (in the dimensions of the

sine of the angle) for 201 total gridpoints. The scene has 1m maxi-

mum depth with 2cm grid resolution. An example of our simulations

is shown in Figure 2.

The figure shows from left to right the sensed scene, the re-

constructed scene using standard backprojection, the reconstructed

scene using the standard CoSaMP algorithm and the reconstructed

scene using our model. The top row demonstrates the results for a

21-element array and the bottom for a 15-element one. The results

were consistent in a variety of experiments.

The top row shows a typical failure mode of standard sparsity-

based compressive sensing that we attempt to fix using our model.

As we can see from the backprojection results, there is significant

ambiguity around the reflectors, due to the relatively high coherence

of nearby pixels. These can confuse standard sparsity-based CS re-

construction algorithms. For example, Fig. 2(c) demonstrates how

CoSaMP only picked up one of the reflectors, and the region around

it. Even by reducing the desired sparsity of the reconstructed signal,

performance does not improve. Figure 2(d) shows that the model

can resolve these ambiguities and accurately reconstruct the signal.

Even in cases of significant ambiguities, as the example shown

in the bottom row, the model significantly improves reconstruction

performance. Specifically, the reduced number of array elements

increases array ambiguities, as demonstrated by the significant hor-

izontal blur of the backprojection reconstruction. As expected, sim-

ple sparse reconstruction fails to recover the scene. The model-based

approach significantly improves the identification of the support of

the depth-map, although it does not recover the signal perfectly. Sub-

sequent processing such as total-variation based smoothing can also

be used to further smooth the produced depth map.

5. DISCUSSION

Increasingly available coherent sensing technology can be used

in depth sensing applications. For such applications, sparsity and

scene models play a key role in improving the system performance.

The model and corresponding algorithm we present in this paper is

explicitly designed to take into account the particular structure of

depth-maps.

Although we present in detail and in simulations only the far-

field approximation formulation, the same model can be applied in
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Fig. 2. Examples of simulation results. From left to right, the original scene, backprojection reconstruction, standard sparsity-based recon-

struction using CoSaMP, and model-based reconstruction using model-based CoSaMP. Top row demonstrates results for a 21-element array

and bottom row for a 15-element array.

near-field formulations. One complication in this case, not appropri-

ately handled by the model, is partial occlusions, i.e., cases where

an object in the background is visible only to a few of the sensors.

In the far-field approximation this can never occur. Managing partial

occlusions is not straightforward and requires further research.

Another case we do not examine is the case of multiple trans-

mitters. There are several ways to incorporate multiple transmit-

ters in our sensing model, for example by having each transmitter

transmit a pulse separately from the others, recording the reflections,

and forming an enlarged reconstruction problem. Alternatively, all

transmitters can pulse simultaneously using different pulses, either

orthogonal or randomly generated, similar to [1].

Finally, we should note that we can further improve reconstruc-

tion performance by additional modeling of the smoothness of the

objects in the scene, or by further grouping the orientation direc-

tions. Such modeling could further improve results, but could make

the model overly sensitive to scene characteristics. Furthermore, we

can incorporate frequency-dependent scene reflectivity using joint-

sparsity models, in a manner similar to [15].

6. REFERENCES

[1] P. Boufounos, “Compressive sensing for over-the-air ultrasound,” in
IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),,
may 2011, pp. 5972 –5975.

[2] A. Accardi, Generating Pictures from Waves: Aspects of Image For-

mation, Doctoral thesis, MIT, Cambridge, MA, 2010.

[3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Info. Theory, vol. 56, no. 4, pp.
1982–2001, 2010.

[4] G.A. Howland, P.B. Dixon, and J.C. Howell, “Photon-counting com-
pressive sensing laser radar for 3d imaging,” Applied Optics, vol. 50,
no. 31, pp. 5917–5920, 2011.

[5] A. Kirmani, A. Colaço, F.N.C. Wong, and V.K. Goyal, “Exploiting
sparsity in time-of-flight range acquisition using a single time-resolved
sensor,” Optics Express, vol. 19, no. 22, pp. 21485–21507, 2011.

[6] R.G. Baraniuk and M.B. Wakin, “Random projections of smooth man-
ifolds,” Foundations of Computational Mathematics, vol. 9, no. 1, pp.
51–77, 2009.

[7] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of
block-sparse signals with an optimal number of measurements,” IEEE

Trans. Signal Processing, vol. 57, no. 8, pp. 3075 –3085, aug. 2009.

[8] Y.C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Un-
certainty relations and efficient recovery,” IEEE Trans. Signal Process-

ing, vol. 58, no. 6, pp. 3042 –3054, 2010.

[9] P. Boufounos, G. Kutyniok, and H. Rauhut, “Sparse recovery from
combined fusion frame measurements,” IEEE Trans. Info. Theory, vol.
57, no. 6, pp. 3864–3876, 2011.

[10] Y.M. Lu and M.N. Do, “A theory for sampling signals from a union of
subspaces,” IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2334–
2345, 2008.

[11] T. Blumensath and M.E. Davies, “Sampling theorems for signals from
the union of finite-dimensional linear subspaces,” IEEE Trans. Info.

Theory, vol. 55, no. 4, pp. 1872–1882, 2009.

[12] Y.C. Eldar and M. Mishali, “Robust recovery of signals from a struc-
tured union of subspaces,” IEEE Trans. Info. Theory, vol. 55, no. 11,
pp. 5302–5316, 2009.

[13] D. Needell and J.A. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-

monic Analysis, vol. 26, no. 3, pp. 301–321, 2009.

[14] T. Blumensath and M.E. Davies, “Iterative hard thresholding for com-
pressed sensing,” Applied and Computational Harmonic Analysis, vol.
27, no. 3, pp. 265–274, 2009.

[15] P. Boufounos, P. Smaragdis, and R. Bhiksha, “Joint sparsity models for
wideband array processing,” in Proc. SPIE, Wavelets and Sparsity XIV,
San Diego, CA, 21–25 August 2011.

[16] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, New York, NY, USA, 2004.


	Title Page
	Title Page
	page 2


	Depth Sensing Using Active Coherent Illumination
	page 2
	page 3
	page 4


