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ABSTRACT

New applications of Electroencephalographic recording (EEG)

pose new challenges in terms of artifact removal. In our work

we target applications where the EEG is to be captured by a

single electrode and a number of additional lightweight sen-

sors are allowed. Thus, this paper introduces a new method

for artifact removal for single-channel EEG recordings using

nonnegative matrix factorisation (NMF) in a Gaussian source

separation framework. We focus the study on ocular artifacts

and show that by properly exploiting prior information on the

latter, through the analysis of electrooculographic recordings,

our artifact removal results on single-channel EEG are com-

parable to the results obtained with the classic multi-channel

Independent Component Analysis technique.

Index Terms— EEG, artifact removal, nonnegative ma-

trix factorisation, source separation, Gaussian model.

1. INTRODUCTION

Electroencephalographic (EEG) recordings capture a mixture

of endogenous brain activities and extraneous environmen-

tal and physiological artifacts such as power grid noise, eye

movements, heart beat or muscle activities. These artifacts

make it difficult to analyze and interpret EEG data since they

tend to overlap with the cerebral signals of interest, which

are generally of lower energy than the artifacts [15]. Conse-

quently researchers (in the neuroscience and biomedical en-

gineering communities) have devised EEG artifact removal

techniques that have proven effective for particular sources of

artifacts such as eye movements or heart beats [4, 11]. How-

ever many such techniques can be considered as being mainly

geared towards experimental (especially medical) setups. In-

deed, the sources of artifacts are generally intentionally lim-

ited, especially by requiring that the subject wearing the EEG

device remain as steady as possible, and the processing occurs

offline, possibly requiring a user’s intervention to complete

the artifact decontamination process. The latter is in particu-

lar true for one of the most popular approaches which relies

on Independent Component Analysis (ICA) [12].

Nevertheless new applications of EEG recording, for in-

stance brain-computer interfaces or human-activity monitor-

ing, pose new challenges in terms of artifact removal as they

call for fully automatic techniques, that would be additionally

amenable to real-time processing. A few proposals have been

made along this line in previous works where two types of

methods can be distinguished. The first exploit various sta-

tistical properties of the artifacts in the time- and frequency-

domains [14, 18], the second rely on prior knowledge about

either the artifacts [9, 19] or the signal of interest [21]. The

former are specific to standard artifacts whereas the latter can

integrate different kinds of prior information.

A common major drawback to such techniques, which

is actually common to all ICA-based approaches, is the fact

that they can only handle overdetermined mixtures, which

entails using many EEG electrodes (at least as many as the

sources of artifacts plus one for the useful information). This

is clearly prohibitive for the general public applications that

we are interested in, where the EEG setup is to be maintained

as light as possible and ideally be limited to a single elec-

trode, while allowing the use of other types of lightweight

sensors, for example Electromyographic (EMG), Electrocar-

diographic (ECG), or inertial measurement sensors.

Therefore attempts at single-channel EEG artifact re-

movals have been made [10]. Our work falls in this category.

We propose a novel automatic artifact removal scheme,

inspired by the current state-of-the-art in underdetermined au-

dio source separation [20, 7, 16], exploiting nonnegative ma-

trix/tensor factorization (NMF) in a probabilistic Gaussian

framework.

While NMF has already been used for EEG-feature ex-

traction [13], its use for EEG artifact removal within a Gaus-

sian source separation framework is to our knowledge com-

pletely novel. Our method is further described in Section 2

before an experimental validation is proposed in Section 3

where our approach is compared to the classic ICA method

on real EEG recordings. While these experiments focus on ar-

tifacts related to eye movements and blinks (exploiting Elec-

trooculographic (EOG) recordings) being a strong source of

contamination, it is important to note that the advantage of

our method is its potential to handle many concurrent sources

of artifacts simultaneously even when a single EEG electrode

is used for recording, provided that some auxiliary signals de-

scribing the temporal activations of those sources of artifacts



can be captured, which is often easily realized.

It is worth mentioning that our approach is advanta-

geous compared to regression techniques used in numerous

works on EEG artifact rejection [8] which required the use of

“clean” recordings of sources of artifacts. In particular when

treating ocular artifacts, the EOG recordings used to esti-

mate the artifact signals tend to be contaminated by the EEG

signals which are then subtracted from the brain signals of

interest, hence causing a serious difficulty for such regression

techniques.

2. NMF-BASED ARTIFCAT REJECTION

We hereafter explain how nonnegative matrix factorisation is

used in order to perform EEG artifact rejection following a

probabilistic blind source separation paradigm. We first ex-

pose the theoretical foundations and the general model under-

lying the separation procedure adopted, then we describe how

the latter is specifically applied to our particular data config-

uration, that is single-channel EEG accompanied with auxil-

iary signals describing the sources of artifacts.

2.1. Probabilistic model and general separation proce-

dure

For the sake of generality, we suppose that there are I ob-

servable time-series x̃ (t, i), each x̃ (·, i) corresponding to

one of the EEG sensors. For a given sensor i, we as-

sume that each x̃ (·, i) is the sum of J underlying signals

ỹ (·, i, 1) , . . . , ỹ (·, i, J) which are called latent components

in this study. Hence, we simply have :

∀ (t, i) , x̃ (t, i) =

J
∑

j=1

ỹ (t, i, j) . (1)

Thus, model (1) can be understood as stating that the ob-

served I time-series can actually be decomposed as the sum

of J latent sets of I time-series. The objective of the process-

ing under study then becomes to extract those J sets. That

way, each x̃ (·, i) of the observed EEG data will be decom-

posed into its J constituent {ỹ (·, i, j)}j=1,...,J latent compo-

nents. In this paper, a distinction is made between stochas-

tic processes such as ỹ (·, i, j) or x̃ (·, i) and their realizations

ỹ (·, i, j) and x̃ (·, i) which are written in bold type.

In the following, we will make use of a Time-Frequency

(TF) representation of the signals considered. More specifi-

cally, x (·, ·, i) will denote the Short Term Fourier Transform

(STFT) of the mixture x̃ (·, i), so that x (f, n, i) ∈ C is its

spectrum at frequency bin f for frame index n. Similarly,

y (f, n, i, j) denotes the STFT of the ith channel of latent

component j at TF bin (f, n). All signals are supposed to

have the same number F of frequency indices and the same

number N of frames.

Following [16], all {ỹ (·, i, j)}i,j are here supposed to

be independent and Locally Stationary Gaussian Processes

(LSGP, see [16]). The main attractive feature of this model

is that computations can be readily performed in the STFT

representation. Indeed it can be be shown [1, 2, 16] that Min-

imum Mean Squared Error (MMSE) estimates of the latent

components are then given through WIENER filtering by :

ŷ (f, n, i, j) =
P (f, n, i, j)

∑J

j=1
P (f, n, i, j)

x (f, n, i) (2)

where P (f, n, i, j) > 0 is the Power Spectral Density

(PSD) of the ith channel of component j at TF bin (f, n).
This separation procedure is very simple to implement.

One just has to compute the STFTs of the observed EEG sig-

nals x̃ (·, i), and then compute (2) for all (f, n, i, j). Sepa-

rated time series are then simply recovered through an inverse

STFT procedure, which consists in inverse Fourier transforms

followed by overlap-add procedures.

The main issue with the proposed model is of course

the important number FNIJ of its parameters P (f, n, i, j).
Still, one of its most interesting features is the way prior

knowledge can be taken into account in order to strongly

reduce the number of its parameters. Indeed, several facts can

be considered for modeling P :

• Even if the I different channels of each latent compo-

nent are modeled as independent, their Power Spectral

Densities may be strongly related. In this study, we will

assume that :

P (f, n, i, j) = QijP (f, n, j) , (3)

with Qij ≥ 0. Equation (3) amounts to writing that all

channels of a given component j share the same PSD

P (f, n, j) up to a nonnegative scaling factor Qij .

• For one given latent component j, we may assume that

its PSD P (f, n, j) as it appears in (3) is further struc-

tured so that it simply consists of one given spectral

template Wj that is modulated by a time-varying acti-

vation gain Hj . This can be written :

P (f, n, j) =
[

WjH
⊤

j

]

f,n
, (4)

where Wj and Hj are F × 1 and N × 1 nonnegative

vectors.

As can be seen, these two simplifications lead to a

reduction of the number of parameters from FNIJ to

(F +N + I) J , which is quite remarkable. We are then left

with the problem of modeling the PSD of observed signals

x̃ (·, i) using a Nonnegative Tensor Factorization (NTF [3]),

which simplifies to Nonnegative Matrix Factorisation (NMF)

in the single-channel case. Hence, though we here focus on

the latter situation, the method that we present can be also

used for multi-sensor data.



2.2. NMF decomposition

A fact which is now acknowledged in the litterature [5, 16]

is that learning a NMF model such as (4) through maximum

likelihood estimation is equivalent to minimizing the Itakura-

Saito (IS) divergence1 between the power spectrogram of the

observations and the model :

{

Ŵ , Ĥ, Q̂
}

=

argmin
W,H,Q

∑

f,n,i

dIS



|x (f, n, i)|
2
‖

J
∑

j=1

WfjHnjQij



 , (5)

where Wj and Hj have been gathered as the J columns of ma-

trices W and H of respective dimensions F × J and N × J .

Very efficient iterative algorithms exist which permit to esti-

mate W , H and Q that minimize (5). The reader is referred to

studies such as [6, 17, 20] for the details of those algorithms.

The NMF problem may also be solved using other cost func-

tions such as the Euclidean distance (i.e. l2 norm) and the

Kullback-Leibler divergence commonly used in the NMF lit-

terature [5]. In our experiments (presented in Section 3) the

use of the Itakura-Saito cost has been assessed by comparison

to results obtained based on Euclidean cost functions.

The main issue with this approach lies in the fact that the

latent components obtained that way, even if they correctly

sum up to the observed mixtures, do not necessarily corre-

spond to the latent components we are looking for. To ad-

dress this issue, we propose an approach based on supervised

initialization of the model parameters.

2.3. Informed NMF initialization

One important feature of the current work is the use of auxil-

iary signals characterizing the sources of artifacts to aid their

rejection in single-channel EEG analysis. This is achieved

by initializing the learning process with results of the NMF

decomposition of such auxiliary signals.

In contrast, single-channel source separation is not pos-

sible with ICA which is constrained to be used in (over)-

determined settings. Still, ICA can equally benefit from the

initialization of components to be extracted with the avail-

able auxiliary signals, which is actually what we do when we

compare our method to ICA. However, the latter requires the

addition of a new EEG channel for each new source of arti-

fact so that the minimum number of EEG channels that need

to be used to handle L sources of artifacts must be L+1 (one

channel per artifact component plus one for EEG useful in-

formation). Using NMF source separation, this restriction is

removed and we are able to integrate multiple known artifact

sources in the learning process with a single EEG channel.

1The Itakura-Saito divergence between two nonnegative scalars a and b

is defined as dIS (a | b) = a

b
− log a

b
− 1.

We proceed as follows. As a first step, we perform a

NMF decomposition on each reference source providing

Kinit spectral components W init and activation gains Hinit.

Then we use these activations, Hinit, to initialize the NMF

decomposition of the EEG data with K components such that

K > Kinit. This strategy has proven more effective than

the alternative consisting in using W init instead, as it better

copes with the variability of the spectral patterns characteriz-

ing the artifacts (captured in W init) across different sensors.

The remaining K −Kinit components of the EEG NMF de-

composition are randomly initialized. Once this NMF model

is learned, the artifact and decontaminated EEG signals can

be easily reconstructed through WIENER filtering.

3. EXPERIMENTS AND RESULTS

We now present results on real EEG signals corrupted by ocu-

lar artifacts. We mainly aim at proving the efficiency of NMF

in removing ocular artifact in single channel EEG analysis

comparing to 2 channel-based ICA source separation.

3.1. Validation procedure

Constrained FastICA and NMF source separation methods

are here used with a given EOG reference channel to automat-

ically remove ocular artifacts. The EEG data are public2 and

were acquired at Martinos Center for Biomedical Imaging on

a single subject with a 60 EEG-electrode cap combined with

a 306-channel MEG Neuromag Vectorview system in a mag-

netically shielded room. Simultaneously, ocular movements

were recorded with a vertical EOG channel. The experiment

consists of audio and visual stimuli. The data was recorded at

a rate of 600 Hz. We worked on 2 particular EEG channels

located to the front of the cap being highly contaminated by

eye movements.

As described in Section 2.3, for both methods initializa-

tion is performed with the given artifact reference signal to

guide the source learning process. For FastICA, this merely

consists in initializing a component of the mixing matrix with

the EOG signal and the other components are generated ran-

domly. For NMF, the initialization is done as described in

2.3.

The validation procedure includes two steps : a training

step during which the hyperparameters of each source sep-

aration method are learned on one half of the dataset and a

test step during which the best hyperparameter is tested on

the other half of the dataset. Both centered EEG and EOG

data are split in two sets to perform the initialization. Five

models with 100 iterations each have been learned on both

EEG- and EOG-based NMF models and only those with the

smallest cost-function value have been selected.

While we necessarily estimated only 2 components for

ICA, we have been able to test a range of hyperparameters for

2http://martinos.org/mne/



NMF by varying the number of components assessed to the

artifact on the one hand (i.e. 2, 4, 6, 8), and to EEG sources

on the other hand (i.e. 4, 6, 8, 16).

To compare ICA and NMF results, we used two similar-

ity measures, the mutual information and the correlation, and

defined two criteria. The first criterion assesses the similar-

ity between the estimated artifact and EOG signals while the

second assesses the EEG denoising quality by computing the

ratio of the similarity measure between the noise-suppressed

and EOG signal to the similarity measure between the orig-

inal and EOG signals. Below, we present the results of this

comparison.

3.2. Results

We only show the NMF results obtained with the Itakura-

Saito cost function (that corresponds to maximum likelihood

inference in our Gaussian framework). Our tests with NMF

using the l2 norm have completely failed. This can be ex-

plained by a nice feature of the Itakura-Saito cost, that is its

scale invariance, which makes it more robust to the varying

dynamics of EEG and EOG signals.

Fig. 1. FastICA signal decomposition on two frontal EEG channels.

In order of appearance, the blue signal is the original signal, the red

signal is the denoised EEG signal and the last signals include the

EOG signal in black dotted line and the estimated artifact signal in

red solid line.

Both methods have succeeded in extracting the eye move-

ment artifact signal and thus in denoising the EEG signal.

The bar graph and the signals visual inspection prove that the

NMF approach with one channel is as efficient as the FastICA

method with two channels.

Fig. 2. NMF signal decomposition on a single EEG channel with

eight EEG components and four artifact components. In order of

appearance, the blue signal is the original signal, the red signal is the

denoised signal and the last signals include the EOG signal in black

dotted line and the estimated artifact signal in red solid line.

Fig. 3. Mutual information-based and correlation-based denoising

measures for each method, ICA in red bars and NMF in green bars.

Denoising measures are averaged over channels for ICA.

4. CONCLUSION

In this study we showed how NMF can address the problem

of EEG artifact removal even in underdetermined settings,

namely when the number of EEG channels is less than the

number of brain sources and noisy signals (heart beat, eye

blinks, etc.). Our experimental results on real data are promis-

ing for modern applications of EEG with lightweight devices

more and more widely available on the market.

Future work will consider many concurrent sources of ar-

tifacts including less-studied ones occurring when the sub-

jects are in motion.
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