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ABSTRACT applications which relate singular values of certain ncasi

We design optimaR x N (2 < N) matrices, with unit to estimation performance.

columns, so that the maximum condition number of all the
submatrices comprising 3 columns is minimized. The probl.1. Signal Estimation

Ie_m has tWO. applications. When estimating a Z-Qimension%ith r € RM representing the signal, consider a sensing ma-
signal by using only three aV observations at a given time, trix A € RMXN. Each of theN sensors generates a real

this minimizes the worst-case achievable estimation ettor i ted b . duct bet d
also captures the problem of optimum sensor placement fcg)'bserva lon represented by an Inner product betwean

monitoring a source located in a plane, when only a minimunft c;lu_m?{ OJ)A'th Let é{St gf {1,2..., Jt\(]} ’t with c?rdm?hty .
number of required sensors are active at any given time. Fc%}K | = K, be the subset o sensors that are acltive at a given
ime. The measurement matrix of the active sensors is then

arbitrary N > 3, we derive the optimal matrices which min- MxK - _
imize the maximum condition number of all the submatrices’ 5 € RT7 " consisting of ther¢ columng (_)fA indexed by
K S. With noisew, the measuremepte R* is

of three columns. Surprisingly, a uniform distribution bét

columns isnotthe optimal design for odd/ > 7. y = AT gr +w, (1.1)

Index Terms— matrix design, sensor network, source lo-
calization and monitoring, condition number, singulaueal Suppose the singular values 4f; s ares;. Then as long
asAggs has full row rank, the estimation error satisfies

1. INTRODUCTION

1 = all2 = [[(Axs Afcs) ™ Ars(w)ll2 <
We consider the problem of designing sensing schemes to op- Tmin
timize the worst-case estimation performance when only &g gptimize the worst-case performance, we must deditm
subset of sensors are operational in sensor networks. Copraximize the smallest singular value among all @@ pos-
sider a set ofV sensors which are used to estimate/dR  sjple submatricesixg. To make the problem meaningful,
dimensional signal, wher&/ > M. In our problem, only e assume that each column 4fhas unit/, norm. When

K out of theselV' sensors operate at any instant of time. Fory; — 9, this is equivalent to minimizing the maximum condi-
example, to maximize the lifetime of a sensor network [1, 3¢jon number among allY)) submatrices! cs.

9,[11,[12[ 14], at any single time instant, oifysensors are
turned on to monitor th&/-dimensional signal. If we assume
that each time thes& sensors are uniformly selected from

the () possible subsets, on average the lifetime of the sensQ{ second motivating application for this paper is optimum
network is extended by a factor 8f/ . As another example, gensor placement for source monitoringdif, [5]-[8]. Mon-

in hostile environments such as battlefields, it is very COMitoring is related to the notion of localization, where seve
mon that only a limited number of sensors, ddyut of N, sensors collaborate to locate a source, using some refative
are able to survive and operate as designed. In these scenggion information. The latter could be distance, beartinge
ios, while we only have a limited sensing resources at asinglof arrival, time difference of arrival or received signakstgth

time instant, we wish to achieve the best estimation from lim rss). Monitoring assumes that a hazardous source has al-
ited observations. Itis thus useful to maximize the WOBREC eady been located at somes R2, and a group of sensors

performance of the sensing system, no matter what set of Seg;, < R2 monitor it by continuously estimating its position
sors are used or survive. We thus study the design of sensiggym a safe distance. Thus [5]4[8] place sensors, i.e. ahoos
schemes that (_)ptimize Wor.st-case pe.rformance. Beforeafo&i, so that the minimum eigenvalue of the Fisher Informa-
mal mathematical formulation, we review two sensor networkjon Matrix (FIM) underlying the estimation problem is max-
Work partly supported by US NSF grants CCF-0830747, CN303 imiz_ed. Thi? ensures that Und_er Cpntinuous mo_nitoring and
and EPS-1101284, and a grant from the Roy J. Carver Charitabbt. Maximum Likelihood (ML) estimation, asymptotically, the

1.2. Source Monitoring in the Plane



http://arxiv.org/abs/1212.3359v1

mean-square error in estimatiagis minimized, [4[ 15, 16]. {1,2,..., N} be a subset with cardinalityx' S| = K. Now,

As z is at least roughly known, so also is the FIM. Ags € RM*K js the submatrixdxs = [a,, Giyy e, Qi
Consider[[5[_10], where no sensor can be closer than with columns indiceg;, 1 < j < K, from the set'S. Then

from the source. Each measures the RSS of the signal emaur optimal design problem for the parameter(9dt NV, K)

nating from the source under log-normal shadowing, i.eh wit is:

known positive real scalard and 3, the RSSs; at thei-th

sensor obeys, for mutually independent~ A (0, o2): max { min Umin(AKS)} _
AERM X Nwith unit-normed columns{ K SC{1,2,...,N}
Ins; =InA — Bln||z; — z|| + w;, (1.2) o _ o N
For M = 2, this is equivalent to minimizing the condition
The underlying FIM with/V-sensors is[[5] number:
g (21 — 2)(x: — 2) i max  Jmes(drs) |
G = 02(111 10)2 Z ||x _ Z||4 ) (1‘3) AGRMXNWithrBr%iIt%normed columns{ KSC{1,2,...,N} Umin(AKS)
iEN '

Note the similarity between this problem and the prob-
of designing compressive sensing matrices [2] satigfyi
the restricted isometry property (RIP), which also recaithe
condition numbers for the submatrices be small. As opposed
to the design of compressive sensing matrices satisfyily Rl
[2], in our problem, the submatricels, s are wide rather than
tall. The motivating applications are also different froone
pressive sensing.

As noted earlier, motivated in part by 2-dimensional
Z Py (1.4) source monitoring. with the_minimum number of sensors i.e.

v K = 3, we restrict attention to the case & = 3 and

The optimal sensor placement problem then becomes: Giverlem
ze€R? andD > 0, findz; € R?,i € {1,--- , N} so that the
minimum eigenvalue of7 is maximized, subject tof|z; —

z|| > D. Because of the denominator [n (l1.3), the minimum
eigenvalue of7 is maximized only if for alk € {1,---, N},

lz; — z|| = D. Without loss of generality one can assume
D = 1andz = 0. Thus effectively one must maximize the
minimum eigenvalue of

i€EN . .
M = 2, where closed form expressions are possible and sur-
subject to||z;|| = 1. This is tantamount to minimizing the prising conclusions, that may illuminate the problem solut
condition number of" as its trace is constrained to bé for higher values o and M/, are obtained.

Now suppose to prolong battery life, only a subset of sen-
sors is activated at a given time, [12] 14]. The logical peatl 3. DERIVATION OF THE CONDITION NUMBER

to consider is then for somE, K S as defined above, and FORM = 2
P . T g ~4 . -
Frs = Z Lily 5 (1.5)  The condition number aflxs = AxsAL is given by
i€EKS
to minimize the largest condition number Bf; 5, among all k(Axs) = maanH:ﬂnT{leﬁ) 3.1)
KS C{1,---,N}. With Agxs having columng;, i € K S, miny =1 (nT Axsn)

we haveFkxgs = AKSA}QS, and a similar setting of Section _

[T.1. We observe, that theinimum needed for source mon- Since the columns oft are unit-normed, we can represent
itoring is three, motivating the rest of this paper whéfe= 3 A = [a1, az, ..., an] with

is consideredIn particular RSS provides a distance estimate. . .

Distances from three non-collinear sources are necessary t a; = ( cosf; sinb; ) (3.2)

localize, [17]. This scenario also applies to the case where ) . .
only three sensors survive hostilities. for1 < i < N, wheref; € [0,m) (we do notice shifting;

The rest of this paper is organized as follows. Sedfion Py = will not change the condition number of any sumeatrix).
gives a precise mathematical formulation. Sedfion 3 pewid Since|[n||2 = 1 we can choose = (cosa sina )
a formula for the minimum condition number of submatricesThus

whenM = 2. Sectior[ # characterizes optimal solutions all %
fc_)r M = 2, K = 3 and arbitraryN > 3. Sectiorl b presents 0T Axsn = K + lZcos(Q(a —6,,)) = J(a).
simulations. 2 24
2. PROBLEM FORMULATION Letus define
K
Let M < N be positive integers and = [a1, a2, ...,an], J(a) = K + EZCOS(Q(Q 0;,))- (3.3)
wherea; € RM obey||a;||; = 1for1 <i < N. LetKS C 2 2



Then the minimum (maximum) eigenvaluedf; s is achieved
whenJ'(a) = 0 andJ” (a) > (<)0. With

Z sin(26;; Z cos 26‘” 0,

at a minimum or maximumy satisfies

cos(2a) ZCOS 20;;
and
K
sin(2«) Zbln
Jj=1
Thus
K 1& 1
J(a) = ?4-5 Z cos(2a) cos(29ij)+§ Z sin(2c) sin(26;, ).

J=1 Jj=1

(3.4)
Combining the optimizingx and [3.4), we have
J(a)=—+
1 Z 1 Zl 1(cos(260;,) cos(20;;) + sin(26;, ) sin(26;;))
2

VO, sin(2(60,)))% + (SF, cos(20,,))2

On simplification, the maximum and minimum eigenval-
ues ofAx g are given by

K K
K 1 |K
J(Oémam) = ? + 5 ? + Z Z COS 2(911 01])7
J=ll=j+1
(3.5
and
K K
K 1 |K
J(Qmin) 3 "3 ?—l-z Z cos2(6;, — 0;,)
Jj=1ll=j5+1
(3.6)

respectively. Thus minimizing the condition numberA# s
for a given set of indicegiy, iz, ..,ix } is the same as (the
equation inside the square root is always nonnegative)

K K
1 Z Z cos2(0;, — 0;,).

min
==+

) (3.7)

i

With KS C {1,2,..., N}, the optimal sensing matrix de-
sign problem forM = 2 can be reformulated as,

min Z Z cos 2(6 i —
veesON K S= {n,zz, K}

j=11l=75+1

0:;)-

In the following sections, we will derive the optimal de-
sign for K = 3, which has important applications in location
monitoring in sensor networks.

4. OPTIMAL PLACEMENT

We now consider solutions fav/ = 2, K = 3 and different
values ofN.

4.1. K = 3, N is an even number

For even-numberelY, the optimal design is given as below.

Theorem 4.1 If K = 3 and N is an even number, then the
set of angles (ay; = W mod 7, 1 < i < N, or (b)

0; = w 1 <4 < N, minimizes the maximum condition
number among all sub-matrices witti columns.

Observe, (a) actually aligns pairs of angles together (sge F
[@) and is not useful for source monitoring where at leasthre
distinct sensor locations are necessdry] [17]. On the other
hand (b) leads to distinct locations by separating adjaszmt
sors2w /N radians apart.

42. K=3, N=3o0or5

. These stand apart from other oddvalues:

Theorem4.2Let K = 3 and N = 3 or 5. Then the set of
angles); = = 1N1) 1 < ¢ < N, minimizes the maximum con-
dition number among all sub-matrices withh = 3 columns.

Fig. 1. lllustration of angle arrangemeniss for N = 6, 7
and5 respectively, using th&rows of figures from top to bot-
tom. The left figures represent the anglg) for the columns

of sensing matrices. Right figures are doubling those angles
(26;) as in the objective function if_(3.7).



4.3. K =3, N > 7is an Odd Number

0

— Uniform angular separation in [0,T)
[ |—Proposed solution

One might think that the uniform distributed design is ogatim
for N > 7. However, this is not true from the following
theorem. Instead, the optimal design is to eliminate onésang
from the optimal design fofN + 1).
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Theorem4.31f K = 3and N > 7 is an odd number, then
0; = %ﬁjﬂ) mod m, 1 < ¢ < N, minimizes the maxi-
mum condition number among all sub-matrices with= 3

columns.
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5. SIMULATION RESULTS Fig. 3: Worst case estimation error versus the number of

) ) columns in the sensing matrix.
We now present simulation results.

5.1. Worst Case Condition Number vsV

—Proposed solution
— Uniform angular separation in [0,T)

/

7I [—=— Uniform angular separation in 9, // 3

Uniform angular separation in [Q1# >
—e— Proposed optimal design /

7
| 7 s

3| 4 Signal to Noise Ratio

10log10(Mean Square Error)
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Fig. 4. Mean square error(dB) in the source location estimate
% T when the worst performing subset of sensors are active ¥ersu
the Signal to Noise Ratio(dB).
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Fig. 2: Worst case condition number versiis

5.3. Monitoring Error vs SNR
We compare the maximum condition number among all o o
the possibl€ x 3 submatrices in three different cases showr19- [4 compares the ML estimation of a source at the origin

in Fig[2. The cases are, (i) when successive sensors aggipladVith N = 10, from RSS under log-normal shadowing in the
r(N—=1) case where the sensors are placed as in (i) against optimal

in a semicircler/N apart, namely; =0, ., ..., =, (i) i e X
o 2r(N—1) placement. The latter’s superiority is evident.

they are placedr /N apart, namely; = 0, 57, ..., ——F—,

and (iii) they are placed in a manner specified by our theo-

rems. That the performance of (ii) matches (iii) for ev&n 6. CONCLUSION AND FUTURE WORK

conforms with earlier observations.

We propose the problem designing optinddl x N (M <

N) sensing matrices which minimize the maximum condition
number of all the submatrices &f columns. Such matrices
Consider the setting of Sectibn1l.1. We compare in[Hig. 3 theninimize the worst-case estimation errors when dklgen-
mean square error (MSE) for worst-case submatrices yieldesbrs out ofV sensors are available for sensing at a given time.
by (i) above with that yielded by the postulated optimum forwhenM = 2 and K = 3, for an arbitraryN > 3, we derive
sensors ranging in number from 3 to 15. The signal (I.J)  the optimal matrices which minimize the maximum condition
is [9,9]7. The noise in each measurement\s ~ (0,1).  number of all the submatrices &f columns. It is interesting
For each valueV, the estimation errojiz — x||? for worst-  that minimizing the maximum coherence between columns
case submatrices was averaged over 2000 instances. Agaioes not always guarantee minimizing the maximum condi-
the predicted optimal placement is superior. tion number.

5.2. Worst Mean Square Signal Estimation Error vsN
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