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ABSTRACT

We propose an innovative approach for music descriptioe\aral
time-scales in a single unified formalism. More specificatlyord
information at the analysis-frame level and global senessttucture
are integrated in an elegant and flexible model. Using Matlagnic
Networks (MLNSs) low-level signal features are encoded ith-
level information expressed by logical rules, without tlezd of a
transcription step. Our results demonstrate the potesftiLNs for
music analysis as they can express both structured reddtiaowl-
edge through logic as well as uncertainty through prob#sli

Index Terms— Music Information Retrieval, Markov Logic
Networks, Chord Detection, Structure Analysis

1. INTRODUCTION

Music audio signals are very complex, both because of thiméit
nature of audio, and because of the information they corfsignal
observations are generally incomplete and noisy. BesiHegreat
variability of audio signals, due to the many modes of sowodpc-
tion and the wide range of possible combinations betweewatie
ous acoustic events, make music signals extremely rich amglex
from a physical point of view. Music audio signals are alsmptex
from a semantic point of view and convey multi-faceted anoirgly
interrelated information (e.g. harmony, metric, struetwtc.).

The extraction of relevant content information from audi@ s
nals of music is one of the most important aspectdvoisic In-
formation Retrieva(MIR). Although there is a number of existing
approaches that take into account interrelations betweesral di-
mensions in music (e.g. [1, 2]), most existing computationad-
els extracting content information tend to focus on a simglesic
attribute, which is contrary to the human understandingsardep-
tion of music that processes holistically the global musicatext
[3]. Dealing with real audio recordings thus requires thaitgtto
handle complex relational and rich probabilistic struetat multiple
levels of representation. Existing approaches for musieieval
tasks fail to capture both of these aspects.

Probabilistic graphical models are popular for music eetl

A major advantage of the logic framework is that its expressi
ness allows modeling music rules in a compact and humarabéad
way, thus providing an intuitive description of music. kredge,
such as music theory, can be introduced to construct rubsréh
flect the human understanding of music [9]. Another advaniag
that logical inference of rules allows taking into accoulhtegents
including those which are rare [10]. Inductive Logic Pragring
(ILP) [11] refers to logical inference techniques that anbset of
First-Order Logic (FOL). These approaches combine logigmam-
ming with machine learning. They have been widely used toehod
and learn music rules, especially in the context of harmdvarac-
terization and in the context of expressive music perforreai\p-
proaches based on logic have focused on symbolic repré¢ismsta
such as the MIDI file format, rather than on audio.

In the context of harmony characterization, pattern-bdsstl
order inductive systems capable of learning hew concepts &x-
amples and background knowledge [12], or counterpointsride
two-voice musical pieces in symbolic format [13] have beeo- p
posed. An inductive approach for learning generic rulemfeoset
of popular music harmonization examples to capture comrhondc
patterns is described in [14]. Some ILP-based approactrethéo
automatic characterization of harmony in symbolic repnest@ns
[15] and classification of musical genres [16] have beenneldd to
audio [17]. However, they require a transcription step,itaemony
characterization being induced from the output of an autiord
transcription algorithm and not directly from audio. In thentext
of expressive music performance, algorithms for discoxegieneral
rules that can describe fundamental principles of expressiusic
performance [18, 19, 20, 9] have also been proposed. Thetindu
logic programming approaches are not directly applied thauut
on symbolic representations. This generally requiresrastidption
step, such as melody transcription [9].

Real data such as music signals exhibit both uncertaintyieihd
relational structure. Until recent years, these two aspleatve been
generally treated separately, probability being the stethavay to
represent uncertainty in knowledge, while logical repnéssigon be-

tasks. In particular Hidden Markov models (HMM) have beettequ
successful in modeling various tasks where objects can (e-re

ing used to represent complex relational information. Musirieval
tasks would benefit from a unification of logical and probiabi

sented as sequential phenomena, such as in the case of stierd eknowledge representations. As reflected by previous windt, as-

mation [4] or beat tracking [5]. However, an important liatibn of

pects are important in music, and should be fully considelmiv-

HMM s is that it is hard to express dependencies in the dataM&M ever, traditional machine learning approaches are not tabtepe
make the Markovian assumption that each frame only depantteo ~ with rich relational structure, while logic-based appioes are not
preceding one. Other formalisms that allow consideringemmam-  able to cope with the uncertainty of audio and need a traptsmni
plex dependencies between data in the model have been edplor step to apply logical inference on a symbolic represematiap-
such as conditional random fields [6], N-grams [7, 8] or tieecs ~ proaches towards a unification have been proposed withigntieeg-
tures [2]. Although probabilistic models can handle thesiimt un-  ing field of Statistical Relational Learning (SRL) [21]. Theom-
certainty of audio, most of them fail to capture importargexts of  bine first order logic, relational representations anddalginference,
higher-level musical relational structure and contextisHspect has ~ with concepts of probability theory and machine learningj[2

been more specifically explored within the framework of togi Many models in which statistical and relational knowledge



are unified within a single representation formalism haverged
[23, 24, 25]. Among them, Markov Logic Networks (MLNSs) [26],
which combine first-order logic and probabilistic graphicedels
(Markov networks) have received considerable attentioregent
years. Their popularity is due to their expressiveness angligity
for compactly representing a wide variety of knowledge aason-
ing about data with complex dependencies. Multiple leayrand
inference algorithms for MLNs have been proposed, for wbjzén-
source implementations are available, for exampleMichemy and

Here, we show that prior structural information can be uged t
enhance chord estimation in a more elegant and flexible wtyjrwi
the framework of Markov Logic Networks. We do not constrdia t
model to have the exact same chord progression in all sectibn
the same type, but we onfgvor same chord progressions for all in-
stances of the same segment type, so that variations besiagar
segments can be taken into account. Moreover, the proposadlf
ism has a good potential of improvement in the future by ipooat-
ing more context information and discovering new predicate

ProbCog? software packages. MLNs have thus been used for many  Although our final goal is to develop a fully automatic model

tasks in artificial intelligence (Al), such as meaning esti@n [27],
collective classification [28], or entity resolution [29].

We are interested in providing a multi-level descriptiomuafsic
structure, at the analysis frame, phrase and global steistiale, in
which information specific to the various strata interadtisipaper
presents some steps towards this direction. In traditiooalputa-
tional models, itis not easy to express dependencies betvegmus
semantic levels. In [30], we have introduced MLNs as a hidjlelyi-
ble and expressive formalism for the analysis of music asigjoals,
showing that chord and key information can be jointly modeteo
a single unified MLN model. In this work we show that the MLNs
framework can be further explored to integrate informatbdiffer-
ent time scales within a single formalism.

More specifically, we consider here the problem of modelirg t
harmonic progression of a music signal at the analysis€rkavel,
taking into account a more global semantic level. A numbevarks
focus on the task of automatic analysis of the musical stredtom
audio signals, see e.g. [31, 32, 33, 34]. Music pieces aretsted at
several time scales, from musical phrases to longer sedtia gen-
erally have multiple occurrences (with possible variagjomithin the
same musical piece. Each segment type can be categorizetisand
tinguished from the others according to several paramsters as
the timbre, the musical key, the chord progression, the teptp-
gression etc. Here, we focus on popular music where piecebea
segmented into specific repetitive segments with labels ascho-

where an automatic segmentation is used, in this articdeselgmen-
tation of the song in beats and in structure is given as pniorina-
tion. As in [36], structure information within a given sorgjincor-
porated relying on segment types whose instances are hiatipn
similar and also have the same length in béats

2. MARKOV LOGIC NETWORKS

A Markov Logic Network (MLN) is a set of weighted first-order
logic formulas [26], that can be seen as a template for thetoao:
tion of probabilistic graphical models. We present a sheeraiew
of the underlying concepts with specific examples from theleho
ing of chord structure. A MLN is a hybrid of Markov networkscan
first-order logic. AMarkov networ38] is a model for the joint dis-
tribution of a set of variableX = (X1, Xa,..., X») € X, thatis
often represented as a Iog-Iinlear model:

P(X =2) = —exp(y_w;f;(x)) (1)
whereZ is a normalization factor, ahd the valye(z) are features
associated with state (z is an assignment to the random variables
X). Here, we will focus on binary featureg;(x) € 0, 1.

A first-order domain is defined by a set@dnstantgthat is as-
sumed finite) representing objects in the domain (e.g. Cktho
GMchord) and a set gbredicatesrepresenting properties of those
objects (e.g. IsMajor(x), IsHappyMood(x)) and relatioretvieen
them (e.g. AreNeighbors(x, y)). A predicate cangseundedby re-
placing its variables with constants (e.g. IsMajor(CMah)pisHap-

rus, verse or refrain. Segments are considered as similar if they rep-pyMood(CMchord), AreNeighbors(CMchord, GMchord)).whorld

resent the same musical content, regardless of their mstitation.
In particular, two same sections are likely to have simi@mhonic
structures. In this work, we use this structural informatio obtain
mid-level representations of music in terms of chord pregjan that
has a “structural consistency” [35].

is an assignment of a truth value to each possible ground-pred
cate (or atom). Afirst-order knowledge basgkB) is a set of for-
mulas in first-order logic, constructed from predicatesigdogical
connectives and quantifiers. For instance, the knowleddajdr
chords imply happy modatan be described using the formuta,

Previous works have already used the structure as a cuedimobt 7sMajor(x) = IsHappyMood(z). A first-order KB can be seen as

a “structurally consistent” mid-level representation afsic. In the
work of Dannenberg [35], music structure is used to consdieat
tracking program based on the idea that similar segmentsusfam
should have corresponding beats and tempo variation. A mare
closely related to this article is [36] in which the repettistructure
of songs is used to enhance chord extraction. A chromagrax: is
tracted from the signal, and segments corresponding toea gype
of section are replaced by the average of the chromagramativer

the instance of the same segment type over the whole songato t

similar structural segments are labelled with the exactesaehord
progression. A limitation of this work is that it relies orethypoth-
esis that the chord sequence is the same in all sections shthe
type. However, repeated segments are often transformemaipetr-
tain extent and present variations between several ocaesd37].
Moreover, in the case that one segment of the chromagranarietl
(e.g. because of noise or percussive sounds), this wilhaatioally
affect all same segments, and thus degrade the chord dstimat

lhttp://al cheny. cs. washi ngt on. edu
2http://ias.cs.tum edu/ research/ probcog

a set of hard constraints on the set of possible worlds: if ddvo
violates even one formula, it has zero probability. In realld
schemes, logic formulas agenerallytrue, but noalways The basic
idea in Markov logic is to soften these constraints to hamaieer-
tainty: a world that violates one formula in the KB is lesshmable
than one that does not violate any formula but not impossible
weight associated with each formula reflects how strong atcaint
is, i.e. how unlikely a world is in which that formula is viaéal.
Formally, aMarkov logic networkL is defined [26] as a set of
pairs(F;, w;), whereF; is a formula in first-order logic and; is a
real number associated with the formula. Together with &fset of
constantd” (to which the predicates appearing in the formulas can
be applied), it defines a ground Markov netwdrk, ¢, as follows:
1. M,c contains one binary node for each possible grounding of
each predicate appearing In The node value is 1 if the ground
predicate is true, and 0 otherwise.

3Instances of a segment type may differ in length within thegsdn such
a case, following [36], to fulfill the requirement of equahggh instances,
only the part of the segment type that is similar in all ins&mis considered.
The remaining parts are labeled as additional one instsegments.



2. My, c contains one feature for each possible grounding of eacls specified by the prior, observation and transition prdtiegs dis-
formula F; in L. The feature value is 1 if the ground formula tributions. As we show in [30], the chord progression candpge
is true, and O otherwise. The feature weight is#heassociated alently modeled in the MLN framework considering three géne
with F; in L. formulas, described in Egs. (2, 4, 6), that reflect the cairgs given

A ground Markov logic network specifies a probability distri by the three distributions given by the HMM. This model does n
bution over the set of possible worlds, i.e. the set of possible consider high-level structural relationships and will béerred to as
assignments of truth values to each of the ground atords.iThe 11N chordin what follows. It is briefly described below.

joint distribution 10f a possible world is: crp(S, wing (2)) Letc;, 4 € [1,24] denote the 24 chords of the dictionasy, n €
PX =2) = gexp(};wini(z)) = S eon(s, win (@) [0, N —1] denote the succession of observed chroma vecidrsing
where the sum is over indices of MLN formulas ang(z) is the  the time index, andV being the total number of beat-synchronous
number of true groundings of formull; in z (i.e. ni(x) is the  frames of the analyzed song, asgd,n € [0, N — 1] denotes the
number of times thé’" formula is satisfied by possible worlg. succession of hidden states.
3. MODEL To model the chord progression at the beat-synchronousefram

We now present a MLN for modeling the chord progression incor [€Vel: we use an unobservable predicatieord(c:, t), meaning that

poratinga priori structural information. The front-end of our model Chorde: is played at frame, and two observable ones, the predicate

is based on the extraction from the signal of chroma featjg@ls ~ Observation(on, t), meaning that we observe chromi at frame

that are 12-dimensional vectors representing the inteogithe 12 ¢ and the temporal predicaecc(t1, ?2), meaning that, and >

semitones of the Western tonal music scale, regardlessafedie arhe successive frames. - . o

perform abeat synchronouanalysis and compute one chroma vec-T & prior observation probabilities are described using:

tor per beat. A chord lexicon composed2df major M and minor log(P(so = i) Chord(c;, 0) @

m triads is considered (CM, ..., BM, Cm, ..., Bm). for each chord:;, i € [1,24], and with P(so) denoting the prior
The structure of the domain is represented by a set of weightedistribution of states. o _ _

logical formulas that are described in Table 1. Given thimgeules 1 he conditional observatlor) probabilitiesare described using a set

with attached weights and a set of evidence literals, destrin of conjunctions of the form:

Table 2, Maximum A Posteriori (MAP) inference is used to infe vt € [0, N —1] log(P(on|sn = ci)) ®)

the most likely state of the world. Structural informatiatib at the Observation(on,t) A Chord(ci, t)
beat-synchronous and at global semantic level are addad two for each combination of observatian, and chorde;, and with
time predicates at multiple time-scaléycc and SuccStr. P(on|s») denoting the corresponding observation probability. Note

that conjunctions, by definition, have but one true grougdiach.

Table 1. MLN for joint chord and structure d iption. - . .
abe orjoint chord and structure description The transition probabilities are described using:

Predicate declarations

Observation(chromal, time) Succ(time, time) Vti,t2 € [OvN - 1] log(P(sn = cilsn—1 = cj)) 4)
Chord(chord), time) SuceStr(time, time) . .
Veight i — . Chord(ci,t1) A SercAc(tg, t1) A C’hord(c-], t2)
Prior observation chord probabilities: for all pairs of chordgc;, ¢;), 4,5 € [1,24], and withP(sp|sn—1)
log(P(CM(t =0))) Chord(CM, 0) denoting the corresponding transition probability.
log(P(Bm(t = 0))) Chord(Bm, 0) The weights attached to formulas can be obtained from trgini
Probability that the observation (chroma) has been emittga chord: HOWGVGF, in this WOI’k, foIIowing [30’ 4] weights are basedmn-
log(P(oo|CM)) Observation(og,t) A Chord(CM,t) ical k | h - . initial is ch
log(P(oo|C#M)) Observation(og, t) A Chord(C#M, t) sical know edge. The dlst_nbutlgﬁ_(so)_over |n|t|a_§t_ates is chosen
oo(Plon 1| Bm) ol o100 A Chord(Bm.t) as uniform. The observation distribution probabilitiso,|s,) are
og on—_1|Bm bservation(on—_1,t) AN Chord(Bm,t A - . :
Probability of Fansifion between two Successive chords: obtained by computing the correlation between the observaec-
Tog(P(CM|CI)) Chord(CM, 1) A Succ(tz, 11) A Chord(CHM, 2) tors (the chroma vectors) and a set of chord templates whéctha
log(P(CHMICM)) | Chord(CM, 1) N Sucellz,tr) A Chord(C#M, t2) theoretical chroma vectors corresponding toZhenajor and minor
log(P(Bm|Bm)) Chord(Bm, t1) A Succ(ta, t1) A Chord(Bm, t2) triads. A state-transition matrix based on musical knogée{10]
Probability that S(g"}“'af;ecg]\rgefm? Qage th;fs?;ﬂetcf;ofdcfsﬂl;?iCM ) is used to model the transition probabiliti€% s, |s.—1), reflecting
Wstruct hord(CM, t1 uceStr(ta,t1) A Chord(CM,ta . . .
Watruct Chord(C#M, 1) A SuceStr(ts.t1) A Chord(CHM,t2) chord transition rules. Morg Qetalls.car) bg found in [30, 4].
Chord(s Sueesin Chord(B Note that for each conditional distribution, only mutuadiclu-
Wstruct Chord(Bm, t1) A SuccSitr{ty, th) A Chord(Bm, ta) sive and exhaustive sets of formulas are used, exactly one of
Table 2. Evidence for chord and structure description. them is true. For instance, there is one and only one possiioied
/I We observe a chroma at each time frame: per frame. Thls iS indicated in Table 1 Using the Syn1b0|
ObObse"Zf““(’”("Ovogv‘ - " Evidence consists of a set of ground atoms that give chroma ob
servation(on —1, — . . .
I We know the tempoer order of the frames: servations corresponding to each frame, and the tempare¢ssion
Suce(1,0) - - of frames over time using the beat-level temporal prediSater.
Suce(N —1,N —2)
/IPrior information about similar segments in the struetur 3.2. Global Semantic Structure Time-Scale
SwuceStr(1,10) . . . .
SuceStr(2,11) - - - Prior structural information at the global semantic ledmsed on

the idea that segments of the same type have a similar chord pr
3.1. Beat-Synchronous Time-Scale gression, is incorporated using the time predicéite:cStr. This

The chord progression at the beat-synchronous frame levebe ~ Predicate allows considering wider temporal windows, gsospd

modeled by a classic ergodic 24-state HMM such as the one prd® consecutive frames via ttféucc predicate.

sented in [4], each hidden state corresponding to a chord of the | N€ position of segments of same type in the song is givenias ev
lexicon, and the observations being the chroma vectors.HWg! dence. LetK denote the number of distinct segments. Each segment

sk, k € [1, K] may be characterized by its beginning position (in
4Model evaluated during the MIREX 2009 contest. frames), € [1, N], and its length in beats . For each pair of same
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segment typ€ sy, si+ ), the position of matching beat-synchronous
frames (likely to be the same chord type) is given as evidence

SuceStr(sy(by), sj, (bg)) ®)

SuceStr(sk(by + g — 1), 87, (bpr + Ly — 1))

The following set of formulas is added to the Markov logic-net
work to express how strong the constraint that two same sstigme
have a similar chord progression is:

th,tQ S [0, N — 1} Wstruct

Chord(c;,t1) N\ SuccStr(ta,t1) A Chord(c;,t2)
for all chordc;, i € [1, 24], and with weightw,..:, reflecting how
strong the constraint is, manually set. In practiog;...: will be a
small positive value (in our experimenis,ruc: = —log(0.95)) to
favor similar chord progressions in same segment types.

This model that incorporates prior information on globahse-
tic structure will be referred to adLN_structin what follows.

3.3. Inference

The inference task consists of computing the answer to a/ghere
the chord progression), and finding the most probable statieeo
world y given some evidence. Specifically, Maximum A Posteriori
(MAP) inference, finds the most probable state given theemdd.
For inference, we used the exact solver toulbar2 branch &dou
MPE inference [41] with the ProbCog toolbox, which grapmitei-
face allows convenient editing of the MLN predicates andnfiadas
given as input to the algorithm.

4. EVALUATION

The proposed model has been tested on a set of hand-labelddBe
songs, a popular database used for the chord estimatiof&isiall
the recordings are polyphonic, multi-instrumental songstaining

(6)

drums and vocal parts. We map the complex chords in the anno-

tation (such as major and minét", 7¢", 9t") to their root triads.
The original set comprises of Beatles songs but we redut¢ed #3
songs, removing songs for which the structure was ambig(pers
ceptually ambiguous metrical structure or segment répesif.

We compare the results of the moddlLN_structwith the base-
line methodMLN_chord and with the baseline method modified to
account for the structure in a similar way to [36], by rephacchro-
magram portions of same segments types by their average .tivat
the basis signal features (chroma) are the same for all thedieods.

The results obtained with the various configurations of ttee p
posed model are described in Table 3. The label accurAayhord
estimation results correspond to the mean and standardtidevof
correctly identified chords per song. Paired sample t-testse5%
significance level were performed to determine whetheletiesta-
tistical significance in the results between different agunfations.

The proposed approach compactly encodes physical signal co

tent and higher-level semantic information in a unified falism.

5Note that the valuesy, (b, ), . . ., sﬁc,(bk/ +1,s—1) in Eq.(5) correspond
to beat time-instants. Note also that = Ii.

6The list of this subset can be found i t p: / / opi hi . cs. uvi c.
calicassp2013m n. htm .

verse!

Fig. 1. Chord estimation results for an excerpt of thé s@mg After 909

verse (guitar_solo) | bridge‘

:
B[t c#| F#a

B| B! E|BF# B E : E| B| c#faug|
8| ] Bl | sffc#kl 5|} =| sff c#l
B‘v' E| 8| E| Blf c# 4| E E| Bl c#F#
IR Bl e[ sl cekl B[ =l sf c#rs
-

Table 3. Chord results obtained with various metho@&tat. Sig.
statistical significance between the mot#IN_structand others.

Chord LA results|  Stat. Sig.
MLN.chord | 72.57 £ 13.51
MLN struct | 72.03 £13.90 | JYeS
136] 73.90 £ 13.79 }no

Results show that global semantic information can be cehcand
elegantly combined with information at the analysis fraroale so
that chord estimation results are significantly improved] anore
consistent with the global structure, as illustrated inuFégl (see
the gray dashed rectanglédl.N_chord andMLN_struc?).

The results obtained with the proposed model fairly compare
with the previously proposed approach [36] that uses glstoatture
information to enhance chord estimation. Moreover, theppsed
model allows for taking into account variations betweennsegts
by favoring instead of exactly constraining the chord pesgion to
be the same for segments of the same type, as illustratedyime=i
1. In the bridge sections, in the black dashed rectanglesyitih
derlying harmony isF'# major. In the first instance of the bridge
section, the harmony is disturbed by a descending chroretie
in the bass, which is not the case for the second instanceagivey
the chromagram of the two instances (as in [36]) results éntors
in the chord estimation, whereas in the cas&bN_struct, the first
instance benefits from the signal content of the secondriostand
the harmonic content is better estimated.

There is no significant difference between the [36] BhdN_struct
models, but we expect that other music styles such as jazcmus
where repetitions of segments result in more complex variatdue
to improvisation would further benefit from the flexibilityf the
proposed model. This is left for future work.

5. CONCLUSION AND FUTURE WORK

In this article, we have proposed Markov logic as a formalibat
enables intuitive, effective, and expressive reasonimyiatomplex
relational structure and uncertainty of music data. Chowdl struc-
ture are integrated in a single unified formalism, resultmg more
elegant and flexible model, compared to existing more adamc
proaches. This work is a new step towards a unified multiesdat
scription of audio in which information specific to variouensantic
levels (analysis frame, phrase and global structure)anter

Future work will focus on extending this approach to a fully
automatic one, by incorporating estimated beats and steidb-
cation, possibly using penalties according to the degreelitbil-
ity of their estimation. The proposed model has great piatefur
improvement. It allows for incorporation of other contemtarma-
tion by adding new logical rules, and future work will in gatiar
consider combination with the model described in [30]. Refel
structure has been derived from background musical knaeled
major objective is now to explore the use of learning aldonis in
the framework of Markov logic to automatically discover anddel
new structural rules, and to take advantage of the flexbiftthe
MLN framework to combine this information from training it
background music knowledge.
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