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ABSTRACT 

We apply diffusion strategies to propose a cooperative reinforcement 
learning algorithm, in which agents in a network communicate with 
their neighbors to improve predictions about their environment. The 
algorithm is suitable to learn off-policy even in large state spaces. 
We provide a mean-square-error performance analysis under con­
stant step-sizes. The gain of cooperation in the form of more sta­
bility and less bias and variance in the prediction error, is illustrated 
in the context of a classical model. We show that the improvement 
in performance is especially significant when the behavior policy of 
the agents is different from the target policy under evaluation. 

Index Terms— adaptive networks, dynamic programming, dif­
fusion strategies, gradient temporal difference, mean-square-error, 
reinforcement learning. 

1. INTRODUCTION 

Consider the problem in which a network of autonomous agents col­
laborate to predict the response of their environment to their actions. 
The network forms a connected graph (i.e., there is at least one path 
between every pair of nodes) and communication is only allowed 
within each neighborhood. The agents operate in an environment 
that is modeled as a Markov Decision Process (MDP) [1], The MDP 
is characterized by a finite and countable set of states, 5, a finite 
and countable set of actions, A, and the kernel of transition prob­
abilities from one state to another given an action, V. Although 
the agents can communicate with their neighbors, each agent is as­
sumed to operate a similar but independent MDP. Therefore, the 
state transition probability at each agent k = 1 . . . N is only de­
termined by its own action and the previous state of its environment, 
i.e., Sk(i + 1) ~ V(-\sk(i),ak(i)), where Sk(i) £ S denotes the 
state of the environment seen by agent k at time i, and a>k (i) e A 
stands for its action. 

We assume agents follow some stationary policy. A policy -K is 
a mapping -K : S —y O (A), where Q(A) is the set of all probability 
distributions over A. We denote by 7r(a, s) = P(a|s) the probabil­
ity of an agent choosing action a when it follows policy -K and the 
environment is at state s. 

At every time step, there is a reward function, r : S x A x 
5 —y -R, which agents receive and which they want to predict. Let 
r(i) = r(s(i — l),a(i — 1), s(¿)) denote the reward received by a 

generic agent, for the transition from s(i — 1) to s(i), after taking 
action a(i—l). In order to make predictions of the reward signal, we 
use state general-value-functions (GVF), v : S —y -R, which provide 
the expected cumulative sum of the reward until the agent reaches a 
state that marks the end of the prediction period, O. Introduce the 
termination-indicator function 7 : 5 —y {0,1}, which sets the time-
interval of the prediction period so that ~f(s(i)) = 0 indicates that 
the agent has reached O at time i. We denote d> the random stopping 
time at which the agent reaches the termination state O. Then, the 
GVF for an arbitrary initial state £ e S is defined by: 

«(£) = E £ T ( 
¿=0 

i{i))-r(s{i),a{i),s{i+l))\s{0) = £, a{i) 

(1) 
where we are using the boldface notation to denote random variables, 
and where the notation a(i) ~ -K means that we are interested in 
the reward received by following the policy ir, which we name the 
target policy. The policy -K may be different from the actual behavior 
policy followed by the agents, and denoted by -Kb. The prediction 
problem that corresponds to the situation -K / 7r¡, is called off-policy 
learning. We can see the functions r, -K and 7 are a grammar that 
the agents use to ask questions about the expected future response of 
their environment, and the GVF given by (1) is the answer to these 
questions (see [2, 3, 4] and Section 4). 

In many real applications, agents do not have access to the state, 
but to a feature vector of the state. Also, in problems with very large 
state-space dimension, even if the state of the system can be known 
precisely, it is computationally more efficient to work with carefully 
chosen features [2, 5] with much smaller dimension M than \S\. Let 
x : S —y WtM be some mapping from states to features. Then, we 
denote Xk,i = x(sk(i)) the M x 1 feature vector that represents 
(maybe "roughly") the state of the agent k at time i. Furthermore, 
note that i>(£) in (1) could be a nontrivial function of £. There­
fore, it would be efficient to approximate i>(£) as a linear function 
of a:(£), say, ai(£)Tw, where co e SiM denotes a parameter vector. 
In this way, we would only need to learn the parameter u in order 
to approximate (or learn) i>(£). Such an approximation would pro­
vide good results if we carefully choose the mapping of features. 
Stacking the output of (1), for every possible state £ £ 5, into the 
vector v = col{i>(£)} e Si's ' , we express the linear approximation 
as v ?s I w , where X e s^l slxM is a non-singular matrix that is 
formed by stacking the feature row vectors £T(£), for every state 
£ £ 5, on top of each other. 

Now, the problem becomes that of seeking a parameter vector 
u>° that is optimal in a certain sense using the available data that ar­
rive sequentially at each agent k (i.e., the tuples {xk,i, rk (i), 7fc (i)} 
whererk(í) = r ( s f c (¿ - l ) , a f c (¿ - l ) , sk(í)) and7fc(¿) =7(s fc(¿))). 

In the context of a single agent scenario (i.e., without co-



operation), reference [6] proposed the mean-square-projected-
Bellman-error (MSPBE) as a performance criterion for finding 
co (see also [7, 8, 9]). However, the MSPBE depends on both 
•n and Tib. Nevertheless, using the importance sampling weights, 
Tkii) — Tv(a,k(i), Skiij)/iTb{a,k{i), Sfc(i)), reference [10] showed 
that the MSPBE can be expressed as a product of expectations, 
which are taken with respect to the same distribution induced by -Kb. 
Specifically, let ek¡i = Tk(i)xk¡i, then the MSPBE can be expressed 
as 

Jfc(w) = E[5%(i) • efc,i]
TE[£Bfc,i£B^i]-

1E[^(i) • efc,¿] (2) 

where Sk [i) is a scalar that estimates the error of the prediction: 

8t(i) = rk{i + 1) + 7fc(¿ + l)£Bfc,i+iw - Xfc,¿w (3) 

In order to apply stochastic gradient descent to (2), we cannot 
sample the three expected values at every iteration, since the random 
quantities at each expectation would be correlated and their product 
would be biased. One solution from [11] is to sample only one of the 
expectations while tracking a long-term, quasi-stationary estimate of 
the others. In particular, note that the gradient of (2) is given by 

| v w Jfc(w) = E í(7fc(í + l)x f c , i + i - £cfc,¿)e¡",i] • el (4) 

where 
e0k=Exk,ixli E[8%(i)-ekli] (5) 

It was noticed in [6] that 0k in (5) is similar to the solution of the 
normal equations for linear least-mean-squares error estimation, so 
it can be approached using the least-mean-squares (LMS) algorithm. 

2. DIFFUSION ADAPTATION POLICY 

In the context of networked agents, we propose to find the optimal 
parameter vector LO° e Si that minimizes the global cost: 

jglobV) = E J < » (6) 

where Jk (to) ,k = 1,... ,N, are the individual MSPBE given in (2). 
In order to minimize (6) in a cooperative and fully distributed man­
ner, we apply diffusion strategies [12, 13] on (4) and (5), obtaining 
the diffusion-off-policy-gradient-temporal-difference (D-OGTD) al­
gorithm given in (7), with step-size parameters ¡JL and r\: 

ek:i =ek,i-i - rlfJ,(xk,i-1xli_1ek,i-1 - C ^ " 1 (¿ - i)efc,í_i) 

ak,í =uk,i-i - ií{{ik{i)xk,í - Kfcj¿_i) • el¡í_1ekii-1) 

&k,i = ^ bik&i,i (7) 
ieMk 

wfc,¿ = ^ bikQiti 
ieMk 

where uik,i denotes the local estimate at node k of LO" at time i. 
In order to consider 0k,i-i constant during the update of Gk¿, the 
latter must be updated at a lower speed than the former. In other 
words, the step-size ratio, r¡, should satisfy r\ <C 1. Note that (7) 
is the cooperative distributed extension of the single-agent GTD2 
algorithm introduced in [6]. 

The matrix with the combination coefficients, B = [bik], is con­
strained by the network topology, in the sense that non-zero elements 
can appear only at the locations corresponding to the active-links. 
These elements can be freely chosen by the designer, as long as B is 
a left stochastic matrix (i.e., the entries on each column of B add up 
to one). 

3. PERFORMANCE ANALYSIS 

3.1. Data Model 

To analyze the performance of the distributed solution (7), we ex­
tend the energy conservation arguments of [12, 14] to carry out a 
mean-square-error (MSE) analysis; this is in contrast to the ordinary-
differential equations method used in [6, 10, 11, 15] for the variations 
of the single-agent GTD algorithm. In particular, our analysis relies 
on studying the evolution of the following pair of stochastic equa­
tions, which are of the same nature as the updates appearing in (7): 

ipk,i = ak,i-i vGk,iak,i-i + gk,i 

leMk 

(8) 

Let us introduce the matrices 

Ck,i = Xfc,¿Xfc,¿, Ak,i = ekii(-yk(i+l)xkii+1 

and the variables: 

£Bfc,i ) ( 9 ) 

ak,i 

9k,i 

Gk,i 

Wk,i 

0k,i 
Wfc,i 

-r¡ek,i-irk(i) 
0 

•qCk i-i 

A k,i-\ 

-•qAk,i-i 
0 

(10) 

(11) 

(12) 

such that a.k,i, ipk,i, and gk,i are vectors of length 2M and Gk,i is 
a matrix of size 2M x 2M. Then, the model (8) is equivalent to (7). 

We introduce C = Ck = E[Cfc,¿], A = Ak = E[Ak,i], G = 
Gk = E[Gfc,i] and g = Qk = E[gfc,¿], which are the same for 
every node k = 1 , . . . , N. Then, for our data model we assume the 
following conditions. 

Assumption 1. Samples {xk,i-i,Xk,i,rk(i),'fk(i)} are assumed 
to be drawn i.i.d. from the steady-state visitation probability distri­
bution of the underlying MDP (induced by TTb). 

Assumption 2. Matrices C and A are non-singular. 

Assumption 1 is customary and it is reasonable if the Markov 
chain of the state-process is mixing fast enough [16]; it renders 
Gk>i and gk>i independent of a.k,i-i. Assumption 2 guarantees 
the existence and uniqueness of the fixed point of (8), a", such that 
Ga° + g = 0; it should be satisfied when the features capture the 
structure of the state-space and the sample set is rich enough. Refer­
ence [6] proposed a slightly different set of aggregated variables for 
studying the performance of the single-agent algorithm; it showed 
that, under Assumption 2, the real part of the complex eigenvalues 
of the coefficient matrix is always positive. It turns out that G is 
a similarity transformation of the coefficient matrix used in [6], so 
we conclude that the real part of the eigenvalues of G is also always 
positive. 

3.2. Convergence in the Mean 

Introduce the following error quantities 

i>k,i = a - %pk,i, ák,i = a°-ak,i (13) 

In order to describe these relations more compactly we introduce the 
following network error vectors of length 2MN: 

$i = C0l{^! ,$N,i}, «* =C°1{ Oil,, ,OLN,i} (14) 



Let B = B eg) I2M and 7?.; ± d i a g { G i , ¿ , . . . , GN,i} be of 
size 2MN x 2MN each, and Qi = c o l { G i , ¿ , . . . , GN,i} of 
size 2MN x 2M. Finally, we aggregate the network signal 
gi = co l{g i , ¿ , . . . ,gN,i} into another vector of length 2MN, 
and introduce the network noise term n¿ = QiO° + g¿. Then, 
the individual error recursions (13) lead to the following network 
recursion: 

B (h H-RJ&Í-Í+HETTH (15) 

Since E n ¡ = EC/¿a° + Eg¿ = 0, taking expectation of both sides 
of (15), we obtain, under the assumption that á ¿ - i and 7?.¿ are in­
dependent of each other, 

/ i 7 e ) E á i _ i (16) 

where 1Z = E7?.¿. Recursion (16) converges to zero if the matrix 
B (I2MN — [JT¿) = B <g> (I2MN — ¡J-G) is stable. Let Am(-) 
denote the m-th eigenvalue of a matrix. Since 0 < A m ( B T ) < 1 
for m = 1 , . . . , TV we only need to ensure that the spectral radius 
of (I2MN — ¡J-G) is less than one. Note that G is not symmetric 
and therefore, it can have complex eigenvalues. Then, the stability 
condition can be expressed as 

| l - A i A m ( G ) | yXL /uRe [Am(G)])2 + At2Im [A m (G) f < 1 
(17) 

for m = 1 , . . . , 2M. After some straightforward manipulations on 
(17), we obtain the following quadratic inequality: 

2/nRe [Am (G)] + /J2 I Am (G) |2 < 1 (18) 

Hence, since Re [Am (G)] is positive (see Assumption 2), we can 
guarantee that the mean-error recursion (16) is stable and converges 
to zero (i.e., l inu^co E á ¿ = 0) when the step-size satisfies: 

0 < 11 < min 
Km<2M 

3.3. Mean-Square Stability 

2Re[Am(G)] 

| A m ( G ) | 2 (19) 

To ensure the error has bounded fluctuations around the zero mean 
value, we study the evolution and steady-state-value of the variance 
E | | a ¿ | | 2 . For some symmetric non-negative definite weighting ma­
trix, E, taking || • || |¡ of both sides of (15) and applying the expecta­
tion operator, we obtain the following variance relation 

Ella; E \\o¿i 1 Ms- + 2/i • 6¿ E á ¿ 

+ y2TT{^BTnnB) 

, and the cross-corre 

(20) 

where the weight matrix, E ' , and the cross-correlation term, bs, take 
the form: 

E ' = ( /2 M J V _ ^nT)BVBT{hMN - ¿R) 

+ M
2E [(nj - nT)B^BT(Tii - KJ\ (21) 

&E = E (I2MN — ¡J-T^-i )¿3£¿3 nA (22) 

and the noise covariance matrix across the network is defined by 

Kn 4 E Imnj] = E \XGia +gi)(gia + gi)
T] (23) 

Let a = vec(£) denote the vectorization operation that stacks the 
columns of a matrix £ on top of each other. We can vectorize E ' in 
(21), leading to a' = vec(E' ) = To, where 

J7 = UhMN - M ^ T ) &) ® ((hMN - / i ^ T ) B) 

+ I^2EU(TI¡-1ZT) B) (g> UTIJ-1ZT) B)~\ (24) 

Therefore, we rewrite (20) in the following compact form, where we 
are replacing the weighting matrices by their vector representations: 

E | | á¿ E | | á¿ l|2 + 2l¿-oTU-Eái-1+l,
2hTo (25) 

where 

U = E UBT {Qi0° + g ; ) ) ® (BT (I2MN - y-'R-i))} (26) 

h±vec(BTnnB) (27) 

Note that the mean-square-error recursion in (25) is not a true recur­
sion because the norms are different. Moreover, it is coupled with 
the mean-error recursion in (16). We can expand (25) into a state-
space model [12, 14, 17] that can be aggregated with (16). 

Let L = 2MN and let p(x) be the characteristic polynomial 
of the L2 x L2 matrix J-'. By the Cayley-Hamilton Theorem [17], 
we know that every matrix satisfies its characteristic equation (i.e. 
p(J-) = 0), so we have 

?L' = -P0IL2 ~ PlJ7 P L ' - l ^ ' - 1 (28) 

Replacing a with J - ' a , j 
state-space model: 

0,. , L2 — 1, we obtain the following 

1- 0 1 

0 0 

0 0 

— vo —PI 

0 . . . 

1 . . . 

. . . 
0 . . . 

— P2 * * * 

0 -1 

0 

0 

1 

~PL 2 -1-

+ 2fj, 

i < j T : F i , 2 - i M 

E á i - i (29) 

Finally, aggregating the mean-square-error recursion (29) with the 
mean-error recursion (16), we obtain 

>v¿ 
E 5 ¿ 

2/LtQ 

BT(l2MN-^n) 
Wi-i 

E&i-i J+ / i2[o] (30) 

Observe that the stability of the joint recursion (30) is equivalent to 
the stability of the matrices T and B (I2MN — ///?•) . We note from 
(29) that T is in companion form, and it is known that its eigenvalues 
are also eigenvalues of T. When the step-sizes are small enough, we 
have the following approximation for J7: 

^ ~ iihuN - A t ^ T ) &) ® (U2MN - M ^ T ) B) 

= (BT (hMN - yTZ))T eg) (BT (hMN - yTZ))T (31) 

which is stable if, and only if, B (I2MN — ¡J-TV) is stable. There­
fore, sufficiently small step-sizes guarantee stability in the mean and 
mean-square-error senses. 
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3.4. Mean-Square Performance 

If we take the limit of both sides of (25), and use the facts that 
linn-,,» Eá 4 = Oandlinii-Hx.Ellái-ill^ = l i m ^ E H á ^ 
we obtain 

lim E||a¿|| A t
2 f t T ( i -^-V (32) 

Expression (32) is useful because it allows us to derive several per­
formance metrics through the proper selection of the free weighting 
parameter vector a (or, equivalently, the parameter matrix E). For 
example, the network mean-square-deviation (MSD) is defined as 
the average of the error of the nodes across the network: 

R i|cp.network ¿±_ i . r 
EHaiHir-f2Mjv ^ E||áfc,j| | 

fc=i 

Choosing the weighting matrix as E = I2MN /N, we get: 

network 

MSD N 
hT(I-F)-vec(I2MN) 

We can also obtain the MSD of any particular node k, as 

MSDfc = lim E| |á f c i | |
2 

¿ ^ 0 0 

(33) 

(34) 

(35) 

Introduce a block diagonal matrix Jk, of N x N blocks of size 
2M x 2M each, such that all its blocks are zero except for block k 
which is the identity matrix. Then, we obtain: 

M S D f c = / x
2 / l

T ( / - . F r 1 v e c ( J f c ) 

4. SIMULATIONS 

(36) 

Consider the following example. An automated taxi is driving on 
a motorway that is 14 miles long, from the suburbs to downtown. 
During the journey, the taxi can exchange information with other 
cars within its communication range. Every mile along the road, 
there is an exit that the autopilot can choose to take or not. If the car 
takes the exit, it can move towards the goal at a slower speed than 
in the motorway, but it could also avoid a jam so that the total trip 
time may be shorter. We model this example as a Markov chain with 
\S\ = 14 states, numbered inversely from the starting point (£ = 13) 
to the destination (O = 0) (this example is inspired by the classical 
“Boyan chain” used as benchmark in [6], see Figure 1a). If the taxi 
remains in the motorway, it could move to the goal at a high speed. 
Whenever it takes an exit, it can also advance further before getting 
back to the motorway, but at a slower speed. In either case, the taxi 
can get stuck in the same state. When an exit is taken, the proba­
bility of moving towards the destination is high and constant, Pmov. 
However, in the motorway, Pmov decays exponentially when getting 
closer to the goal. The probability of getting stuck is 1 — Pmov. Let 
us assume that all cars follow the same conservative behavior pol­
icy, opting for the motorway most of the time. Passengers may ask 
whether it would be faster to take 80% of the exits. To answer this 
question, the agent can build a GVF setting 7({13, . . . ,1}) = 1 and 
7(0) = 0, with r(i) = t(i), and with target policy -n = [0.2, 0.8] 
(i.e., P(a = motorway) = 0.2, P(a = exit) = 0.8 for every state). 
The internal representation of the state is a vector of M = 4 features 
denoting the relative position to the destination. We study two cases: 
in Figure 1b, all agents behave very conservatively, taking some ex­
its only 5% of the time (i.e., -Kb = [0.95, 0.05]); while in Figure 1c 

agents become extremely conservative using the motorway 99% of 
the time, which is still more biased (i.e., -Kb = [0.99, 0.01]). 

We simulate a network of 10 nodes (with random topology and 
average degree 6) plus 10 non-cooperative agents. We can expect 
that when the agents follow a biased policy, many state-transitions 
will not be sampled properly. This measurement noise leads to a 
wrong estimate of the optimal parameter. Cooperation through dif­
fusion alleviates this error. In case (b), though diffusion shows an 
improvement in the quality of the estimate, non-cooperative agents 
are also able to make good predictions. It is in case (c) where the gain 
from cooperation is greatly appreciated: while the bias and variance 
(vertical bars) of the non-cooperative nodes diverge, collaborative 
agents achieve a good, stable estimate of the value. 

motorway 
exit 

stuck 

t(exit) = 4 
t (motorway) = 1 

v ^ 
/ 2 Y 
f N 

> 1 — * 
A 

0 

(a) Markov chain of the taxi example 
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" ^ - ^ 
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Episodes 
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(b) Biased: -Kb = [0.95, 0.05] (c) Very biased: -Kb = [0.99, 0.01] 

Fig. 1. Taxi example. (a) State diagram, and (b)-(c) mean-square -
projected-Bellman-error (MPSBE) for a target policy -n = [0.2, 0.8], 
estimated by 10 cooperative versus 10 non-cooperative agents. In 
(b), though we see some improvement in the cooperative agents, 
non-cooperative agents are still good at finding the estimate. In 
(c), when the behavior policy is very biased, there is a clear ben­
efit of diffusion: while non-cooperative nodes diverge, cooperative 
agents achieve a good stable estimate. The feature vectors for states 
13, 9, 5 and 1 are a:(13) = [1,0,0,0]T , a;(9) = [0,1,0,0]T , 
x(5) = [0,0,1,0] and x(l) = [0,0,0,1] respectively, for the 
rest of states, the features are obtained interpolating linearly between 
these (i.e., x{2) = [0, 0,1/4, 3/4]T , a;(3) = [0, 0 ,1/2,1/2]T , 
X4 = [0, 0, 3/4,1/4] , and so on). Step-sizes are constant /i = 0.1 
and 77 = 10. The combination coefficients of the estimates, B, are 
obtained using the Metropolis method [13]. Finally, Pmov(exit) = 

s - 1 3 

0.8, Vs e 5, and Pmov(s, motorway) = e 13 ,s e S. 

5. CONCLUSIONS 

We proposed a distributed diffusion strategy for off-policy learn­
ing and provided a mean-square-error analysis showing that suffi­
ciently small step-sizes guarantee convergence in the mean-square-
error sense. This result complements and extends the ODE analysis 
of the original single-agent GTD algorithm, which requires dimin­
ishing step-sizes [10, 11, 15]. 
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