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ABSTRACT

A new signal set, based on the Fourier and Hermite signal
bases, is introduced. It combines properties of the Fourier ba-
sis signals with the perfect time-frequency localization of the
Hermite functions. The signal set is characterized by both a
high spectral efficiency and good time-frequency localization.
Its robustness against time-frequency shifts is assessed and
compared to Hermite and Fourier basis signals. The Fourier-
Hermite signal set is particularly designed for communica-
tions in spectrum-scarce environments.

Index Terms— Fourier-Hermite signals, multi-carrier
communications, time-frequency analysis

1. INTRODUCTION

The Fourier basis - consisting of complex exponentials of
different frequency - is the dominant signal basis in commu-
nication systems nowadays. Orthogonal frequency division
multiplexing (OFDM) is a multi-carrier scheme based on
the modulation of time-limited Fourier-basis signals and is
applied in many communication standards. Despite its pop-
ularity, OFDM is also associated with some drawbacks like
spectral leakage and a high sensitivity for frequency offsets
[1]. To reduce these problems, it is common to filter the
OFDM signal prior to transmission. However, instead of
modifying the transmit signal, the signal basis itself can be
reconsidered. Especially given the scarcity of spectrum and
the rise of cognitive radios, the quest is on for spectrally
efficient, time-frequency localized signal bases for communi-
cation systems.

Hermite functions form a set of orthogonal signals, are
maximally localized in time and frequency (according to
their second order moments over time and frequency [2]),
are eigenfunctions of the fractional Fourier transform (FrFT)
[3] and are the eigenfunctions of wide-sense stationary un-
correlated scattering (WSSUS) doubly dispersive channels
characterized by an elliptical scattering function [4, 5]. Sum-
ming up, Hermite functions are an interesting candidate as a
signal basis for wireless communication systems. However,
they also offer some key challenges. One of these challenges

is the sensitivity of higher order Hermite functions for a time
and/or frequency offset. This is caused by a sharp concentra-
tion of the ambiguity function (AF) [5] and is similar to the
sensitivity of some wavelets to time or frequency offsets [6].

Section 2 introduces the Fourier-Hermite signal set, which
is the main contribution of this paper. The proposed signal set
attains both a high spectral efficiency and is well localized in
time-frequency. Its spectral efficiency and robustness against
time- and frequency offsets is treated in Section 3. Sections
4 and 5 include a qualitative comparison with prior work and
conclude this paper.

2. THE FOURIER-HERMITE SIGNAL SET

We describe a continuous, baseband multi-carrier signal as
the sum of K different subcarrier signals sk(t),

x(t)
∆
=

K−1∑
k=0

Aksk(t), (1)

where Ak represents a (complex) value corresponding to the
modulation scheme chosen. In additive white Gaussian noise
(AWGN) channels, orthogonality among the subcarriers sk′
and sk 6=k′ is a requirement to recover the information Ak at
the receiver without noise amplification. In addition to or-
thogonality, spectral efficiency, spectral leakage, the peak-to-
average power ratio (PAPR), robustness against fading and for
time- and frequency-offsets are of importance as well.

2.1. A Fourier based signal set

The dominant signal set in time-invariant signal analysis and
communications is based on complex exponentials,

sk,F(t)
∆
= ej2πk

t
Ts t ∈ [−Ts/2, Ts/2] , (2)

where j is the imaginary unit. The symbol time Ts can be
chosen in correspondence with the channel conditions; e.g.
based on the duration of the channel impulse response. The
Wigner distribution function (WDF) is used to provide a two-
dimensional joint time-frequency distribution W (t, ω) of the
signal sk(t) [7, 8]:
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Fig. 1. Illustration of the time-frequency distribution - by means of the Wigner distribution function (WDF) [7] - of four lowest
order signals of the (a) Fourier basis (b) Hermite basis and (c) Fourier-Hermite signal set. The gray lines indicate the -30dB,
-60dB and -100dB levels of the WDF. The noisy pattern in (a) shows the -30dB contours of some sidelobes.

W (t, ω)
∆
=

1

2π

∫ ∞
−∞

sk

(
t+

t′

2

)
sk

(
t− t′

2

)
e−jωt

′
dt′ .

(3)
The strict time-limitedness of the signals sk,F(t) leads to poor
localization in frequency as shown by the WDF in Fig. 1a.

2.2. A Hermite based signal set

Hermite functions are characterized by oscillations both in
time and frequency. An orthonormal signal set consisting of
Hermite functions sk,H(t) is defined by [4];

sk,H(t)
∆
=hk

(
t

Ts

)
=

1√
2kk!
√
π · Ts

·Hk

(
t

Ts

)
· e−

t2

2T2
s

with Hk(t) = (−1)k et
2 dk

dtk

(
e−t

2
)
. (4)

As stated in Section 1, a Hermite function hk(t) of order k is
an eigenfunction of the unitary (fractional) Fourier transform
with eigenvalue λk [3];

Fα {hk(t)} (u)
∆
=

∫ ∞
−∞

Kα(t, u)hk(t)dt = λkhk(u), (5)

where Kα is the kernel of the FrFT;

Kα(t, u)
∆
=


√

1−j cot(α)
2π · ej u

2+t2

2 cot(α) · e−jut csc(α)

δ(t− u) if α = p · 2π, p ∈ Z
δ(t+ u) if α = π + p · 2π, p ∈ Z .

The FrFT rotates the signal presentation in time-frequency
over an angle α with the time-axis and is periodic with 2π.
The WDFs of four lowest order Hermite functions are shown
in Fig. 1b. The -30dB and -60dB levels of the WDF show that
Hermite functions have their energy localized in a relatively
small time-bandwidth area compared to Fourier basis signals.

2.3. The Fourier-Hermite signal set

The perfect time-frequency localization as well as the dis-
cussed eigenfunction properties of Hermite functions justify
our interest in this signal set for communications. However,
a primary challenge is the order-dependent signal-behavior of
Hermite functions. Lower order Hermite functions - like the
zeroth order Gaussian signal - are known to be robust against
a time-frequency offset. This is in contrast to higher order
Hermite functions, which become increasingly sensitive to
a time-frequency offset. The approach taken is to average
the properties of different Hermite functions by construct-
ing a new signal set where each signal is a weighted sum of
Hermite functions. By applying an orthogonal transform to
orthonormal Hermite functions, a new orthogonal signal set
is obtained. The inverse discrete Fourier transform (DFT) is
used because of the cyclic properties of the Fourier basis, but
other orthogonal transforms may prove useful as well. We
now define a set of K Fourier-Hermite signals sk,FH(t) as,

sk,FH(t)
∆
=

1

K

K−1∑
n=0

ej2π
k·n
K hn(t), (6)

which can be written in matrix-form. E.g., if K = 4 we get


s0,FH(t)
s1,FH(t)
s2,FH(t)
s3,FH(t)

 =
1

4
·


1
1
1
1

1
j
−1
−j

1
−1
1
−1

1
−j
−1
j

 ·

h0(t)
h1(t)
h2(t)
h3(t)

 . (7)

The signals sk,FH are mutually orthogonal and their time-
frequency distribution is shown in Fig. 1c for K = 4 and
in Fig. 3 for K = 32. The ‘sidelobes’ of the Fourier-Hermite
pulses are in-band in contrast to conventional OFDM signals
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Fig. 2. Overview of the generation of a baseband transmit signal by modulation of Fourier-Hermite signals.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

t/Ts [s]

ω
. T

s [r
ad

/s
]

−1
00

−100

−6
0

−60
−30

Fig. 3. The Wigner distribution function (WDF) of 24
Fourier-Hermite signals out of a set of 32 (K = 32) exhibits
in-band ‘sidelobes’. The gray lines indicate the -30dB, -60dB
and -100dB levels of the WDF.

where part of the sidelobes are out-of-band. Note that an
equivalent description of the signals sk,FH(t) is obtained by
time-frequency rotated versions of s0,FH(t), i.e.;

sk,FH(t) = F
2πk
K

(
K−1∑
n=0

hn(t)

)
for k = 0 . . .K − 1. (8)

Concluding, a Fourier-Hermite signal set with K signals con-
sists of one signal which is the sum of K Hermite functions
and there areK−1 time-frequency rotated versions. An illus-
tration of the generation and modulation of Fourier-Hermite
signals is provided in Fig. 2.

3. PERFORMANCE ASSESSMENT

3.1. Spectral efficiency

The Fourier-Hermite signal set has a time-bandwidth product
proportional to the number of Hermite functions used in the
set [2]. Hermite and Fourier-Hermite functions are neither

strictly time-limited nor strictly band-limited. Although de-
pendent on the exact time-duration and bandwidth definitions
used, Fig. 3 reveals that a set of 32 Fourier-Hermite signals
has the larger amount of energy contained in time-frequency
area with a radius of 8. The time-bandwidth product for
these 32 signals is approximately π · 82/ (2 · π) = 32. Given
quadrature modulation, Fourier-Hermite signals, similar to
OFDM, allow for roughly 2 degrees of freedom per unit time-
bandwidth. However, efficiently filling up the time-frequency
plane by Fourier-Hermite signal sets is more problematic due
to the circular shape of the time-frequency distribution. In
contrast, the Fourier basis signals and in particular orthogonal
frequency division multiple access (OFDMA) enable multi-
ple spectrum users to communicate with maximum spectral
efficiency, under the assumption of perfect timing and fre-
quency synchronization among spectrum users.

In practice, perfect timing and frequency synchroniza-
tion is often not supported by the users or hard to attain.
When multiple users are not perfectly synchronized, it is of
importance to limit mutual interference among users. As
can be deducted from Fig. 1a-1c, the time-frequency local-
ization of (Fourier-)Hermite functions is considerably better
than for conventional Fourier-based signals. Therefore, when
spectrum users are unsynchronized, a communication system
employing Fourier-Hermite signals could be beneficial over
Fourier basis signals.

3.2. Robustness against a time-frequency offset

The (narrowband) ambiguity function (AF)Af,g(ν, τ) of two
functions f(t) and g(t) evaluates the matched filter output in
case of a time-frequency shifted signal [7, 8].

Af,g (ν, τ)
∆
=

∫ ∞
−∞

f
(
t+

τ

2

)
· g
(
t− τ

2

)
ejνtdt . (9)

The AF is used to calculate the inter-carrier interference for a
signal set which is affected by a time-frequency shift due to,
for example, time offsets or Doppler shifts. We have per-
formed simulations using signal sets based on Fourier sig-
nals sk,F, Hermite functions sk,H and Fourier-Hermite signals
sk,FH. The signals are modulated by QPSK. With K = 4
the auto-ambiguity function for s0,FH is shown in Fig. 4.
Based on M symbols with M = 500, the average signal-
to-interference ratio (SIR) has been calculated as a function
of ν and τ ;



SIR(ν, τ)
∆
=

1

K

K−1∑
k=0

1
M

M−1∑
m=0

∣∣AAksk(t),sk(t) (ν, τ)
∣∣2

1
M

M−1∑
m=0

∣∣∣A∑
k 6=i Aisi(t),sk(t) (ν, τ)

∣∣∣2 .
(10)

The SIR with varying τ and zero frequency shift as well as
the SIR with varying ν with zero time lag has been simu-
lated for K = 4 and K = 32 and are shown in Fig. 5.
The signals have been heavily oversampled to approximate
continuous-time signals and the symbol time Ts of the Fourier
basis signals has been adjusted to have an AF with compa-
rable sensitivity. In line with our initial goal and as visible
in Fig. 5, the SIR as a function of time-lag and frequency-
shift is considerably better for Fourier-Hermite signals than
for Hermite functions. The SIRs based on the sets of Fourier-
Hermite and Fourier basis signals are quite similar for K = 4
and for higher K the Fourier-Hermite basis are slightly more
robust against a time-frequency offset than the Fourier ba-
sis. As a remark, the SIR per subcarrier reveals that for large
K some Fourier-Hermite signals become more sensitive to a
time-offset and others become more sensitive to a frequency-
offset (which could also be concluded from Fig. 3).
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Fig. 4. Auto-ambiguity function of sk=0,FH when K = 4;
side-view (left) and top-view (right). The auto-ambiguity
functions for sk 6=0,FH are equal to sk=0,FH, but rotated.

4. RELATION TO PRIOR WORK

Better time-frequency localization has been pursued by pro-
late spheroidal wavefunctions (PSWFs) [2], Gabor frame the-
ory [9], wavelets and filter bank multi-carrier systems [10].
Hermite functions play to some extent a role in all these dif-
ferent research fields; they are a ‘subset’ of the PSWFs [2],
they are recently analyzed as (super)frames for multi-carrier
signals [9, 11] and as pulseshaping filter for filterbank multi-
carrier systems [12]. As pointed out by Kozek and Molisch,
Hermite functions have a nice sharp concentration of the AF
proportional to the order of the Hermite function [5]. How-
ever, the sharp concentration also causes inter-carrier inter-
ference in case of a slight synchronization error, which is the
primary problem addressed in this paper. Comparative anal-
ysis of the performance in (doubly) dispersive mobile radio
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Fig. 5. The average signal-to-interference ratio (SIR) is
shown for a set of Fourier (dashed), Hermite (dotted) and
Fourier-Hermite signals (solid) as a function of either time
lag τ (left) or frequency shift ν (right). The upper and lower
row show the SIR plots for K = 4 and K = 32, respectively.

channels of Fourier-Hermite signals with OFDM, PSWFs and
wavelets is aimed for. For sending multiple sets of Fourier-
Hermite signals the work in [11] can be complementary to
this paper.

5. CONCLUSIONS

The proposed set of Fourier-Hermite signals are constructed
by an inverse DFT operation on the Hermite basis. The ob-
tained signals are well localized, orthogonal, have a high
spectral efficiency and a robustness against synchronization
errors which is similar to the robustness of Fourier basis
signals. In contrast to truncated Fourier basis signals as ap-
plied in OFDM, the sidelobes of Fourier-Hermite signals are
in-band rather than out-of-band. Additional research is rec-
ommended to assess the performance in various mobile radio
channels and to further investigate variations on the proposed
signal set. Based on discussed properties and initial results,
the Fourier-Hermite signal set is a promising candidate for
communications in spectrum-scarce environments and may
prove useful in other contexts as well.
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