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ABSTRACT 

Multi-label classification (MLC) is the supervised learning 
problem where an instance may be associated with multiple 
labels. Modeling dependencies between labels allows MLC 
methods to improve their performance at the expense of an 
increased computational cost. In this paper we focus on the 
classifier chains (CC) approach for modeling dependencies. 
On the one hand, the original CC algorithm makes a greedy 
approximation, and is fast but tends to propagate errors down 
the chain. On the other hand, a recent Bayes-optimal method 
improves the performance, but is computationally intractable 
in practice. Here we present a novel double-Monte Carlo 
scheme (M2CC), both for finding a good chain sequence and 
performing efficient inference. The M2CC algorithm remains 
tractable for high-dimensional data sets and obtains the best 
overall accuracy, as shown on several real data sets with input 
dimension as high as 1449 and up to 103 labels. 

Index Terms— multi-label classification; Monte Carlo 
methods; classifier chains 

1. INTRODUCTION 

Multi-label classification (MLC) is the supervised learning 
problem where an instance may be associated with multiple 
labels, rather than with a single label as in traditional binary 
or multi-class single-label classification (SLC) problems. The 
MLC learning context is receiving increased attention in the 
literature, since it arises naturally in a wide variety of do­
mains: text, audio, still images and video, bioinformatics, etc. 
[1, 2]. The main challenge in this area is modeling label de­
pendencies without incurring in an intractable complexity. 

A basic approach to MLC is provided by the so-called 
binary relevance (BR) method, which decomposes the MLC 
problem into a set of SLC problems (one per label) and uses a 
separate classifier for each label. In this way, the multi-label 
problem is turned into a series of standard binary classifica­
tion problems that can be solved with any off-the-shelf binary 
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classifier (e.g., a logistic regressor or a support vector ma­
chine). Unfortunately, although BR has a low computational 
cost, it cannot provide high performance, because it does not 
model dependencies between labels [2, 3,4, 5, 6]. 

In order to model dependencies explicitly, several alterna­
tive schemes have been proposed, such as the so-called label 
powerset (LP) method [7]. LP considers each potential com­
bination of labels in the MLC problem as a single label. In 
this way, the multi-label problem is turned into a traditional 
multi-class problem that can be solved using standard meth­
ods. Unfortunately, given the huge number of class values 
produced by this transformation, this method is usually un­
feasible for practical application, and suffers from issues like 
overfitting. This was recognised by [3, 8], which provide ap­
proximations to the LP scheme that reduce these problems, 
although such methods have been superseded in recent years. 

A more recent idea is using classifier chains (CC), which 
improves the performance of BR and LP by constructing a 
sequence of classifiers that make use of previous outputs of 
the chain. The original CC method, introduced in [4] and ex­
tended in [5,9], makes a greedy approximation, and is fast but 
tends to propagate errors down the chain. Nevertheless, a very 
recent extensive experimental comparison reaffirmed that CC 
is among the highest-performing methods for MLC, and rec­
ommended it as a benchmark algorithm [10]. A CC-based 
Bayes-optimal method, probabilistic classifier chains (PCC), 
has also been recently proposed [5]. However, although it im­
proves the performance of CC, its computational cost is too 
large for most real-world applications. 

In this paper we introduce a novel method that attains 
the performance of PCC, but remains tractable for high-
dimensional data sets. Our approach (M2CC) is based on 
a double Monte Carlo optimization technique and, unlike 
all other chain-based methods in the literature, it explicitly 
searches the space of possible chain-sequences during the 
training stage. Hence, predictive performance can be traded 
off for scalability depending on the application. 

The paper is organized as follows. In Section 2 we review 
multi-label classification and the important developments 
leading up to this paper. In Section 3 we detail our proposed 
novel methods. In Section 4 we carry out empirical evalua­
tions. Finally, in Section 5 we draw some conclusions and 
mention possible future work. 



2. MULTI-LABEL CLASSIFICATION (MLC) 2.2. Probabilistic Classifier Chains (PCC) 

Let us assume that we have a set of training data composed 
of N labelled examples, V = { ( x ^ j W ) } ^ , where x « = 
[x\\ ... ,x^']T is the i-th D -dimensional instance (input), 
with xf eXdfoxl <d<D, and y « = [yf\ . . . , yfY is 
the i-th example's L x l label relevance vector (output), with 
Vj G {0,1} being its j-th label assignment (1 iff the label is 

relevant to xW, 0 otherwise). 
In MLC we seek to learn a function, y = h(x), that 

assigns a vector of labels, y G {0,1}L , to each instance, 
x G X\ x • • • x Xd. Let us assume that the true distribu­
tion of the data is / (y | x). From a Bayesian point of view, the 
optimal label assignment (i.e., the one with the largest prob­
ability of being the true one) for a given test instance, x*, is 
provided by the maximum a posteriori (MAP) label estimate: 

YMAP = hMAp(x*) = argmax/(y|x*). (1) 
y 

Unfortunately, the true distribution, / (y |x) , is usually un­
known, and the classifier has to work with an approximation, 
p(y|x), constructed from the training data. Hence, the (pos­
sibly sub-optimal) label prediction is finally given by 

y* = h(x*) = argmaxp(y|x*). (2) 
y 

2.1. Classifier Chains (CC) 

Classifier chains (CC) is based on modeling the correlation 
among labels using the chain rule of probability. Given a data 
instance, x, and a vector of label indexes, s = [ s i , . . . , sL]T, 
obtained as a permutation of { 1 , . . . , L}, p(y|x, s) may be 
expressed as1 

L 

P(y|x*,s) =p(y1\yL*)Y[p(yj\yL*,y1,...,yj-1), (3) 

where y = [y i ; . . . , yL]T is the permuted label vector, jjj = 
ySj is the j-th label in the permutation, and the probabilities in 
(3) are learnt from the labelled data during the training stage. 

During the test stage, CC follows a single path greedily 
down the chain of L binary classifiers, with the j-th classifier, 
hj, predicting the j-th label's relevance, y*, using the test 
instance, x*, and all previous predictions {y{,..., y|_i), as 

y* = /ij(x*|s) = argmaxp(%|x*,^ , . . . ,y*_ 1 ) . (4) 

In carrying out classification down a chain in this way, CC 
models label dependencies and, as a result, usually performs 
much better than BR, while being similar in memory and time 
requirements in practice. However, due to its greedy approach 
it is susceptible to errors in the initial links of the chain [5]. 

1 Theoretically, Eq. (3) does not depend on the label order. However, since 
all the probabilities in (3) are estimated from the training data, the label order 
can have a large effect in practice, as recognized by [5]. 

Probabilistic classifier chains (PCC) was introduced in [5]. 
In the training phase, PCC is identical to CC. However, dur­
ing the test stage PCC provides Bayes-optimal inference by 
exploring all the 2L possible paths of the chain. Hence, for a 
given test instance, x*, PCC provides the optimum label esti­
mate, obtained maximizing the label vector, y, rather than the 
individual labels, yj: 

y* = h(x*|s) = argmaxp(y|x*,s), (5) 
y 

where p(y|x*, s) is given by (3). In [5] an overall improve­
ment of PCC over CC is reported, but at the price of high com­
putational complexity: it is intractable for more than about 10 
labels (= 210 paths), which represents the majority of prob­
lems in the multi-label domain. 

3. EFFICIENT DOUBLE MONTE CARLO 
TECHNIQUE FOR CLASSIFIER CHAINS 

In chain-based MLC problems, for any given test instance, 
x*, and label order, s, we wish to find the best label-relevance 
vector, y* = [y | , . . . , y*L], out of the 2L possible label vectors 
or paths. However, the best inference on a poor model will not 
be as good as the best inference on a good model. Therefore, 
at training time we also wish to find the best chain order or 
sequence, s = [ s i , . . . , sL], out of the L\ possible chains. 

Unfortunately, the optimal solution of these two problems 
is not feasible for large values of L. Hence, in this section 
we introduce an efficient double Monte Carlo strategy for 
quasi-optimal inference in Classifier Chains. We present both 
a tractable label prediction scheme at test time (MCC) and 
a method that performs an additional search for the optimal 
chain sequence at build time (M2CC); an issue which, to the 
best of our knowledge, has not yet been successfully tackled, 
except by means of avoiding it using a network, such as the 
conditional dependency network (CDN) of [6]. 

3.1. Training step: finding the best chain 

In order to obtain the best chain (i.e., the optimal label order) 
during the training step we introduce a payoff function, 

N 

J(s) = ^ p ( y ( i ) | x « , s ) , (6) 
i=i 

and the optimal sequence, s, is the one that maximizes (6) 
over the set of L\ possible sequences, i.e., 

N 

s = argmax J(s) = argmax Vjp (y |x^%s). (7) 

The exact solution of (7) is intractable even for medium 
values of L. Therefore, we propose using the Monte Carlo 



Algorithm 1 Finding a suitable s Algorithm 2 Finding y* for a given test instance x*. 
Input: 

• V = {(xW,yW)}f=1: training data 
• 7r(s|s t-i): proposal function 
• T": number of iterations 

Algorithm: 
1. Start with some random sequence, s0, and build an ini­

tial model, _p(y|x, s0). 
2. Fort = 1,. . . ,T': 

(a) Draw s' ~ 7r(s|s t-i) and build model p(y|x,s ' ) . 
(b) i f J(S') > J(s t_!) 

• s t <— s' accept. 
(c) e l s e 

• s t <— s t - i reject. 
Output: 

• s = sT/: estimated label sequence. 

approach summarized in Algorithm 1 to perform an efficient 
exploration of the label-sequence space. This algorithm starts 
with a randomly chosen label sequence, s0, which is then 
modified trying to find local maximum of the payoff func­
tion at least. More specifically, given a sequence s t_i the 
proposal function 7r(st|s t-i) consists of choosing uniformly 
two positions of the label sequence (1 < £,m < L) and 
swapping the labels corresponding to those positions, so that 
st(^) = s t - i (m)ands t (m) = s t _ i ( ^ - 1). 

3.2. Inference (test) step: finding the best path y* 

In the test step, for a given test instance, x*, for which the 
true label association is unknown, and a label order (either 
estimated for M2CC or randomly chosen for MCC), we wish to 
find the optimal label vector that maximizes (5). In general, 
this problem can be solved analytically for low values of L 
by exploring all the 2L possible paths, as in the PCC method 
[5]. However, when L grows this method quickly becomes 
computationally intractable. Therefore, we propose here us­
ing the random search Monte Carlo approach shown in Al­
gorithm 2 to approximate (5). This algorithm starts from the 
greedy inference offered by standard CC, draws samples y W, 
i = 1,..., T according to the model p(y t |x*, s), providing a 
predicted label sequence 

y* =argmaxp(y t*|x*,s), (8) 

where y*t (1 < t < T) are the samples accepted by the algo­
rithm. 

4. EXPERIMENTS 

We perform experiments on a collection of real world data 
sets familiar in the multi-label literature [3,4, 5], whose char­
acteristics are shown in Table 1. We compare our two novel 
methods (MCC and M2CC) to baseline BR [7], the original 

Input: 
• x*: test instance. 
• s: label order (estimated or chosen randomly). 
• p(y|x, s): probabilistic model (from training stage). 

Algorithm: 
1. Obtain an initial path, y0, using CC. 
2. F o r t = 1,. . . ,T: 

(a) D r a w y ' - p ( y | x * , s ) 
(b) i f p(y'|x*,s) >p(y t |x* ,s) 

• Yt <- y ' accept. 
(c) e l s e 

• Yt<r- y t - i reject. 
Output: 

• y* = yr- predicted label assignment. 

Table 1. Multi-label datasets characteristics: n indicates nu­
meric variables; 6 indicates binary variables, LC is label car­
dinality: average number of relevant labels per example. 

N L D LC Type 
Music 593 6 12n 1.87 audio 
Scene 2407 6 294n 1.07 image 
Yeast 2417 14 103n 4.24 biology 

Genbase 661 27 11856 1.25 biology 
Medical 978 45 14496 1.25 text 

Enron 1702 53 10016 3.38 text 
Reuters 6000 103 500n 1.46 text 

classifier chains method CC [4], the Bayes-optimal rendi­
tion PCC [5]; and also the conditional dependency networks 
method CDN of [6] under I = 1000 total iterations. For 
our methods, we use T = 100 (inference y-step) and just 
T" = 10 for M2CC (training s-step).2 As a base classifier 
we use support vector machines fitted with logistic models in 
order to have a probabilistic output [ll] .3 

We carry out 5-fold cross validation (CV). Results for pre­
dictive performance are displayed in Table 2. As a perfor­
mance measure we have used the exact match score (inversely 
equivalent to subset zero-one loss), 

1 N 

EXACT MATCH = — ^ I ( y ( i ) = y * W ) , 

i=l 

where I(-) is an indicator function (returning 1 iff the logical 
condition is fulfilled and zero otherwise), as this is the loss 
function minimized by the MAP estimator [5].Results under 
other measures of evaluation can be seen in [13]. Note that, 
since PCC is only tractable on datasets where L < 10, we can 

2Better results can be obtained by increasing T" at the cost of more run­
ning time; however even T = 10' proves enough to improve the predictive 
performance under our method. 

3A11 methods are implemented and will be made available within the 
MEKA framework ( h t t p : / /meka . s o u r c e f o r g e . ne t ) . 



Table 2. Average exact match over 5-fold CV. 
Dataset BR CC PCC CDN MCC M2CC 
Music 0.299 0.287 0.346 0.297 0.346 0.361 
Scene 0.538 0.545 0.636 0.531 0.636 0.657 
Yeast 0.140 0.151 DNF 0.069 0.209 0.206 
Genbase 0.941 0.964 DNF 0.945 0.964 0.967 
Medical 0.585 0.622 DNF 0.602 0.629 0.627 
Enron 0.065 0.099 DNF 0.073 0.101 0.103 
Reuters 0.287 0.346 DNF 0.271 0.366 0.364 
avg. rank 4.57 3.43 4.71 1.57 1.43 

Table 3. Average running time (seconds) over 5-fold CV. 
Dataset BR CC PCC CDN MCC M2CC 
Music 0 0 0 5 1 4 
Scene 12 10 15 92 25 170 
Yeast 10 10 DNF 88 32 222 
Genbase 10 7 DNF 572 201 382 
Medical 9 10 DNF 1546 338 506 
Enron 102 91 DNF 3091 706 1399 
Reuters 106 119 DNF 14734 1831 20593 

Table 4. Average exact match over 5-fold CV. 
Dataset ECC EM2CC 
Music 0.314(2) 0.329 (1) 
Scene 0.608 (2) 0.633 (1) 
Yeast 0.186(2) 0.193(1) 
Genbase 0.945 (1) 0.945 (1) 
Medical 0.643 (2) 0.649 (1) 
Enron 0.112(2) 0.116(1) 
Reuters 0.364 (1) 0.360 (2) 
avg. rank 1.71 1.14 

only provide results for the first two data sets, with DNF (Did 
Not Finish) in Table 2 indicating this fact. Results for running 
time performance are also given in Table 3. Furthermore, the 
original CC paper [4] also presented CC in Bagging ensembles 
(ECC) to improve predictive performance. We also bag M2CC 
to create the ensemble method EM2CC. We use 10 models 
for each ensemble, each one starting with a different random 
initiation of the chain sequence (s0). Results for predictive 
performance of EM2CC vs. M2CC are given in Table 4. 

As claimed in the literature, CC improves over BR in all 
cases. PCC in turn improves on CC in the two cases where it is 
tractable. The MCC methods perform the best overall. Both of 
them outperform CC on every occasion - with the exception 
of ties on Genbase. We note that MCC provides identical re­
sults to PCC on both datasets that it finishes on. M2CC obtains 
even higher performance than PCC on these datasets, under­
lining the importance of the chain sequence in constructing 
classifier chains, and the fact that we have been able to lever­
age this to create a better model. As expected, M2 CC also out­

performs MCC in most cases, and overall, precisely because it 
optimises the chain-sequence space, improving the sequence 
of labels at training time. 

Clearly MCC and M2CC take much longer than the stan­
dard greedy CC method, but they are still tractable on all the 
data sets we looked at (unlike PCC) and the improvement in 
predictive performance is well worth the trade off. Further­
more, we note that our methods are generally faster than the 
conditional dependency network CDN (with the exception of 
M2CC on some datasets). 

Finally, we note that, although ECC is able to offer an 
improvement over CC (particularly on Yeast, Medical and 
Enron), EM2CC still maintains a clear advantage over ECC on 
all data sets. We also notice that, while a Bagging ensemble 
can raise the accuracy of CC, even this additional accuracy 
does not always compete well with a single MCC or M2CC 
model (if we compare between Tables 2 and 4). 

5. CONCLUSIONS AND FUTURE WORK 

We have introduced two novel efficient Monte Carlo (MC) 
algorithms (MCC and M2CC) for multi-label learning using 
classifier chains. The proposed approaches use MC tech­
niques to efficiently search the label-path space at inference 
time and also the chain-sequence space at training time in 
the case of M2CC. We show through an empirical evaluation 
that using these methods results in better predictive perfor­
mance than related methods while remaining computationally 
tractable. In future work, we intend to look at more advanced 
random search algorithms and dependency structures other 
than chain models, as well different payoff functions. We also 
plan to extend this work to multi-valued target attributes and 
hierarchical MLC problems. 

6. RELATION TO PRIOR WORK 

This work builds on the classifier chains (CC) framework for 
multi-label classification (MLC) [4] and its recent probabilis­
tic extension, probabilistic classifier chains (PCC) [5]. More 
specifically, since the Bayes-optimal approach proposed by 
PCC is unfeasible in practice due to its computational cost, we 
propose a tractable inference scheme, based on Monte Carlo 
(MC) methods, which attains a similar performance to PCC. 
Furthermore, we also introduce an MC approach for the opti­
mization of the chain of classifiers during the training stage, 
an issue that has not been tackled before as far as we know, 
except by avoiding it altogether (e.g., by using conditional 
dependency networks [6]). Finally, ensemble versions of the 
two MC approaches proposed have been developed following 
the line of ECC and EPCC [4, 5]. 
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