
COOPERATIVE OFF-POLICY PREDICTION OF MARKOV DECISION PROCESSES IN
ADAPTIVE NETWORKS

Sergio Valcarcel Macua Jianshu Chen Santiago Zazo Ali H. Sayed

ABSTRACT

We apply diffusion strategies to propose a cooperative reinforcement
learning algorithm, in which agents in a network communicate with
their neighbors to improve predictions about their environment. The
algorithm is suitable to learn off-policy even in large state spaces.
We provide a mean-square-error performance analysis under con­
stant step-sizes. The gain of cooperation in the form of more sta­
bility and less bias and variance in the prediction error, is illustrated
in the context of a classical model. We show that the improvement
in performance is especially significant when the behavior policy of
the agents is different from the target policy under evaluation.

Index Terms— adaptive networks, dynamic programming, dif­
fusion strategies, gradient temporal difference, mean-square-error,
reinforcement learning.

1. INTRODUCTION

Consider the problem in which a network of autonomous agents col­
laborate to predict the response of their environment to their actions.
The network forms a connected graph (i.e., there is at least one path
between every pair of nodes) and communication is only allowed
within each neighborhood. The agents operate in an environment
that is modeled as a Markov Decision Process (MDP) [1], The MDP
is characterized by a finite and countable set of states, 5, a finite
and countable set of actions, A, and the kernel of transition prob­
abilities from one state to another given an action, V. Although
the agents can communicate with their neighbors, each agent is as­
sumed to operate a similar but independent MDP. Therefore, the
state transition probability at each agent k = 1 . . . N is only de­
termined by its own action and the previous state of its environment,
i.e., Sk(i + 1) ~ V(-\sk(i),ak(i)), where Sk(i) £ S denotes the
state of the environment seen by agent k at time i, and a>k (i) e A
stands for its action.

We assume agents follow some stationary policy. A policy -K is
a mapping -K : S —y O (A), where Q(A) is the set of all probability
distributions over A. We denote by 7r(a, s) = P(a|s) the probabil­
ity of an agent choosing action a when it follows policy -K and the
environment is at state s.

At every time step, there is a reward function, r : S x A x
5 —y -R, which agents receive and which they want to predict. Let
r(i) = r(s(i — l),a(i — 1), s(¿)) denote the reward received by a

generic agent, for the transition from s(i — 1) to s(i), after taking
action a(i—l). In order to make predictions of the reward signal, we
use state general-value-functions (GVF), v : S —y -R, which provide
the expected cumulative sum of the reward until the agent reaches a
state that marks the end of the prediction period, O. Introduce the
termination-indicator function 7 : 5 —y {0,1}, which sets the time-
interval of the prediction period so that ~f(s(i)) = 0 indicates that
the agent has reached O at time i. We denote d> the random stopping
time at which the agent reaches the termination state O. Then, the
GVF for an arbitrary initial state £ e S is defined by:

«(£) = E £ T (
¿=0

i{i))-r(s{i),a{i),s{i+l))\s{0) = £, a{i)

(1)
where we are using the boldface notation to denote random variables,
and where the notation a(i) ~ -K means that we are interested in
the reward received by following the policy ir, which we name the
target policy. The policy -K may be different from the actual behavior
policy followed by the agents, and denoted by -Kb. The prediction
problem that corresponds to the situation -K / 7r¡, is called off-policy
learning. We can see the functions r, -K and 7 are a grammar that
the agents use to ask questions about the expected future response of
their environment, and the GVF given by (1) is the answer to these
questions (see [2, 3, 4] and Section 4).

In many real applications, agents do not have access to the state,
but to a feature vector of the state. Also, in problems with very large
state-space dimension, even if the state of the system can be known
precisely, it is computationally more efficient to work with carefully
chosen features [2, 5] with much smaller dimension M than \S\. Let
x : S —y WtM be some mapping from states to features. Then, we
denote Xk,i = x(sk(i)) the M x 1 feature vector that represents
(maybe "roughly") the state of the agent k at time i. Furthermore,
note that i>(£) in (1) could be a nontrivial function of £. There­
fore, it would be efficient to approximate i>(£) as a linear function
of a:(£), say, ai(£)Tw, where co e SiM denotes a parameter vector.
In this way, we would only need to learn the parameter u in order
to approximate (or learn) i>(£). Such an approximation would pro­
vide good results if we carefully choose the mapping of features.
Stacking the output of (1), for every possible state £ £ 5, into the
vector v = col{i>(£)} e Si's ' , we express the linear approximation
as v ?s I w , where X e s^l slxM is a non-singular matrix that is
formed by stacking the feature row vectors £T(£), for every state
£ £ 5, on top of each other.

Now, the problem becomes that of seeking a parameter vector
u>° that is optimal in a certain sense using the available data that ar­
rive sequentially at each agent k (i.e., the tuples {xk,i, rk (i), 7fc (i)}
whererk(í) = r (s f c (¿ - l) , a f c (¿ - l) , sk(í)) and7fc(¿) =7(s fc(¿))).

In the context of a single agent scenario (i.e., without co-

operation), reference [6] proposed the mean-square-projected-
Bellman-error (MSPBE) as a performance criterion for finding
co (see also [7, 8, 9]). However, the MSPBE depends on both
•n and Tib. Nevertheless, using the importance sampling weights,
Tkii) — Tv(a,k(i), Skiij)/iTb{a,k{i), Sfc(i)), reference [10] showed
that the MSPBE can be expressed as a product of expectations,
which are taken with respect to the same distribution induced by -Kb.
Specifically, let ek¡i = Tk(i)xk¡i, then the MSPBE can be expressed
as

Jfc(w) = E[5%(i) • efc,i]
TE[£Bfc,i£B^i]-

1E[^(i) • efc,¿] (2)

where Sk [i) is a scalar that estimates the error of the prediction:

8t(i) = rk{i + 1) + 7fc(¿ + l)£Bfc,i+iw - Xfc,¿w (3)

In order to apply stochastic gradient descent to (2), we cannot
sample the three expected values at every iteration, since the random
quantities at each expectation would be correlated and their product
would be biased. One solution from [11] is to sample only one of the
expectations while tracking a long-term, quasi-stationary estimate of
the others. In particular, note that the gradient of (2) is given by

| v w Jfc(w) = E í(7fc(í + l)x f c , i + i - £cfc,¿)e¡",i] • el (4)

where
e0k=Exk,ixli E[8%(i)-ekli] (5)

It was noticed in [6] that 0k in (5) is similar to the solution of the
normal equations for linear least-mean-squares error estimation, so
it can be approached using the least-mean-squares (LMS) algorithm.

2. DIFFUSION ADAPTATION POLICY

In the context of networked agents, we propose to find the optimal
parameter vector LO° e Si that minimizes the global cost:

jglobV) = E J < » (6)

where Jk (to) ,k = 1,... ,N, are the individual MSPBE given in (2).
In order to minimize (6) in a cooperative and fully distributed man­
ner, we apply diffusion strategies [12, 13] on (4) and (5), obtaining
the diffusion-off-policy-gradient-temporal-difference (D-OGTD) al­
gorithm given in (7), with step-size parameters ¡JL and r\:

ek:i =ek,i-i - rlfJ,(xk,i-1xli_1ek,i-1 - C ^ " 1 (¿ - i)efc,í_i)

ak,í =uk,i-i - ií{{ik{i)xk,í - Kfcj¿_i) • el¡í_1ekii-1)

&k,i = ^ bik&i,i (7)
ieMk

wfc,¿ = ^ bikQiti
ieMk

where uik,i denotes the local estimate at node k of LO" at time i.
In order to consider 0k,i-i constant during the update of Gk¿, the
latter must be updated at a lower speed than the former. In other
words, the step-size ratio, r¡, should satisfy r\ <C 1. Note that (7)
is the cooperative distributed extension of the single-agent GTD2
algorithm introduced in [6].

The matrix with the combination coefficients, B = [bik], is con­
strained by the network topology, in the sense that non-zero elements
can appear only at the locations corresponding to the active-links.
These elements can be freely chosen by the designer, as long as B is
a left stochastic matrix (i.e., the entries on each column of B add up
to one).

3. PERFORMANCE ANALYSIS

3.1. Data Model

To analyze the performance of the distributed solution (7), we ex­
tend the energy conservation arguments of [12, 14] to carry out a
mean-square-error (MSE) analysis; this is in contrast to the ordinary-
differential equations method used in [6, 10, 11, 15] for the variations
of the single-agent GTD algorithm. In particular, our analysis relies
on studying the evolution of the following pair of stochastic equa­
tions, which are of the same nature as the updates appearing in (7):

ipk,i = ak,i-i vGk,iak,i-i + gk,i

leMk

(8)

Let us introduce the matrices

Ck,i = Xfc,¿Xfc,¿, Ak,i = ekii(-yk(i+l)xkii+1

and the variables:

£Bfc,i) (9)

ak,i

9k,i

Gk,i

Wk,i

0k,i
Wfc,i

-r¡ek,i-irk(i)
0

•qCk i-i

A k,i-\

-•qAk,i-i
0

(10)

(11)

(12)

such that a.k,i, ipk,i, and gk,i are vectors of length 2M and Gk,i is
a matrix of size 2M x 2M. Then, the model (8) is equivalent to (7).

We introduce C = Ck = E[Cfc,¿], A = Ak = E[Ak,i], G =
Gk = E[Gfc,i] and g = Qk = E[gfc,¿], which are the same for
every node k = 1 , . . . , N. Then, for our data model we assume the
following conditions.

Assumption 1. Samples {xk,i-i,Xk,i,rk(i),'fk(i)} are assumed
to be drawn i.i.d. from the steady-state visitation probability distri­
bution of the underlying MDP (induced by TTb).

Assumption 2. Matrices C and A are non-singular.

Assumption 1 is customary and it is reasonable if the Markov
chain of the state-process is mixing fast enough [16]; it renders
Gk>i and gk>i independent of a.k,i-i. Assumption 2 guarantees
the existence and uniqueness of the fixed point of (8), a", such that
Ga° + g = 0; it should be satisfied when the features capture the
structure of the state-space and the sample set is rich enough. Refer­
ence [6] proposed a slightly different set of aggregated variables for
studying the performance of the single-agent algorithm; it showed
that, under Assumption 2, the real part of the complex eigenvalues
of the coefficient matrix is always positive. It turns out that G is
a similarity transformation of the coefficient matrix used in [6], so
we conclude that the real part of the eigenvalues of G is also always
positive.

3.2. Convergence in the Mean

Introduce the following error quantities

i>k,i = a - %pk,i, ák,i = a°-ak,i (13)

In order to describe these relations more compactly we introduce the
following network error vectors of length 2MN:

$i = C0l{^! ,$N,i}, «* =C°1{ Oil,, ,OLN,i} (14)

Let B = B eg) I2M and 7?.; ± d i a g { G i , ¿ , . . . , GN,i} be of
size 2MN x 2MN each, and Qi = c o l { G i , ¿ , . . . , GN,i} of
size 2MN x 2M. Finally, we aggregate the network signal
gi = co l{g i , ¿ , . . . ,gN,i} into another vector of length 2MN,
and introduce the network noise term n¿ = QiO° + g¿. Then,
the individual error recursions (13) lead to the following network
recursion:

B (h H-RJ&Í-Í+HETTH (15)

Since E n ¡ = EC/¿a° + Eg¿ = 0, taking expectation of both sides
of (15), we obtain, under the assumption that á ¿ - i and 7?.¿ are in­
dependent of each other,

/ i 7 e) E á i _ i (16)

where 1Z = E7?.¿. Recursion (16) converges to zero if the matrix
B (I2MN — [JT¿) = B <g> (I2MN — ¡J-G) is stable. Let Am(-)
denote the m-th eigenvalue of a matrix. Since 0 < A m (B T) < 1
for m = 1 , . . . , TV we only need to ensure that the spectral radius
of (I2MN — ¡J-G) is less than one. Note that G is not symmetric
and therefore, it can have complex eigenvalues. Then, the stability
condition can be expressed as

| l - A i A m (G) | yXL /uRe [Am(G)])2 + At2Im [A m (G) f < 1
(17)

for m = 1 , . . . , 2M. After some straightforward manipulations on
(17), we obtain the following quadratic inequality:

2/nRe [Am (G)] + /J2 I Am (G) |2 < 1 (18)

Hence, since Re [Am (G)] is positive (see Assumption 2), we can
guarantee that the mean-error recursion (16) is stable and converges
to zero (i.e., l inu^co E á ¿ = 0) when the step-size satisfies:

0 < 11 < min
Km<2M

3.3. Mean-Square Stability

2Re[Am(G)]

| A m (G) | 2 (19)

To ensure the error has bounded fluctuations around the zero mean
value, we study the evolution and steady-state-value of the variance
E | | a ¿ | | 2 . For some symmetric non-negative definite weighting ma­
trix, E, taking || • || |¡ of both sides of (15) and applying the expecta­
tion operator, we obtain the following variance relation

Ella; E \\o¿i 1 Ms- + 2/i • 6¿ E á ¿

+ y2TT{^BTnnB)

, and the cross-corre

(20)

where the weight matrix, E ' , and the cross-correlation term, bs, take
the form:

E ' = (/2 M J V _ ^nT)BVBT{hMN - ¿R)

+ M
2E [(nj - nT)B^BT(Tii - KJ\ (21)

&E = E (I2MN — ¡J-T^-i)¿3£¿3 nA (22)

and the noise covariance matrix across the network is defined by

Kn 4 E Imnj] = E \XGia +gi)(gia + gi)
T] (23)

Let a = vec(£) denote the vectorization operation that stacks the
columns of a matrix £ on top of each other. We can vectorize E ' in
(21), leading to a' = vec(E') = To, where

J7 = UhMN - M ^ T) &) ® ((hMN - / i ^ T) B)

+ I^2EU(TI¡-1ZT) B) (g> UTIJ-1ZT) B)~\ (24)

Therefore, we rewrite (20) in the following compact form, where we
are replacing the weighting matrices by their vector representations:

E | | á¿ E | | á¿ l|2 + 2l¿-oTU-Eái-1+l,
2hTo (25)

where

U = E UBT {Qi0° + g ;)) ® (BT (I2MN - y-'R-i))} (26)

h±vec(BTnnB) (27)

Note that the mean-square-error recursion in (25) is not a true recur­
sion because the norms are different. Moreover, it is coupled with
the mean-error recursion in (16). We can expand (25) into a state-
space model [12, 14, 17] that can be aggregated with (16).

Let L = 2MN and let p(x) be the characteristic polynomial
of the L2 x L2 matrix J-'. By the Cayley-Hamilton Theorem [17],
we know that every matrix satisfies its characteristic equation (i.e.
p(J-) = 0), so we have

?L' = -P0IL2 ~ PlJ7 P L ' - l ^ ' - 1 (28)

Replacing a with J - ' a , j
state-space model:

0,. , L2 — 1, we obtain the following

1- 0 1

0 0

0 0

— vo —PI

0 . . .

1 . . .

. . .
0 . . .

— P2 * * *

0 -1

0

0

1

~PL 2 -1-

+ 2fj,

i < j T : F i , 2 - i M

E á i - i (29)

Finally, aggregating the mean-square-error recursion (29) with the
mean-error recursion (16), we obtain

>v¿
E 5 ¿

2/LtQ

BT(l2MN-^n)
Wi-i

E&i-i J+ / i2[o] (30)

Observe that the stability of the joint recursion (30) is equivalent to
the stability of the matrices T and B (I2MN — ///?•) . We note from
(29) that T is in companion form, and it is known that its eigenvalues
are also eigenvalues of T. When the step-sizes are small enough, we
have the following approximation for J7:

^ ~ iihuN - A t ^ T) &) ® (U2MN - M ^ T) B)

= (BT (hMN - yTZ))T eg) (BT (hMN - yTZ))T (31)

which is stable if, and only if, B (I2MN — ¡J-TV) is stable. There­
fore, sufficiently small step-sizes guarantee stability in the mean and
mean-square-error senses.

1

file:///XGia

3.4. Mean-Square Performance

If we take the limit of both sides of (25), and use the facts that
linn-,,» Eá 4 = Oandlinii-Hx.Ellái-ill^ = l i m ^ E H á ^
we obtain

lim E||a¿|| A t
2 f t T (i -^-V (32)

Expression (32) is useful because it allows us to derive several per­
formance metrics through the proper selection of the free weighting
parameter vector a (or, equivalently, the parameter matrix E). For
example, the network mean-square-deviation (MSD) is defined as
the average of the error of the nodes across the network:

R i|cp.network ¿±_ i . r
EHaiHir-f2Mjv ^ E||áfc,j| |

fc=i

Choosing the weighting matrix as E = I2MN /N, we get:

network

MSD N
hT(I-F)-vec(I2MN)

We can also obtain the MSD of any particular node k, as

MSDfc = lim E| |á f c i | |
2

¿ ^ 0 0

(33)

(34)

(35)

Introduce a block diagonal matrix Jk, of N x N blocks of size
2M x 2M each, such that all its blocks are zero except for block k
which is the identity matrix. Then, we obtain:

M S D f c = / x
2 / l

T (/ - . F r 1 v e c (J f c)

4. SIMULATIONS

(36)

Consider the following example. An automated taxi is driving on
a motorway that is 14 miles long, from the suburbs to downtown.
During the journey, the taxi can exchange information with other
cars within its communication range. Every mile along the road,
there is an exit that the autopilot can choose to take or not. If the car
takes the exit, it can move towards the goal at a slower speed than
in the motorway, but it could also avoid a jam so that the total trip
time may be shorter. We model this example as a Markov chain with
\S\ = 14 states, numbered inversely from the starting point (£ = 13)
to the destination (O = 0) (this example is inspired by the classical
“Boyan chain” used as benchmark in [6], see Figure 1a). If the taxi
remains in the motorway, it could move to the goal at a high speed.
Whenever it takes an exit, it can also advance further before getting
back to the motorway, but at a slower speed. In either case, the taxi
can get stuck in the same state. When an exit is taken, the proba­
bility of moving towards the destination is high and constant, Pmov.
However, in the motorway, Pmov decays exponentially when getting
closer to the goal. The probability of getting stuck is 1 — Pmov. Let
us assume that all cars follow the same conservative behavior pol­
icy, opting for the motorway most of the time. Passengers may ask
whether it would be faster to take 80% of the exits. To answer this
question, the agent can build a GVF setting 7({13, . . . ,1}) = 1 and
7(0) = 0, with r(i) = t(i), and with target policy -n = [0.2, 0.8]
(i.e., P(a = motorway) = 0.2, P(a = exit) = 0.8 for every state).
The internal representation of the state is a vector of M = 4 features
denoting the relative position to the destination. We study two cases:
in Figure 1b, all agents behave very conservatively, taking some ex­
its only 5% of the time (i.e., -Kb = [0.95, 0.05]); while in Figure 1c

agents become extremely conservative using the motorway 99% of
the time, which is still more biased (i.e., -Kb = [0.99, 0.01]).

We simulate a network of 10 nodes (with random topology and
average degree 6) plus 10 non-cooperative agents. We can expect
that when the agents follow a biased policy, many state-transitions
will not be sampled properly. This measurement noise leads to a
wrong estimate of the optimal parameter. Cooperation through dif­
fusion alleviates this error. In case (b), though diffusion shows an
improvement in the quality of the estimate, non-cooperative agents
are also able to make good predictions. It is in case (c) where the gain
from cooperation is greatly appreciated: while the bias and variance
(vertical bars) of the non-cooperative nodes diverge, collaborative
agents achieve a good, stable estimate of the value.

motorway
exit

stuck

t(exit) = 4
t (motorway) = 1

v ^
/ 2 Y
f N

> 1 — *
A

0

(a) Markov chain of the taxi example

No cooperation #

. ^ D i f f u s i o n OGTD - * -

\~""\ 2 6

* \ Nv 2.2
N ^ \ _ . 2

N . N. /l.8
\ , N L

 L 6

" ^ - ^

20
Episodes

20
Episodes

(b) Biased: -Kb = [0.95, 0.05] (c) Very biased: -Kb = [0.99, 0.01]

Fig. 1. Taxi example. (a) State diagram, and (b)-(c) mean-square -
projected-Bellman-error (MPSBE) for a target policy -n = [0.2, 0.8],
estimated by 10 cooperative versus 10 non-cooperative agents. In
(b), though we see some improvement in the cooperative agents,
non-cooperative agents are still good at finding the estimate. In
(c), when the behavior policy is very biased, there is a clear ben­
efit of diffusion: while non-cooperative nodes diverge, cooperative
agents achieve a good stable estimate. The feature vectors for states
13, 9, 5 and 1 are a:(13) = [1,0,0,0]T , a;(9) = [0,1,0,0]T ,
x(5) = [0,0,1,0] and x(l) = [0,0,0,1] respectively, for the
rest of states, the features are obtained interpolating linearly between
these (i.e., x{2) = [0, 0,1/4, 3/4]T , a;(3) = [0, 0 ,1/2,1/2]T ,
X4 = [0, 0, 3/4,1/4] , and so on). Step-sizes are constant /i = 0.1
and 77 = 10. The combination coefficients of the estimates, B, are
obtained using the Metropolis method [13]. Finally, Pmov(exit) =

s - 1 3

0.8, Vs e 5, and Pmov(s, motorway) = e 13 ,s e S.

5. CONCLUSIONS

We proposed a distributed diffusion strategy for off-policy learn­
ing and provided a mean-square-error analysis showing that suffi­
ciently small step-sizes guarantee convergence in the mean-square-
error sense. This result complements and extends the ODE analysis
of the original single-agent GTD algorithm, which requires dimin­
ishing step-sizes [10, 11, 15].

x 10
5 4

4

3

2

0 40 40

6. REFERENCES

[1] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming, John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1994.

[2] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski,
A. White, and D. Precup, “Horde: a scalable real-time archi­
tecture for learning knowledge from unsupervised sensorimo-
tor interaction,” in Proc. Int. Conf. on Autonomous Agents and
Multiagent Systems, Taipei, Taiwan, 2011, vol. 2, pp. 761–768.

[3] J. Modayil, A. White, and R. S. Sutton, “Multi-timescale nex-
ting in a reinforcement learning robot,” in From Animals to
Animats 12, T. Ziemke, C. Balkenius, and J. Hallam, Eds.,
vol. 7426 of Lecture Notes in Computer Science, pp. 299–309.
Springer Berlin Heidelberg, 2012.

[4] T. Degris and J. Modayil, “Scaling-up knowledge for a cog­
nizant robot,” in Notes of the AAAI Spring Symposium Series,
Palo Alto, CA, USA, March 2012.

[5] D. Silver, R. S. Sutton, and M. Mu l̈ler, “Temporal-difference
search in computer go,” Machine Learning, vol. 87, pp. 183–
219, 2012.

[6] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvari, and E. Wiewiora, “Fast gradient-descent meth­
ods for temporal-difference learning with linear function ap­
proximation,” in Proc. Int. Conf. on Machine Learning, Mon­
treal, Quebec, Canada, 2009, pp. 993–1000.

[7] A. Antos, C. Szepesvari, and R. Munos, “Learning near-
optimal policies with bellman-residual minimization based fit­
ted policy iteration and a single sample path,” Machine Learn­
ing, vol. 71, pp. 89–129, 2008.

[8] B. Scherrer, “Should one compute the temporal difference fix
point or minimize the Bellman residual? the unified oblique
projection view,” in Proc. Int. Conf. on Machine Learning,
Haifa, Israel, June 2010, pp. 959–966, Omnipress.

[9] M. Geist and O. Pietquin, “Parametric value function approx­
imation: a unified view,” in Proc. IEEE Symp. on Adaptive
Dynamic Programming and Reinforcement Learning, Paris,
France, April 2011, pp. 9–16.

[10] H. R. Maei and R. S. Sutton, “GQ(lambda): A general gradi­
ent algorithm for temporal-difference prediction learning with
eligibility traces,” in Proc. Conf. on Artificial General Intelli­
gence, pp. 91–96. Lugano, Switzerland, 2010.

[11] R. S. Sutton, C. Szepesvari, and H. R. Maei, “A conver­
gent o(n) temporal-difference algorithm for off-policy learn­
ing with linear function approximation,” in Advances in Neural
Information Processing Systems 21, D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, Eds., pp. 1609–1616. 2009.

[12] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for
distributed optimization and learning over networks,” IEEE
Transactions on Signal Processing, vol. 60, no. 8, pp. 4289–
4305, Aug. 2012.

[13] A. H. Sayed, “Diffusion adaptation over networks,” in E-
Reference Signal Processing, R. Chellapa and S. Theodoridis,
Eds. Elsevier, 2013. Also available as arXiv:1205.4220v1, May
2012.

[14] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS Strategies
for Distributed Estimation,” IEEE Transactions on Signal Pro­
cessing, vol. 58, no. 3, pp. 1035–1048, 2010.

[15] H. R. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Sil­
ver, and R. S. Sutton, “Convergent temporal-difference learn­
ing with arbitrary smooth function approximation,” in Ad­
vances in Neural Information Processing Systems 22, Y. Ben-
gio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Cu-
lotta, Eds., pp. 1204–1212. 2009.

[16] P. Diaconis, “The mathematics of mixing things up,” Journal
of Statistical Physics, vol. 144, no. 3, pp. 445–458, 2011.

[17] A. H. Sayed, Adaptive Filters, John Wiley & Sons, 2008.

