
ar
X

iv
:1

30
3.

19
11

v4
  [

cs
.IT

]  
15

 J
ul

 2
01

4
1

Multiuser MISO Beamforming for Simultaneous
Wireless Information and Power Transfer

Jie Xu, Liang Liu, and Rui Zhang

Abstract— Simultaneous wireless information and power trans-
fer (SWIPT) is anticipated to have abundant applications in
future wireless networks by providing wireless data and energy
access at the same time. In this paper, we study a multiuser
multiple-input single-output (MISO) broadcast SWIPT system,
where a multi-antenna access point (AP) sends wireless in-
formation and energy simultaneously via spatial multiplexing
to multiple single-antenna receivers each of which implements
information decoding (ID) or energy harvesting (EH). We aim
to maximize the weighted sum-power transferred to all EH
receivers subject to a given set of minimum signal-to-interference-
and-noise ratio (SINR) constraints at different ID receivers.
In particular, we consider two types of ID receivers (referred
to as Type I and Type II, respectively) without or with the
capability of cancelling the interference from (a priori known)
energy signals. For each type of ID receivers, we formulate
the joint information and energy transmit beamforming design
as a non-convex quadratically constrained quadratic program
(QCQP). First, we obtain the globally optimal solutions for our
formulated QCQPs by applying an optimization technique so-
called semidefinite relaxation (SDR). It is shown via SDR that
under the condition of independently distributed user channels,
no dedicated energy beam is used for the case of Type I ID
receivers to achieve the optimal solution; while for the case
of Type II ID receivers, employing no more than one energy
beam is optimal. Next, in order to provide further insight to
the optimal design, we establish a new form of the celebrated
uplink-downlink duality for our studied downlink beamform ing
problems, and thereby develop alternative algorithms to obtain
the same optimal solutions as by SDR. Finally, numerical results
are provided to evaluate the performance of proposed optimal
beamforming designs for MISO SWIPT systems, as compared to
other heuristically designed schemes.

Index Terms—Simultaneous wireless information and power
transfer (SWIPT), energy harvesting, energy beamforming,
semidefinite relaxation (SDR), uplink-downlink duality.

I. I NTRODUCTION

Energy harvesting from the environment is a promising
solution to provide cost-effective and perpetual power supplies
for wireless networks. Besides other well known environ-
mental sources such as wind and solar power, ambient radio
signals is a viable new source for energy harvesting. On the
other hand, radio signals have been widely used for wireless
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information transmission. As a result, a unified study on si-
multaneous wireless information and power transfer (SWIPT)
has recently drawn significant attention, which is not only
theoretically intricate but also practically valuable forenabling
both the wireless data and wireless energy access to mobile
terminals at the same time.

There have been a handful of prior studies on SWIPT in
the literature (see e.g. [2]–[9]). In [2], SWIPT in a point-to-
point single-antenna additive white Gaussian noise (AWGN)
channel was first studied from an information-theoretic stand-
point. This work was then extended to frequency-selective
AWGN channels in [3], where a non-trivial tradeoff between
information rate and harvested energy was shown by varying
power allocation over frequency. The authors in [4] studied
SWIPT for fading AWGN channels subject to time-varying
co-channel interference, and proposed a new principle termed
“opportunistic energy harvesting” where the receiver switches
between harvesting energy and decoding information based on
the wireless channel condition and interference power level.
In [5], various practical receiver architectures for SWIPTwere
investigated, where a new integrated information and energy
receiver design was proposed. Moreover, motivated by the
great success of multi-antenna techniques in wireless commu-
nication, SWIPT for multiple-input multiple-output (MIMO)
channels has been investigated in [6]–[9]. In [6], Zhang and
Ho first investigated SWIPT for the MIMO broadcast channel
(BC) with a multi-antenna transmitter sending informationand
energy simultaneously to one pair of energy receiver and infor-
mation receiver, each with single or multiple antennas. Under
two practical setups where information and energy receivers
are either separated or co-located, the optimal precoder designs
were developed to achieve various information and energy
transmission tradeoffs. The study in [6] was also extended to
the cases with imperfect channel state information (CSI) atthe
transmitter in [7] and MIMO relay broadcast channels in [8].
In [9], a transmitter design based on random beamforming was
proposed for a multiple-input single-output (MISO) SWIPT
system with artificial channel fading generated for improving
the performance of opportunistic information decoding (ID)
versus energy harvesting (EH) over quasi-static channels,
when the CSI was not available at the transmitter.

Despite of the above theoretical advance, in order to imple-
ment SWIPT systems in practice, many challenging issues still
remain to be addressed. For example, conventional wireless
information and energy receivers were separately designedto
operate with very different power requirements (e.g., an EH
receiver for a low-power sensor requires a received power
of 0.1 mW or −10 dBm for real-time operation, while ID
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Fig. 1. A MISO broadcast system for simultaneous wireless information and
power transfer (SWIPT), where EH receivers are close to the AP for effective
energy reception.

receivers such as cellular and Wi-Fi mobile receivers often
operate with a received power less than−50 dBm [6]). As a
result, existing EH circuits for radio signals are not yet able
to be used for ID directly and vice versa. This thus motivates
our work in this paper to investigate a practical design of the
MISO broadcast system for SWIPT as shown in Fig. 1, where
a multi-antenna access point (AP) transmits simultaneously to
multiple single-antenna receivers each of which implements
EH or ID, but not both at the same time. In particular, we
consider a receiver location based transmission scheme, where
the EH receivers (e.g., sensors and other low-power devices)
are deployed sufficiently close to the AP, while the ID receivers
(e.g., tablet, cell phone and laptop) can be located more
distant from the AP. Notice that the proposed transmission
scheme resolves the mismatched power issue for EH and ID
receivers as mentioned above, and thus makes the SWIPT
system realizable with existing EH and ID receivers. Also
note that the location based transmission should be designed
in practice by taking into account the potential mobility of
receivers to ensure certain fairness in energy and information
delivery over time. Under this setup, we aim to jointly de-
sign the beamforming weights and power allocation at the
transmitter to optimally balance the performance tradeoffs
among different information/energy receivers. Specifically, we
study the joint information and energy transmit beamforming
design to maximize the weighted sum-power transferred to
all EH receivers subject to a given set of minimum signal-to-
interference-and-noise ratio (SINR) constraints at different ID
receivers. In particular, we consider two types of ID receivers,
namely Type I and Type II receivers, whichdo not possess
andpossess the capability of cancelling the interference from
simultaneously transmitted energy signals (whose waveforms
are assumed to bea priori known at the transmitter and
all Type II ID receivers), respectively. For each type of ID
receivers, the design problem is formulated as a quadratically
constrained quadratic program (QCQP), which is non-convex
and thus difficult to be solved optimally by standard convex
optimization techniques [10].

First, we obtain the optimal solutions to the formulated non-
convex QCQPs for two types of ID receivers by applying
an optimization technique so-called semidefinite relaxation

(SDR), and show that under the condition of independently
distributed user channels, the SDRs are tight for the formulated
non-convex QCQPs.It is revealed that for the case of Type I
ID receivers, no dedicated energy beam is used to achieve the
optimal solution, while for the case of Type II ID receivers,
employing no more than one energy beam is optimal. It
is worth noting that SDR has been widely applied in the
MISO broadcast channel (see e.g. [10], [11] and the references
therein) to obtain efficient (and even optimal under certain
conditions) beamforming solutions for various information
transmission problems; however, the existing results are not
directly applicable to our newly formulated problems with the
joint energy and information beamforming optimization.

Next, in order to gain further insight to the optimal joint
energy and information beamforming design, we reformulate
the QCQP problem for each ID receiver type to an equiv-
alent transmit power minimization problem for the MISO-
BC with information transmission onlyby leveraging the
fact that the SDRs are tight for both QCQPs, based upon
which we establish a new form of the celebrated “uplink-
downlink” duality result. By applying the new duality, we
develop alternative algorithms based on iterative uplink and
downlink transmit optimization to obtain the same optimal
downlink beamforming solutions as by SDR. It is worth
noting that the uplink-downlink duality has been extensively
investigated in the literature to solve non-convex transmit
beamforming optimization problems in MISO/MIMO BCs for
e.g. SINR balancing in [12], transmit power minimization
in [13], [14], and capacity region computation in [15]. Es-
pecially, for transmit power minimization in MISO-BC with
given SINR constraints for information transfer only, it was
shown in [14] that the downlink beamforming problem can
be transformed into its dual multiple-access-channel (MAC)
problem with an equivalent noise at the receiver characterized
by a certain positive semidefinite covariance matrix, which
is then solved by applying a fixed-point iteration [16]. In
this paper, this particular type of uplink-downlink duality is
extended to the more challenging case when the equivalent
noise covariance matrix in the dual MAC is not necessarily
positive semidefinite,1 as a result of the new consideration
of joint information and energy transmission,which renders
a non-convex beamforming problem that maximizes a convex
(quadratic) objective function. To the authors’ best knowledge,
the uplink-downlink duality for this new setup has not been
studied before.

The remainder of this paper is organized as follows. Section
II introduces the system model and problem formulations.
Sections III and IV present the optimal solutions for the
formulated problems based on the approaches of SDR and
uplink-downlink duality, respectively. Section V provides nu-
merical examples to validate our results and compare the
performances. Finally, Section VI concludes the paper.

Notations: Boldface letters refer to vectors (lower case)
or matrices (upper case). For a square matrixS, tr(S)

1Notice that the covariance matrix of any practical noise cannot be non-
positive semidefinite; however, this does not contradict the non-positive
semidefinite noise in our case since it is just a mathematicalequivalence,
and thus needs not be physically realizable.
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and S−1 denote its trace and inverse, respectively, while
S � 0, S � 0, S ≺ 0 and S � 0 mean thatS is
positive semidefinite, negative semidefinite, negative definite
and non-positive semidefinite, respectively. For an arbitrary-
size matrixM , rank(M), M †, MH , andMT denote the
rank, pseudoinverse, conjugate transpose and transpose ofM ,
respectively, andM ik denotes the element in theith row
and kth column ofM . I and 0 denote an identity matrix
and an all-zero matrix, respectively, with appropriate dimen-
sions. The distribution of a circularly symmetric complex
Gaussian (CSCG) random vector with mean vectorx and
covariance matrixΣ is denoted byCN (x,Σ); and∼ stands
for “distributed as”.Cx×y denotes the space ofx×y complex
matrices.R denotes the set of real numbers.E(·) denotes
the statistical expectation.‖x‖ denotes the Euclidean norm
of a complex vectorx, and |z| denotes the magnitude of a
complex numberz. ρ(B) denotes the spectral radius of a
matrixB, which is defined as the maximum absolute value of
the eigenvalues ofB. For two real vectorsx andy, x ≥ y

means thatx is greater than or equal toy in a component-wise
manner.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiuser MISO downlink system for SWIPT
over one single frequency band as shown in Fig. 1. It is as-
sumed that there areKI ID receivers andKE EH receivers, de-
noted by the setsKI = {1, . . . ,KI} andKE = {1, . . . ,KE},
respectively. Also assume that the AP is equipped withM

antennas,M > 1, and each receiver is equipped with one
single antenna. In this paper, we consider linear precoding
at the transmitter for SWIPT and each ID/EH receiver is
assigned with one dedicated information/energy transmission
beam without loss of generality. Hence, the transmitted signal
from the AP is given by

x =
∑

i∈KI

wis
ID
i +

∑

j∈KE

vjs
EH
j , (1)

wherewi ∈ CM×1 and vj ∈ CM×1 are the beamforming
vectors for ID receiveri and EH receiverj, while sIDi and
sEH
j are the information-bearing signal for ID receiveri

and energy-carrying signal for EH receiverj, respectively.
For information signals, Gaussian inputs are assumed, i.e.,
sIDi ’s are independent and identically distributed (i.i.d.) CSCG
random variables with zero mean and unit variance denoted
by sIDi ∼ CN (0, 1), ∀i ∈ KI . For energy signals, sincesEH

j

carries no information, it can be any arbitrary random signal
provided that its power spectral density satisfies certain regu-
lations on microwave radiation. Without loss of generality, we
assume thatsEH

j ’s are independent white sequences from an
arbitrary distribution withE

(

|sEH
j |2

)

= 1, ∀j ∈ KE . Suppose
that the AP has a transmit sum-power constraintP ; from (1)
we thus haveE(xHx) =

∑

i∈KI

‖wi‖2 +
∑

j∈KE

‖vj‖2 ≤ P .

We assume a quasi-static fading environment and denote
hi ∈ C1×M andgj ∈ C1×M as the channel vectors from the
AP to ID receiveri and EH receiverj, respectively,where
‖hi‖2 = σ2

h,i and ‖gj‖2 = σ2
g,j with σ2

g,j ≫ σ2
h,i, ∀i ∈

KI , j ∈ KE (to be consistent with our proposed distance-
based information/energy transmission scheme; see Fig. 1).
We also make the following assumptions throughout the paper
on the channel independence of different users, which are
valid for practical wireless channels in e.g. rich-scattering
environments.

Assumption 1 (independently distributed user channels):
The channel vectorhi’s and gj ’s are independently drawn
from a set of continuous distribution functionfhi

(hi)’s and
fgj (gj)’s, respectively,i ∈ KI , j ∈ KE . Furthermore, we
assume that for anyd × M matrix F with 0 < d ≤ M , in
which the d row vectors constitute any subset of channel
vectors fromhi’s andgj ’s, it holds with probability one that:
i) rank (F ) = d; and ii) the d (ordered) non-zero singular
values ofF , denoted byτ1, · · · , τd, are strictly decreasing,
i.e., τ1 > · · · > τd > 0.
It is further assumed that the AP knows perfectly the instanta-
neous values ofhi’s andgj ’s, and each receiver knows its own
instantaneous channel.2 The discrete-time baseband signal at
the ith ID receiver is thus given by

yIDi = hix+ zi, ∀i ∈ KI , (2)

wherezi ∼ CN (0, σ2
i ) is the i.i.d. Gaussian noise at theith

ID receiver. With linear transmit precoding, each ID receiver
is interfered with by all other non-intended information beams
and energy beams. Since energy beams carry no information
but instead pseudorandom signalswhose waveformscan be
assumed to be known at both the AP and each ID receiver
prior to data transmission, their resulting interference can be
cancelled at each ID receiver if this additional operation is
implemented. We thus consider two types of ID receivers,
namely Type I and Type II ID receivers, which do not possess
and possess the capability of cancelling the interference due to
energy signals, respectively.Furthermore, we assume that the
interference precancellation at type II ID receivers is perfect.
This assumption is practically valid since each ID receiver
knows its own instantaneous channel, and the received energy
signals at each ID receiver have the similar dynamic range
as the information signals by propagating through the same
wireless channel.Therefore, for theith ID receiver of Type I
or Type II, the corresponding SINR is accordingly expressed
as

SINR
(I)
i =

|hiwi|2
∑

k 6=i,k∈KI

|hiwk|2 +
∑

j∈KE

|hivj |2 + σ2
i

, ∀i ∈ KI ,

(3)

SINR
(II)
i =

|hiwi|2
∑

k 6=i,k∈KI

|hiwk|2 + σ2
i

, ∀i ∈ KI . (4)

2This requires each receiver to perform channel estimation followed by
channel feedback to the transmitter, which consumes additional energy.In
practice, there exists a design tradeoff at the EH receiver:more accurate
channel estimation and feedback may lead to higher harvested energy due
to the transmit beamforming gain, but also induce higher energy consumption
that can even offset the harvested energy gain (for detaileddiscussions on this
issue, please refer to [17]).For simplicity, we assume in this paper that such
energy consumption at EH receivers is negligible compared to their harvested
energy.
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On the other hand, for wireless energy transfer, due to the
broadcast property of wireless channels, the energy carried by
all information and energy beams, i.e., bothwi’s andvj ’s, can
be harvested at each EH receiver. As a result, the harvested
power for thejth EH receiver, denoted byQj , is proportional
to the total power received [6], i.e.,

Qj = ζ

(

∑

k∈KI

|gjwk|2 +
∑

k∈KE

|gjvk|2
)

, ∀j ∈ KE , (5)

where0 < ζ ≤ 1 denotes the energy harvesting efficiency.
Our aim is to maximize the weighted sum-power transferred

to all EH receivers subject to individual SINR constraints at
different ID receivers, given byγi, i ∈ KI . Denoteαj as the
given energy weight for EH receiverj, αj ≥ 0, where larger
weight value ofαj indicates higher priority of transferring
energy to EH receiverj as compared to other EH receivers.
Define G = ζ

∑

j∈KE

αjg
H
j gj . Then from (5) the weighted

sum-power harvested by all EH receivers can be expressed
as

∑

j∈KE

αjQj =
∑

i∈KI

wH
i Gwi +

∑

j∈KE

vH
j Gvj . The design

problems by assuming that all ID receivers are of either Type
I or Type II are thus formulated accordingly as follows.

(P1) : max
{wi},{vj}

∑

i∈KI

wH
i Gwi +

∑

j∈KE

vH
j Gvj

s.t. SINR
(I)
i ≥ γi, ∀i ∈ KI

∑

i∈KI

‖wi‖2 +
∑

j∈KE

‖vj‖2 ≤ P.

(P2) : max
{wi},{vj}

∑

i∈KI

wH
i Gwi +

∑

j∈KE

vH
j Gvj

s.t. SINR
(II)
i ≥ γi, ∀i ∈ KI

∑

i∈KI

‖wi‖2 +
∑

j∈KE

‖vj‖2 ≤ P.

Notice that the only difference between(P1) and(P2) lies in
the achievable SINR expression for each ID receiveri ∈ KI .
Both problems(P1) and (P2) can be shown to maximize a
convex quadratic function withG being positive semidefinite,
i.e., G � 0, subject to various quadratic constraints; thus
they are both non-convex QCQPs [21], for which the globally
optimal solutions are difficult to be obtained efficiently in
general.

Prior to solving these two problems, we first have a check on
their feasibility, i.e., whether a given set of SINR constraints
for ID receivers can be met under the given transmit sum-
power constraintP . It can be observed from(P1) and (P2)
that both problems are feasible if and only if their feasibility
is guaranteed by ignoring all the EH receivers, i.e., setting
αj = 0 andvj = 0, ∀j ∈ KE . It then follows thatSINR(I)i =

SINR
(II)
i , ∀i ∈ KI . For convenience, we denoteSINR(I)i =

SINR
(II)
i , SINRi, ∀i ∈ KI in this case. Thus, the feasibility

of both(P1) and(P2) can be verified by solving the following

problem:

find {wi}
s.t. SINRi ≥ γi, ∀i ∈ KI

∑

i∈KI

‖wi‖2 ≤ P. (6)

Problem (6) can be solved bystandard convex optimization
techniques such as theinterior point method via transforming
it into a second-order cone program (SOCP) [13] or by an
uplink-downlink duality based fixed-point iteration algorithm
[12].

Next, we consider the other extreme case with no ID
receivers, i.e.,KI = φ, where by settingwi = 0, γi = 0, ∀i ∈
KI , both (P1) and (P2) are reduced to

max
{vj}

∑

j∈KE

vH
j Gvj

s.t.
∑

j∈KE

‖vj‖2 ≤ P. (7)

Let ξE andvE be the dominant eigenvalue and its correspond-
ing eigenvector ofG, respectively. Then it can be easily shown
that the optimal value of (7) isξEP , which is attained by
settingvj =

√
qjvE , ∀j ∈ KE , for any set ofqj ≥ 0, ∀j ∈ KE

satisfying
∑

j∈KE

qj = P . Accordingly, all energy beams are

aligned to the same direction asvE . Thus, without loss of
optimality, we can setvj =

√
PvE for any j ∈ KE and

vk = 0, ∀k ∈ KE , k 6= j. For convenience, we refer to
the beamformer in the form of

√
PvE as the optimal energy

beamformer (OeBF).
Finally, we consider another special case with allγi’s being

sufficiently small (but still non-zero in general), namely the
“OeBF-feasible” case, in which aligning all information beams
to the OeBF is feasible for both(P1) and(P2). In other words,
there exists a solution to the feasibility problem (6) givenby
wi =

√
pivE , ∀i ∈ KI with pi ≥ 0, ∀i ∈ KI satisfying

∑

i∈KI

pi ≤ P , i.e., the following problem has a feasible solution

given by{pi}.

find {pi}

s.t.
pi|hivE |2

∑

k 6=i,k∈KI

pk|hivE |2 + σ2
i

≥ γi, ∀i ∈ KI

∑

i∈KI

pi ≤ P. (8)

In this case, it is easy to verify that the optimal values
of both problems(P1) and (P2) are ξEP , which is the
same as that of problem (7) and can be attained bywi =
√

P∑

k∈KI

pk
pivE , ∀i ∈ KI satisfying

∑

i∈KI

‖wi‖2 = P , and

vj = 0, ∀j ∈ KE , i.e., no dedicated energy beam is needed to
achieve the maximum weighted sum-power for EH receivers.
To check whether the OeBF-feasible case occurs or not, we
only need to solve the feasibility problem in (8) which is
a simple linear program (LP). Therefore, in the rest of this
paper, we will mainly focus on the unaddressed non-trivial
case so far when(P1) and(P2) are both feasible but aligning
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all information beams to the OeBF is infeasible for both
problems, unless otherwise specified.

III. O PTIMAL SOLUTION VIA SEMIDEFINITE RELAXATION

In this section, we study the two non-convex QCQPs in
(P1) and (P2), and derive their optimal solutions via SDR.
For non-convex QCQPs, it is known that SDR is an efficient
approach to obtain good approximate solutions in general [10].
In the following, by applying SDR and exploiting the specific
problem structures, the globally optimal solutions for both
(P1) and (P2) are obtained efficiently.

First, consider problem(P1) for the case of Type
I ID receivers. Define the following matrices:W i =
wiw

H
i , ∀i ∈ KI andWE =

∑

j∈KE

vjv
H
j . Then, it follows that

rank(W i) ≤ 1, ∀i ∈ KI and rank(WE) ≤ min(M,KE).
By ignoring the above rank constraints onW i’s and WE ,
the SDR of(P1) is given by

(SDR1) :

max
{W i},W E

∑

i∈KI

tr(GW i) + tr(GWE)

s.t.
tr(hH

i hiW i)

γi
−

∑

k 6=i,k∈KI

tr(hH
i hiW k)

− tr(hH
i hiWE)− σ2

i ≥ 0, ∀i ∈ KI
∑

i∈KI

tr(W i) + tr(WE) ≤ P

W i � 0, ∀i ∈ KI , WE � 0.

Let the optimal solution of(SDR1) beW ⋆
i , ∀i ∈ KI andW ⋆

E .
Then we have the following proposition.

Proposition 3.1: Under the condition of independently dis-
tributed user channels given in Assumption 1,the optimal
solution of(SDR1) for the case of Type I ID receivers satisfies:
rank(W ⋆

i ) = 1, ∀i ∈ KI , andW ⋆
E = 0 with probability one.

Proof: See Appendix A.
From Proposition 3.1, it follows that the optimal solution

of (SDR1) satisfies the desired rank constraints, and thus the
globally optimal solution of(P1) can always be obtained by
solving (SDR1). Note that(SDR1) is a semidefinite program
(SDP), which can be efficiently solved by existing software,
e.g., CVX [22]. Furthermore, it is observed that the optimal
solution satisfies thatW ⋆

E = 0 for (SDR1) or equivalently
vj = 0, ∀j ∈ KE for (P1), which implies that no dedicated
energy beam is needed for achieving the maximum weighted
sum harvested power in(P1). This can be intuitively explained
as follows. Since Type I ID receivers cannot cancel the inter-
ference from energy beams (if any), employing energy beams
will increase the interference power and as a result degradethe
SINR at ID receivers. Thus, the optimal transmission strategy
is to adjust the weights and power allocation of information
beams only to maximize the weighted sum-power transferred
to EH receivers.

Next, consider problem(P2) for the case of Type II ID
receivers. Similar to(P1), the SDR of(P2) can be expressed

as

(SDR2) :

max
{W i},W E

∑

i∈KI

tr(GW i) + tr(GWE)

s.t.
tr(hH

i hiW i)

γi
−

∑

k 6=i,k∈KI

tr(hH
i hiW k)

− σ2
i ≥ 0, ∀i ∈ KI

∑

i∈KI

tr(W i) + tr(WE) ≤ P

W i � 0, ∀i ∈ KI , WE � 0.

Let the optimal solution of(SDR2) beW ∗
i , ∀i ∈ KI andW ∗

E .
We then have the following proposition.

Proposition 3.2: Under the condition of independently dis-
tributed user channels given in Assumption 1,the optimal
solution of (SDR2) for the case of Type II ID receivers
satisfies:rank(W ∗

i ) = 1, ∀i ∈ KI , rank(W ∗
E) ≤ 1 with

probability one; furthermore, it holds thatW ∗
E = q∗vEv

H
E

with 0 ≤ q∗ ≤ P .
Proof: See Appendix B.

Based on Proposition 3.2, we can obtain the globally opti-
mal solution of(P2) by solving (SDR2) via CVX. Meanwhile,
sinceW ∗

E = q∗vEv
H
E , all energy beams should be aligned

to vE , the same direction as the OeBF. Similar to problem
(7), in this case, we can choose to send only one energy beam
to minimize the complexity of beamforming implementation
at the transmitter as well as the energy signal interference
cancellation at all ID receivers by settingvj =

√
q∗vE for

any j ∈ KE andvk = 0, ∀k ∈ KE , k 6= j.
By comparing the optimal solutions for(P1) and (P2),

we can see that their main difference lies inwhether energy
beamforming is employed or not. Note that the optimal value
of (P2) is in general an upper bound on that of(P1) since
any feasible solution of(P1) is also feasible for(P2), but
not vice versa. Ifq∗ = 0 in Proposition 3.2, then the upper
bound is tight; however, ifq∗ > 0, then a higher weighted
sum harvested power is achievable for EH receivers with Type
II ID receivers. Therefore, the benefit of using Type II ID
receivers can be realized by employing no more than one
energy beam and at the cost of implementing an additional
interference cancellation (witha priori known energy signals)
at ID receivers. Nevertheless, it is worth pointing out an
interesting case with one single ID receiver, for which energy
beamforming is always not needed, as stated in the following
proposition.

Proposition 3.3: For the case of Type II ID receivers, if
KI = 1, then the optimal solution of(SDR2) satisfies that
W ∗

E = 0.
Proof: See Appendix C.

Remark 3.1: It is worth pointing out that in some special
channel conditions that do not satisfy Assumption 1 (e.g., in
the case of line-of-sight (LOS) user channels some of which
happen to be linearly dependent), the tightness of SDRs for
(P1) and (P2) can still be guaranteed by applying the results
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in [18]. Consider a separable SDP in the following form:

(SSDP) : min
X1,...,XL

L
∑

l=1

tr(BlX l)

s.t.

L
∑

l=1

tr(AmlX l)Dm bm,m = 1, . . . ,M

X l � 0, l = 1, . . . , L,

whereBl, Aml, l = 1, . . . , L,m = 1, . . . ,M are Hermitian
matrices (not necessarily positive semidefinite),bm ∈ R,
Dm ∈ {≤,≥,=},m = 1, . . . ,M , and X l, l = 1, . . . , L,
are Hermitian matrices. Suppose that(SSDP) is feasible and
bounded, and the optimal value is attained. Then(SSDP)
always has an optimal solution(X⋆

1, . . . ,X
⋆
L) such that

L
∑

l=1

(rank(X⋆
l ))

2 ≤ M [18]. By applying this result in

our context, it can be verified that there always exists an
optimal solution for(SDR1) satisfying

∑

i∈KI

(rank(W ⋆
i ))

2
+

(rank(W ⋆
E))

2 ≤ KI + 1, and one for(SDR2) satisfying
∑

i∈KI

(rank(W ∗
i ))

2
+ (rank(W ∗

E))
2 ≤ KI + 1. Meanwhile,

it can be shown from the SINR constraints thatW ⋆
i 6= 0 and

W ∗
i 6= 0, i.e., rank(W ⋆

i ) ≥ 1 andrank(W ∗
i ) ≥ 1, ∀i ∈ KI .

Thus, it follows immediately that an optimal solution satisfy-
ing rank(W ⋆

i ) = 1, ∀i ∈ KI , andrank(W ⋆
E) ≤ 1 should

exist for(P1), while one satisfyingrank(W ∗
i ) = 1, ∀i ∈ KI ,

and rank(W ∗
E) ≤ 1 exists for (P2). In other words, the

SDRs of both(P1) and (P2) are still tight even without
Assumption 1. Note that the tightness of SDRs in the absence
of Assumption 1 can similarly be inferred from [19, Lemma
1.6]. However, in general, rank-reduction techniques needto
be applied to the higher-rank solutions of SDRs to obtain the
rank-one solutions [18].

It is interesting to compare our work with [18] in more
details. Different from [18], which only shows the existence
of rank-one solutions for our problems under general channel
conditions, in Propositions 3.1 and 3.2 we provide more
specific results for the case of independently distributed user
channels (cf. Assumption 1) by applyingnew proof techniques
(see Appendices A and B). In particular, under Assumption
1, our results differ from that in [18] in the following two
main aspects. First, we show that for energy beamforming,
W ⋆

E = 0 holds for (SDR1) and W ∗
E = q∗vEv

H
E holds for

(SDR2) (rather thanrank(W ⋆
E) ≤ 1 andrank(W ∗

E) ≤ 1 as
inferred from [18]), which provides more insight to the optimal
structure of energy beamforming solutions. Second, we show
that the optimal information beamforming solutions of(SDR1)
and (SDR2) are of rank-one with probability one (rather than
the existence of rank-one solutions only from [18]); hence,no
rank-reduction techniques as in [18] need to be applied in our
case.

IV. A LTERNATIVE SOLUTION BASED ON

UPLINK-DOWNLINK DUALITY

In the previous section, we have obtained the globally opti-
mal solutions for our formulated QCQP problems by applying
the technique of SDR. In order to provide further insight

to the optimal solution structure, in this section we propose
an alternative approach for solving the non-convex problems
(P1) and (P2) by applying the principle of uplink-downlink
duality. It is worth noting that the fundamental reason that
some apparently non-convex downlink beamforming problems
(e.g., the transmit power minimization problem in [14]) can
be solved globally optimally via uplink-downlink duality is
that they can be recast as certain convex forms (e.g., see the
SOCP reformulation for the problem in [14]), and thus strong
duality holds for these problems. However, for the two non-
convex QCQPs in(P1) and (P2), we cannot explicitly recast
them as convex problems. Nevertheless, our result in Section
III that the SDRs of(P1) and(P2) are both tight implies that
strong duality may also hold for them. This thus motivates
our investigation of a new form of uplink-downlink duality
for solving these two problems, as will be shown next.

A. Algorithm for (P1) via Uplink-Downlink Duality

Consider (P1) for the case with Type I ID receivers at
first. According to Proposition 3.1and under Assumption 1,
dedicated energy beamforming is not needed to achieve the
optimal solution of(P1); thus, we can setvj = 0, ∀j ∈ KE ,
and accordingly,SINR(I)i = SINR

(II)
i , SINRi, ∀i ∈ KI ,

similar to (6). Hence,(P1) is reformulated as the following
problem.

(P1.1) : max
{wi}

∑

i∈KI

wH
i Gwi

s.t. SINRi ≥ γi, ∀i ∈ KI
∑

i∈KI

‖wi‖2 ≤ P.

By denotingβ ≥ 0 as the dual variable associated with the
transmit sum-power constraint in(P1.1),3 we can express the
dual function of(P1.1) as

f1(β) , max
{wi}

∑

i∈KI

wH
i Gwi − β

(

∑

i∈KI

‖wi‖2 − P

)

s.t. SINRi ≥ γi, ∀i ∈ KI . (9)

Accordingly, the dual problem of(P1.1) is defined as

(P1.2) : min
β≥0

f1(β).

Since (P1.1) is known to be non-convex, weak duality
holds for (P1.1) and (P1.2) in general, i.e., the optimal
value of (P1.2) serves as an upper bound on that of(P1.1).
Nevertheless, motivated by the fact that the SDR of(P1.1) is
tight, the following proposition establishes that strong duality
indeed also holds for(P1.1) and (P1.2).

Proposition 4.1: The optimal value of(P1.1) is the same
as that of(P1.2).

3Here, we consider the partial Lagrangian formulation of(P1.1) by
introducing the dual variable associated with the sum-power constraint only,
which is for the convenience of discussing the uplink-downlink duality in
different cases (see Sections IV-A1a and IV-A1b). Alternatively, one can
derive the same results by directly considering the full Lagrangian formulation
of (P1.1) via introducing dual variables for all constraints, which is commonly
adopted in existing literature on the uplink-downlink duality related works (see
e.g. [13], [14]).
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Fig. 2. Uplink-downlink duality for MISO-BC and SIMO-MAC.

Proof: See Appendix D.
It follows from Proposition 4.1 that problems(P1.1) and

(P1.2) are equivalent. Thus, we can solve problem(P1.1) by
solving problem(P1.2). Specifically, we first solve problem
(9) for obtainingf1(β) with any givenβ ≥ 0, and then search
over β ≥ 0 to find the optimalβ⋆ for minimizing f1(β), as
will be shown in the following two steps, respectively.

1) Obtain f1(β) for given β ≥ 0: Consider problem (9) for
obtainingf1(β) with given β ≥ 0. Problem (9) is equivalent
to the following problem (by discarding the irrelevant constant
term βP ):

g(β) = min
{wi}

∑

i∈KI

wH
i (βI −G)wi

s.t. SINRi ≥ γi, ∀i ∈ KI , (10)

wheref1(β) = βP −g(β). We thus focus on solving problem
(10) to obtaing(β) as follows.

Problem (10) can be solved by considering a MISO-BC
with solely information transmission as shown in the left sub-
figure of Fig. 2, by minimizing the weighted sum transmit
power,

∑

i∈KI

wH
i (βI −G)wi, subject to a set of individual

SINR constraints{γi}. For the MISO-BC, its dual single-input
multiple-output (SIMO) MAC is shown in the right sub-figure
of Fig. 2 by conjugating and transposing the channel vec-
tors, whereKI single-antenna transmitters send independent
information to one common receiver withM antennas. At
transmitteri, i ∈ KI , let λi be its transmit power,̃sIDi be a
CSCG random variable representing its transmitted informa-
tion signal, andhH

i be its channel vector to the receiver. Then
the received signal in the dual SIMO-MAC is expressed as

ỹID =
∑

i∈KI

hH
i

√

λis̃
ID
i + z̃, (11)

where z̃ ∼ CN (0, βI − G) denotes the noise vector at the
receiver. After applying receive beamforming vectorw̃i’s, the
SINRs of different users in the dual SIMO-MAC are then given
by

SINRMAC
i ({w̃i, λi}) =

λiw̃
H
i hH

i hiw̃i

w̃H
i

(

∑

k 6=i,k∈KI

λkh
H
k hk + βI −G

)

w̃i

, ∀i ∈ KI . (12)

The design objective for the dual SIMO-MAC is to minimize
the weighted sum transmit power

∑

i∈KI

λiσ
2
i by jointly op-

timizing the power allocation{λi} and receive beamforming
vectors{w̃i} subject to the same set of SINR constraints{γi}
as in the original MISO-BC given by (10). We thus formulate
the dual uplink problem as

gD(β) = min
{w̃i,λi}

∑

i∈KI

λiσ
2
i

s.t. SINRMAC
i ({w̃i, λi}) ≥ γi, ∀i ∈ KI

λi ≥ 0, ∀i ∈ KI . (13)

Next, we solve the downlink problem (10) for any given
β ≥ 0 by solving the uplink problem (13) via exploiting the
uplink-downlink duality. At first, it is worth noting that ifβ ≥
ξE (recall thatξE is the largest eigenvalue ofG), thenβI −
G � 0 holds, in which case the downlink weighted sum-power
minimization problem in (10) can be recast as an equivalent
SOCP, or solved based on the dual uplink problem in (13)
by the existing algorithm in [14]. However, ifβ < ξE , then it
follows thatβI−G � 0.4 In this case, solving problem (10) is
more involved due to the following reasons. First, the objective
function in (10) becomes non-convex and as a result, problem
(10) cannot be recast as a convex (SOCP) problem as in [14].
Second, the optimal value of problem (10), i.e.,g(β), may
become unbounded from below, e.g., whenβI−G ≺ 0. In the
following, we solve problem (10) for the two cases ofβ ≥ ξE
and 0 ≤ β < ξE , respectively. We first review the uplink-
downlink duality based algorithm in [14] for solving (10) in
the case ofβ ≥ ξE , and then extend this algorithm to solve
problem (10) for the more challenging case of0 ≤ β < ξE .
For convenience, we denote the optimal solutions of problems
(10) and (13) for any givenβ ≥ 0 as {w⋆

i } and {w̃⋆
i , λ

⋆
i },

respectively.
a) Solve Problem (10) for the case of β ≥ ξE (or βI −

G � 0): In this case, problems (10) and (13) can be shown
to be equivalent as in [14]. Thus, we can solve the downlink

4If βI − G � 0, then the receiver noisẽz in (11) for the dual SIMO-
MAC cannot be realizable, since the covariance matrix of anyphysical signal
should be positive semidefinite. Thus, in this case, the receiver noise with
covarianceβI −G � 0 is just a mathematical equivalence, and thus needs
not be practically realizable.
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problem (10) by first solving the uplink problem (13) and then
mapping its solution to that of problem (10).

First, consider the uplink problem (13). Since it can be
shown that the optimal solution of (13) is always achieved
when all the SINR constraints are met with equality [14], it
then follows that the optimal uplink transmit power{λ⋆

i } must
be a fixed point solution satisfying the following equations
[20]:

λ⋆
i = mi ({λ⋆

i }) ,

min
‖w̃i‖=1

γi













w̃H
i

(

∑

k 6=i,k∈KI

λ⋆
kh

H
k hk + βI −G

)

w̃i

w̃H
i hH

i hiw̃i













,

∀i ∈ KI . (14)

As a result, by iteratingλ(n)
i = mi

(

{λ(n−1)
i }

)

, ∀i ∈ KI , with

n > 0 being the iteration index, the optimal{λ⋆
i } for (13) can

be obtained. With{λ⋆
i } at hand, the optimal receive beamform-

ing vector{w̃⋆
i } can then be obtained accordingly from (14)

based on the minimum-mean-squared-error (MMSE) principle
as

w̃⋆
i =

(

∑

k 6=i,k∈KI

λ⋆
kh

H
k hk + βI −G

)†

hH
i

∥

∥

∥

∥

∥

∥

(

∑

k 6=i,k∈KI

λ⋆
kh

H
k hk + βI −G

)†

hH
i

∥

∥

∥

∥

∥

∥

, ∀i ∈ KI .

(15)

After obtaining the optimal solution of{w̃⋆
i , λ

⋆
i } for the

uplink problem (13), we then map the solution to{w⋆
i } for

the downlink problem (10). As shown in [14],{w⋆
i } and{w̃⋆

i }
are identical up to a certain scaling factor. Using this argument
together with the fact that the optimal solution of (10) is also
attained with all the SINR constraints being tight [14] similarly
to problem (13), it follows that{w⋆

i } can be obtained asw⋆
i =

√

p⋆i w̃
⋆
i , ∀i ∈ KI , wherep⋆ = [p⋆1, . . . , p

⋆
KI

]T is given by

p⋆ =

(

I −D ({w̃⋆
i , γi})

)−1

uBC ({w̃⋆
i , γi}) , (16)

where Dik ({w̃i, γi}) =

{

0, i = k
γi|hiw̃k|

2

|hiw̃i|2
, i 6= k

and

uBC ({w̃i, γi}) =
[

γ1σ
2

1

|h1w̃1|2
, . . . ,

γKI
σ2

KI

|hKI
w̃KI

|2

]T

.

In summary, Algorithm 1 for solving problem (10) for the
case ofβ ≥ ξE is given in Table I.

b) Solve Problem (10) for the case of 0 ≤ β < ξE (or
βI −G � 0): Given 0 ≤ β < ξE , we study further problem
(10) by considering the two cases where the optimal value of
problem (10) is bounded from below (i.e.,g(β) > −∞) and
unbounded from below (i.e.,g(β) = −∞), respectively.

First, we solve problem (10) by considering the case of
g(β) > −∞. In this case,a new form ofuplink-downlink
duality is established via the following proposition.

TABLE I
ALGORITHM FOR SOLVING PROBLEM (10) WITH GIVEN β ≥ ξE

Algorithm 1

a) Initialize: n = 0, and setλ(0)
i ≥ 0, ∀i ∈ KI .

b) Repeat:
1) n← n+ 1;
2) Update the uplink transmit power asλ(n)

i =

mi

(

{λ
(n−1)
i }

)

,∀i ∈ KI , with mi (·) given in (14).

c) Until |λ(n)
i −λ

(n−1)
i | ≤ ǫ,∀i ∈ KI , whereǫ is the required accuracy.

d) Setλ⋆
i = λ

(n)
i , ∀i ∈ KI , and compute the uplink receive beamforming

vectors{w̃⋆
i } by (15).

e) Compute the downlink beamforming vectors asw
⋆
i =

√

p⋆i w̃
⋆
i ,∀i ∈

KI , where{p⋆i } is given by (16).

Proposition 4.2: If βI −G � 0 andg(β) > −∞, then the
optimal value of (10) is equal to that of (13).

Proof: See Appendix E.
Note that the fundamental reason that Proposition 4.2 holds

is due to the strong duality of problem (10) even when
βI − G � 0, which is a direct consequence of the result
that the SDR of problem (10) is tight. The use of SDR in
establishing the uplink-downlink duality is a new contribution
of this paper, which is different from the conventional caseof
βI − G � 0, where the uplink-downlink duality has been
shown by reformulating (10) as an equivalent SOCP [14].
From Proposition 4.2, it follows that the downlink problem
(10) and the uplink problem (13) are still equivalent in this
case. Thus, we can solve problem (10) by solving problem
(13). For problem (13), we obtain the following properties.

Proposition 4.3: If βI − G � 0 and g(β) > −∞, the
optimal solution of problem (13) satisfies that:

1) All the SINR constraints are met with equality;

2) It is true that
∑

k 6=i,k∈KI

λ⋆
kh

H
k hk+βI−G � λ⋆

ih
H

i hi

γi
�

0, ∀i ∈ KI .

Proof: See Appendix F.
From the first part of Proposition 4.3, it is inferred that

the optimal solution of problem (13) must also be a fixed
point solution of the equations given in (14). As a result,
the fixed point iteration byλ(n)

i = mi

(

{λ(n−1)
i }

)

, ∀i ∈ KI

given in Algorithm 1 is still applicable for solving the uplink
problem (13) in this case. It is worth noting that for the fixed
point iteration in this case, at each iterationn we need to
ensure that

∑

k 6=i,k∈KI

λ
(n−1)
k hH

k hk + βI − G � 0, ∀i ∈ KI ,

since otherwise we will haveλ(n)
i = mi

(

{λ(n−1)
i }

)

< 0 if
∑

k 6=i,k∈KI

λ
(n−1)
k hH

k hk + βI −G � 0 for any i ∈ KI , which

results in an infeasible solution for problem (13). The above
requirement can be met by carefully selecting the initial point
{λ(0)

i }.
Specifically, we choose{λ(0)

i } as one feasible solution of
problem (13) under the givenβ < ξE , i.e., {λ(0)

i } satisfies
that λ(0)

i ≥ 0 and SINRMAC
i ({w̃i, λ

(0)
i }) ≥ γi, ∀i ∈ KI

with {w̃i} being any given set of receive beamforming vec-
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tors.5 Given such an initial point, the fixed point iteration
of λ

(n)
i = mi

(

{λ(n−1)
i }

)

, ∀i ∈ KI will then satisfy the
following two properties. First, it yields an element-wise
monotonically decreasing sequence of{λ(n)

i }, i.e., λ(n)
i ≤

λ
(n−1)
i , ∀i ∈ KI . This can be shown based on the fact

that λ(0)
i ≥ mi

(

{λ(0)
i }
)

, ∀i ∈ KI , given that {λ(0)
i } is

feasible for problem (13). Second, the resulting{λ(n)
i } is

lower bounded by{λ⋆
i }, i.e., λ(n)

i ≥ λ⋆
i , ∀i ∈ KI . This is

due toλ(0)
i ≥ λ⋆

i , ∀i ∈ KI together with the fact that given

λ
(n−1)
i ≥ λ⋆

i , ∀i ∈ KI , λ⋆
i = m ({λ⋆

i }) ≤ m

(

{λ(n−1)
i }

)

=

λ
(n)
i , ∀i ∈ KI , must be true.
By combing the fact thatλ(n)

i ≥ λ⋆
i , ∀i ∈ KI , together

with the second part of Proposition 4.3, it then follows that
∑

k 6=i,k∈KI

λ
(n−1)
k hH

k hk + βI − G � 0, ∀i ∈ KI , ∀n. As a

result, the fixed point iteration with the above proposed initial
point will converge to a feasible solution for problem (13).
Furthermore, in the following proposition, we show that this
converged feasible solution is indeed optimal.

Proposition 4.4: If βI −G � 0 andg(β) > −∞, then the
fixed point iteration converges to the optimal solution{λ⋆

i }
for problem (13).

Proof: See Appendix G.
With the optimal{λ⋆

i } at hand,{w̃⋆
i } can be obtained from

(15). Thus, we have solved the uplink problem (13) in this
case.

We then map{w̃⋆
i , λ

⋆
i } for the uplink problem (13) to{w⋆

i }
for the downlink problem (10). Similar to the case ofβI−G �
0, {w⋆

i } can be obtained asw⋆
i =

√

p⋆i w̃
⋆
i , ∀i ∈ KI , with

p⋆ = [p⋆1, . . . , p
⋆
KI

]T given by (16). Therefore, we have solved
the downlink problem (10) wheng(β) is bounded from below.

Next, we consider the case ofg(β) = −∞. In this case,
problems (10) and (13) are no more equivalent, since it is
evident that the optimal value of problem (13) should be no
smaller than zero, i.e.,gD(β) ≥ 0, and thusg(β) < gD(β)
must be true. However, we can still apply the fixed point
iteration ofλ(n)

i = mi

(

{λ(n−1)
i }

)

, ∀i ∈ KI together with an

initial feasible point{λ(0)
i } to solve problem (13), provided

that we check the unboundedness by examining the positive
semi-definiteness of the matrix

∑

k 6=i,k∈KI

λ
(n)
k hH

k hk + βI −
G, ∀i ∈ KI . More specifically, we have the following propo-
sition.

Proposition 4.5: If βI − G � 0 and g(β) = −∞, then
the fixed point iteration always converges to a solution with
∑

k 6=i,k∈KI

λ
(n)
k hH

k hk + βI − G � 0 for some i ∈ KI for

problem (13).
Proof: See Appendix H.

Proposition 4.5 thus provides an efficient way to check the
unboundedness ofg(β) wheng(β) = −∞.

5Such feasible solution of{w̃i} and{λ(0)
i } can be constructed as follows.

First, set{w̃i} as the normalized vectors of any feasible downlink transmit
beamforming vectors for problem (6). Next, under such{w̃i}, we can find
one set of feasible{λ(0)

i } by simply solving a linear feasibility problem with

the following linear constraints:λ(0)
i
≥ 0 and SINR

MAC
i ({w̃i, λ

(0)
i
}) ≥

γi, ∀i ∈ KI .

It is interesting to make a comparison between the two
cases ofg(β) > −∞ and g(β) = −∞ in solving the uplink
problem (13) by the fixed point iteration. With an initial
feasible point for both cases, an element-wise monotonically
decreasing sequence of{λ(n)

i } is obtained by the fixed point
iteration. However,{λ(n)

i } is lower bounded by{λ⋆
i } in the

former case, while it is unbounded from below in the latter
case. Therefore, the same fixed point iteration will lead to
different converged solutions for the two cases.

To summarize, an algorithm for solving problem (10) with
given 0 ≤ β < ξE is provided in Table II as Algorithm 2.
Note that Algorithm 2 differs from Algorithm 1 in two main
aspects: First, in step a), the initial point{λ(0)

i } should be set
as a feasible solution for problem (13); and second, step b-2)
is added to check the unboundedness forg(β).

TABLE II
ALGORITHM FOR SOLVING PROBLEM (10) WITH GIVEN 0 ≤ β < ξE

Algorithm 2

a) Initialize: n = 0, and setλ(0)
i ≥ 0, ∀i ∈ KI , as a feasible solution of

problem (13).
b) Repeat:

1) n← n+ 1;
2) Check whether there exists ani ∈ KI such that

∑

k 6=i,k∈KI

λ
(n−1)
k

h
H
k hk+βI−G � 0. If yes, setg(β) = −∞,

and exit the algorithm. Otherwise, continue;
3) Update the uplink transmit power asλ(n)

i =

mi

(

{λ
(n−1)
i }

)

,∀i ∈ KI , with mi (·) given in (14).

c) Until |λ(n)
i −λ

(n−1)
i | ≤ ǫ,∀i ∈ KI , whereǫ is the required accuracy.

d) Setλ⋆
i = λ

(n)
i , ∀i ∈ KI , and compute the uplink receive beamforming

vectors{w̃⋆
i } by (15).

e) Compute the downlink beamforming vectors asw⋆
i =

√

p⋆i w̃
⋆
i ,∀i ∈

KI , where{p⋆i } is given by (16).

2) Minimize f1(β) over β ≥ 0: By combing the solutions
to problem (10) for the two cases ofβ ≥ ξE and0 ≤ β < ξE ,
we obtaing(β) and thusf1(β) = βP − g(β), ∀β ≥ 0. We
are then ready to solve(P1.1) by finding the optimalβ⋆ ≥ 0
to minimizef1(β). It is easy to show thatf1(β) is a convex
function, for which the subgradient at givenβ ≥ 0 is υ(β) ,
P − ∑

i∈KI

w⋆H
i w⋆

i if f1(β) < ∞ in the case ofg(β) > −∞.

On the other hand, iff1(β) = ∞ in the case ofg(β) =
−∞, then it is evident thatβ⋆ > β. By applying the above
two results, we can thus use the simple bisection method to
obtain the optimalβ⋆ to minimize f1(β). As a result, the
optimal beamforming solution{w⋆

i } in (10) corresponding to
β⋆ becomes the optimal solution of(P1.1).

B. Algorithm for (P2) via Uplink-Downlink Duality

Next, consider(P2) for the case with Type II ID receivers.
As shown in Proposition 3.2, employing only one energy
beam aligning to the OeBF is optimal for(P2). Hence,
we can replacev1, . . . ,vKE

by one common energy beam
wE =

√
qvE , q ≥ 0 without loss of optimality for(P2). By

noting thatwH
EGwE = qξE and‖wE‖2 = q, we accordingly
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reformulate(P2) as

(P2.1) : max
{wi},q≥0

∑

i∈KI

wH
i Gwi + qξE

s.t. SINRi ≥ γi, ∀i ∈ KI
∑

i∈KI

‖wi‖2 + q ≤ P.

Similar to (P1.1), we introduce the dual function of(P2.1) as

f2(β) ,

max
{wi},q≥0

∑

i∈KI

wH
i Gwi + qξE − β

(

∑

i∈KI

‖wi‖2 + q − P

)

s.t. SINRi ≥ γi, ∀i ∈ KI , (17)

whereβ ≥ 0 is the dual variable associated with the transmit
sum-power constraint in(P2.1). Accordingly, the dual problem
can be defined as

(P2.2) : min
β≥0

f2(β).

We then have the following proposition.
Proposition 4.6: Strong duality holds between(P2.1) and

(P2.2).
Proof: The proof is similar to that of Proposition 4.1 and

thus is omitted for brevity.
Given the above proposition, we can solve(P2.1) by solving

(P2.2), i.e., first solving problem (17) to obtainf2(β) for given
β ≥ 0 and then searching the optimalβ ≥ 0, denoted byβ∗,
to minimizef2(β).

First, consider problem (17) for givenβ ≥ 0. We then have
the following proposition.

Proposition 4.7: In order for f2(β) to be bounded from
above, it must hold thatβ ≥ ξE .

Proof: Suppose thatβ < ξE . In this case, it is easy to
verify that the objective value of problem (17) goes to infinity
as q → ∞, i.e., f2(β) is unbounded from above. Therefore,
β < ξE cannot hold in order forf2(β) to be bounded from
above. This proposition is thus proved.

Proposition 4.7 specifies thatf2(β) = ∞ if β < ξE , and
thusβ∗ ≥ ξE must hold for(P2.2). Notice that this result is
different from the case of(P1.2) wheref1(β) can be bounded
from above even whenβ < ξE and thusβ⋆ < ξE may hold
for (P1.2).

Givenβ ≥ ξE , problem (17) is solved as follows. First, we
expressf2(β) = βP +h(β)− g(β) with g(β) defined in (10),
andh(β) given by

h(β) = max
q≥0

q(ξE − β). (18)

Accordingly, problem (17) can be decomposed into two
subproblems (by discarding the irrelevant termβP ), which
are problem (10) for obtainingg(β) and problem (18) for
obtainingh(β), respectively.

For problem (10) withβ ≥ ξE , Algorithm 1 in Table I
directly applies to obtain the optimal solution of{w⋆

i }. For
problem (18) withβ ≥ ξE , it is easily verified that one

1

2

0

Region 3: the OeBF 

feasible case

infeasible

Region 2: one energy 

beam optimal for (P2)

Region 1: no energy 

beam for (P2)

(P2) (P1)

*

E

v v
(P2) (P1)

*

E

=v v
(P2) (P1)

*

E

=v v

Fig. 3. Illustration of the optimal solution for(P1) and (P2).

solution is given byq⋆ = 0.6 With bothg(β) andh(β) = 0 at
hand, we can obtainf2(β) for the case ofβ ≥ ξE . Then, we
solve problem(P2.2) by finding the optimalβ∗ to minimize
f2(β). Sincef2(β) is a convex function, we can apply the
bisection method to minimize it overβ ≥ ξE , given that the
subgradient off2(β) at givenβ ≥ ξE can be shown to be
P− ∑

i∈KI

w⋆H
i w⋆

i−q⋆ = P− ∑

i∈KI

w⋆H
i w⋆

i , υ(β). Therefore,

the optimal solution of(P2.2) can be obtained asβ∗. Then,
the corresponding solution{w⋆

i } for problem (10) becomes
the optimal solution for problem(P2.1), denoted by{w∗

i }. It
should be pointed out that the optimal solution ofq in (P2.1),
denoted byq∗, cannot be directly obtained asq∗ = 0 if β∗ =
ξE ; but insteadq∗ should be obtained from the complementary

slackness condition [21]β∗

(

∑

i∈KI

w∗H
i w∗

i + q∗ − P

)

= 0

as q∗ = P − ∑

i∈KI

w∗H
i w∗

i . Therefore, problem(P2.1) is

solved.

C. Solution Comparison with Type I versus Type II ID Re-
ceivers

Finally, we compare the optimal solutions for problems(P1)
or (P1.1) with Type I ID receivers versus(P2) or (P2.1) with
Type II ID receivers. We denote the optimal values of(P1)
and(P2) asv(P1) andv(P2), respectively. From (9), (10), (17)
and (18), and by noting thath(β∗) = 0, it follows thatv(P1) =
f1(β

⋆) = β⋆P − g(β⋆) andv(P2) = f2(β
∗) = β∗P − g(β∗),

whereβ⋆ andβ∗ are the optimal dual solutions for(P1) and
(P2), respectively. By observing thatβ∗ ≥ ξE in (P2) while
both β⋆ ≥ ξE andβ⋆ < ξE can occur in(P1), we compare
their optimal values based onβ⋆ and β∗ over the region of
all feasible SINR targets for three cases, where each case
corresponds to one subregion as shown in Fig. 3 for the case
of two ID receivers. In the first subregion withβ∗ = β⋆ > ξE ,
it follows that v(P1) = v(P2) and q∗ = 0 in (P2), indicated as
Region 1 in Fig. 3. In this case with sufficiently large SINR
constraint values, the transmit power should be all used for
information beams to ensure that the SINR constraints at ID

6Note that ifβ = ξE , then the optimal solution ofq is non-unique and can
take any non-negative value in problem (18). For convenience, we letq⋆ = 0
in this case.
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Fig. 4. Average harvested power versus SINR constraint withoptimal
beamforming designs.

receivers are all met, and no dedicated energy beam is needed
for the optimal solutions of both(P1) and(P2). In the second
subregion withβ∗ = ξE > β⋆, it follows thatv(P2) > v(P1) and
q∗ > 0 in (P2), indicated as Region 2 in Fig. 3. In this case
with moderate SINR constraint values, employing one energy
beam is beneficial for Type II ID receivers as compared to no
energy beam for Type I ID receivers. In the third subregion
with β∗ = β⋆ = ξE , it follows thatv(P2) = v(P1) andq∗ ≥ 0 in
(P2), shown as Region 3 in Fig. 3, which is the OeBF-feasible
case given in Section II for sufficiently small SINR constraint
values.

V. SIMULATION RESULTS

In this section, we provide numerical examples to validate
our results. We assume that the signal attenuation from the
AP to all EH receivers is 30 dB corresponding to an equal
distance of 1 meter, and that to all ID receivers is 70 dB at
an equal distance of 20 meters. The channel vectorgj ’s and
hi’s are randomly generated from i.i.d. Rayleigh fading(thus,
satisfying Assumption 1)with the average channel powers set
according to the above average attenuation values. We setP =
1 Watt(W) or 30 dBm,ζ = 50%, σ2

i = −50 dBm, andγi =
γ, ∀i ∈ KI . We also setαj =

1
KE

, ∀j ∈ KE ; thus the average
harvested power of all EH receivers is considered.

A. Performance Comparison of Type I versus Type II ID
Receivers

Fig. 4 compares the average harvested power obtained by
solving(P1) for Type I ID receivers and that by(P2) for Type
II ID receivers versus different SINR constraint values ofγ

with fixedM = 4 andKE = 2 and over 200 random channel
realizations. It is observed that Type I and Type II ID receivers
have the same performance whenKI = 1, which is consistent
with Proposition 3.3. WithKI = 2 or 4, it is observed that
Type I and Type II ID receivers have similar performance
whenγ is either large or small, while the latter outperforms
the former notably for moderate values ofγ. The reasons can
be explained by referring to Fig. 3 as follows. Whenγ is
sufficiently small, the OeBF-feasible case shown as Region 3
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Fig. 5. Run-time comparison of SDR and uplink-downlink duality based
algorithms.

in Fig. 3 holds, where aligning all information beams in the
direction of the OeBF is not only feasible but also optimal for
both(P1) and(P2); thus, the same performance for both types
of ID receivers is observed in Fig. 4. On the other hand, when
γ is sufficiently large, this case corresponds to Region 1 in
Fig. 3, in which it is optimal to allocate all transmit power to
information beams to ensure that the SINR constraints at ID
receivers are all met; as a result, transmit power allocatedto
energy beams is zero for both types of ID receivers, and thus
their performances are also identical. At last, for the caseof
moderate values ofγ which corresponds to Region 2 in Fig.
3, the considerable performance gain by Type II over Type I
ID receivers is due to the use of one dedicated energy beam.
For example,under this particular channel setup,as shown in
Fig. 4, a 41% average harvested power gain is achieved for
EH receivers with Type II ID receivers as compared to Type
I ID receivers whenγ = 10 dB andKI = 4, thanks to the
cancellation of (known) energy signals at ID receivers.

B. Complexity Comparison of SDR and Uplink-Downlink Du-
ality Based Algorithms

Next, we compare the complexity of the SDR and uplink-
downlink duality based algorithms for solving(P1) and(P2),
by evaluating their average running times.7 We conduct the
simulations by using Matlab on a computer equipped with
an Intel Core i5-2500 @3.3GHz processor and 8GB of RAM
memory.

Fig. 5 shows the average running times of different al-
gorithms versus the number of transmit antennas at the AP
M with fixed KI = 4, KE = 2, and γ = 10 dB. It
is observed that for solving either(P1) or (P2), the SDR
based algorithm has a longer running time than the uplink-
downlink duality based algorithm for a givenM . This is due

7It has been shown in [23] that the SDRs of(P1) and (P2) can be solved
with a worst-case complexity ofO

((

K3
IM

3.5 +K4
I

)

log(1/ε)
)

, given a
solution accuracyε > 0. However, we cannot obtain the analytic complexity
orders of the two uplink-downlink duality based algorithms, since they depend
on both the inner fixed-point iteration (say, parameterǫ in Algorithms 1 and 2)
and the outer bisection iteration. Therefore, it is difficult to provide a rigorous
analytic complexity comparison for the two approaches.
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to the fact that the SDR is performed over matrices with much
higher number of unknowns than that of the uplink-downlink
duality based algorithm involving beamforming vectors only.
It is also observed that the uplink-downlink duality based
algorithm for solving(P1) consumes much longer running
time than that for(P2). This is because in the former case
the algorithm needs to check the positive semidefiniteness of
∑

k 6=i,k∈KI

λ
(n−1)
k hH

k hk+βI−G, ∀i ∈ KI , in each iteration of

n when implementing Algorithm 2 (cf. step b-2) in Algorithm
2), which takes additional running time.

C. Performance Comparison of Optimal versus Suboptimal
Designs

Finally, we compare the performances of our proposed
optimal joint information/energy beamforming designs with
two suboptimal designs for Type I and Type II ID receivers,
respectively, which are described as follows.

1) Separate information/energy beamforming design with
Type I ID receivers: In this scheme, the information beams
are first designed to minimize the required transmit sum-power
for satisfying the SINR constraints at all ID receivers, while
one energy beam is then added to maximize the weighted sum-
power harvested by the EH receivers with the remaining power
subject to the constraint of no interference to all ID receivers
(since Type I ID receivers are considered here and thus any
interference from energy signals cannot be cancelled at ID
receivers). Notice that this scheme is applicable only for the
case ofKI ≤ M−1. First, the information beams are obtained
by solving the following problem:

{wmin
i } = arg min

{wi}

∑

i∈KI

‖wi‖2

s.t. SINRi ≥ γi, ∀i ∈ KI , (19)

which can be solved by conventional methods such as the
fixed-point iteration based on the uplink-downlink duality
similar to Algorithm 1. After obtainingwi = wmin

i , ∀i ∈ KI ,
the energy beamwE is then optimized over the null space of

H =
[

hT
1 · · · hT

KI

]T

, which can be obtained by solving the
following problem:

max
wE

wH
EGwE

s.t. HwE = 0,

‖wE‖2 ≤ P −
∑

i∈KI

‖wmin
i ‖2. (20)

Let the singular value decomposition (SVD) ofH be given by
H = UΛ

[

V V̄
]H

, whereV̄ ∈ CM×(M−KI ) consists of the
vectors corresponding to zero singular values ofH and thus
spans the null space ofH . Then the optimal solution of (20)
can be obtained aswE =

√

P − ∑

i∈KI

‖wmin
i ‖2V̄ v′

E with v′
E

being the dominant eigenvector of̄V
H
GV̄ .

2) Separate information/energy beamforming design with
Type II ID receivers: In this scheme, we first set the informa-
tion beams to satisfy the SINR constraints at all ID receivers
with the minimum transmit sum-power aswi = wmin

i , ∀i ∈
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Fig. 6. Performance comparison of optimal versus suboptimal beamforming
designs.

KI , given in (19). Then, we allocate the remaining power
to the energy beam aligning to the OeBF to maximize the
weighted sum-power transferred to EH receivers (since Type
II ID receivers are considered in this case, which can cancel
the interference due to energy signals), which is given by
wE =

√

P − ∑

i∈KI

‖wmin
i ‖2vE .

Fig. 6 compares the average harvested power over the SINR
constraint for both optimal and suboptimal designs for the two
types of ID receivers, whereM = 4,KE = 2 andKI = 2.
With Type I ID receivers, it is observed that the separate
information and energy beamforming design approach per-
forms severely worse than the optimal joint design. In contrast,
with Type II ID receivers, it is observed that the separate
design obtains comparable performance to the joint design,
especially whenγ is small. From this result, it is inferred that
dedicated energy beamforming is indeed beneficial when ID
receivers possess the capability of cancelling the interference
from energy signals, even with suboptimal designs.

VI. CONCLUSION

This paper has studied the joint information and energy
transmit beamforming design for a multiuser MISO broad-
cast system for simultaneous wireless information and power
transfer (SWIPT). The weighted sum-power harvested by EH
receivers is maximized subject to individual SINR constraints
at ID receivers. Considering two types of ID receivers without
or with the interference cancellation capability, the design
problems are formulated as two non-convex QCQPs, which
are solved optimally by applying the techniques of SDR and
uplink-downlink duality. The results of this paper provide
useful guidelines for practically optimizing the performance
of multi-antenna SWIPT systems with receiver-location-based
information and energy transmission.

APPENDIX

A. Proof of Proposition 3.1

Note that(SDR1) is a SDP problem and thus is convex. It is
easy to verify that this problem satisfies the Slater’s condition
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[21] and thus has a zero duality gap. Therefore, we consider
the Lagrangian of(SDR1) expressed as

L1 ({W i},WE , {λi}, β)
=βP −

∑

i∈KI

λiσ
2
i +

∑

i∈KI

tr (AiW i) + tr (C1WE) ,

where

Ai = G+
λih

H
i hi

γi
−

∑

k 6=i,k∈KI

λkh
H
k hk − βI, ∀i ∈ KI ,

(21)

C1 = G−
∑

k∈KI

λkh
H
k hk − βI , (22)

and λi ≥ 0, i ∈ KI and β ≥ 0 are the dual variables
associated with theith SINR constraint and the transmit sum-
power constraint of(SDR1), respectively. As a result, the dual
problem of(SDR1) is given by

(SDR1.D) : min
{λi≥0},β≥0

βP −
∑

i∈KI

λiσ
2
i

s.t. C1 � 0,Ai � 0, ∀i ∈ KI .

Suppose that the optimal solution of(SDR1.D) is {λ⋆
i }, β⋆

and the resulting{Ai},C1 are {A⋆
i },C⋆

1. Then the optimal
solutions of(SDR1) and(SDR1.D) should satisfy the following
complementary slackness conditions:

tr (A⋆
iW

⋆
i ) = 0, ∀i ∈ KI , (23)

tr (C⋆
1W

⋆
E) = 0, (24)

which are equivalent toA⋆
iW

⋆
i = 0, ∀i ∈ KI , andC⋆

1W
⋆
E =

0, respectively. Furthermore, it can be verified that in order
to meet the SINR constraints, it must hold thatW ⋆

i 6= 0

or equivalentlyrank(W ⋆
i ) ≥ 1, ∀i ∈ KI , then from (23), it

follows thatrank(A⋆
i ) ≤ M − 1, ∀i ∈ KI .

Next, we prove this proposition by considering the following
two cases whereλ⋆

i = 0, ∀i ∈ KI , and (without loss of
generality) there exists at least oneī ∈ KI with λ⋆

ī
> 0,

respectively.
First, we consider the case ofλ⋆

i = 0, ∀i ∈ KI . In this case,
we haveA⋆

i = C⋆
1 = G − β⋆I, ∀i ∈ KI . Sincerank(A⋆

i ) ≤
M − 1 andA⋆

i � 0, ∀i ∈ KI , it follows thatβ⋆ = ξE , where
ξE is the dominant eigenvalue ofG (cf. (7)). As a result, it
can be verified from (23) and (24) thatW ⋆

i , ∀i ∈ KI and
W ⋆

E should all lie in the subspace spanned byvE , which can
be shown to correspond to the OeBF-feasible case. Therefore,
the case ofλ⋆

i = 0, ∀i ∈ KI cannot occur here.
Second, we consider the case when there exists at least one

ī ∈ KI with λ⋆
ī
> 0. In this case, we first show that any

W ⋆
E � 0 satisfying (24) should be zero. Given anyW ⋆

E � 0

satisfying (24), it follows that

λ⋆
i (1 +

1

γi
)tr

(

hH
i hiW

⋆
E

)

=tr

((

C⋆
1 + λ⋆

i (1 +
1

γi
)hH

i hi

)

W ⋆
E

)

≤ max
X�0

tr

((

C⋆
1 + λ⋆

i (1 +
1

γi
)hH

i hi

)

X

)

= max
X�0

tr(A⋆
iX) = 0, ∀i ∈ KI ,

where the first equality follows from (24), the second in-
equality usesW ⋆

E � 0, the third equality holds due to
A⋆

i = C⋆
1 + λ⋆

i (1 + 1
γi
)hH

i hi, and the last equality is true
from the facts ofA⋆

i � 0 andrank(A⋆
i ) ≤ M − 1, ∀i ∈ KI .

Thus, it must hold thatλ⋆
i tr

(

hH
i hiW

⋆
E

)

= 0, ∀i ∈ KI or

equivalentlyλ⋆
ih

H
i hiW

⋆
E = 0, ∀i ∈ KI . As a result, we have

(G− β⋆I)W ⋆
E =

(

G−
∑

i∈KI

λ⋆
ih

H
i hi − β⋆I

)

W ⋆
E

=C⋆
1W

⋆
E = 0, (25)

where the last two equalities hold due to (22) and (24),
respectively. Furthermore, sinceλ⋆

ī
> 0, ī ∈ KI , it follows that

hH
ī hīW

⋆
E = 0. Together with (25),W ⋆

E should lie in the null
spaces of bothG−β⋆I andhH

ī hī at the same time. However,
since the channelgj ’s andhi’s are independently distributed
under Assumption 1, we haverank(G− β⋆I) ≥ M − 1, and
thus the two matricesG−β⋆I andhH

ī hī span the entire space
with probability one. As a result, it follows thatW ⋆

E = 0.
Therefore, for anyW ⋆

E � 0 satisfying (24), it must hold that
W ⋆

E = 0.
Finally, it remains to prove thatrank(W ⋆

i ) = 1, ∀i ∈
KI . We prove this result by showing thatrank(A⋆

i ) =
M − 1, ∀i ∈ KI . By using C⋆

1 = A⋆
i − λ⋆

i (1 +
1
γi
)hH

i hi, ∀i ∈ KI together with the fact thatrank(X +
Y ) ≤ rank(X) + rank(Y ) holds for any two matrices
X and Y of same dimension, it follows thatrank(C⋆

1) ≤
rank(A⋆

i ) + rank

(

−λ⋆
i (1 +

1
γi
)hH

i hi

)

, ∀i ∈ KI . Given

that any W ⋆
E � 0 satisfying (24) should be zero, it

can be shown thatrank(C⋆
1) = M ; and meanwhile,

rank

(

−λ⋆
i (1 +

1
γi
)hH

i hi

)

≤ 1, ∀i ∈ KI . Therefore, we

haverank(A⋆
i ) ≥ rank(C⋆

1)−rank

(

−λ⋆
i (1 +

1
γi
)hH

i hi

)

≥
M − 1, ∀i ∈ KI . Combining this argument withrank(A⋆

i ) ≤
M−1, ∀i ∈ KI , it follows thatrank(A⋆

i ) = M−1, ∀i ∈ KI .
Accordingly, from (23) we haverank(W ⋆

i ) = 1, ∀i ∈ KI .
Proposition 3.1 is thus proved.

B. Proof of Proposition 3.2

Note that(SDR2) is a SDP problem and thus is convex. It is
easy to verify that this problem satisfies the Slater’s condition
[21] and thus has a zero duality gap. Therefore, we consider
the Lagrangian of(SDR2) given by

L2({W i},WE , {λi}, β)
=
∑

i∈KI

tr(AiW i) + tr(C2WE)−
∑

i∈KI

λiσ
2
i + βP,

whereAi is given by (21),C2 = G−βI, andλi ≥ 0, i ∈ KI

andβ ≥ 0 are the dual variables associated with theith SINR
constraint and the transmit sum-power constraint of(SDR2),
respectively. The dual problem of(SDR2) can be expressed as

(SDR2.D) : max
{λi≥0},β≥0

∑

i∈KI

λiσ
2
i − βP

s.t. C2 � 0, Ai � 0, ∀i ∈ KI .
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Suppose that the optimal solution of(SDR2.D) is {λ∗
i }, β∗,

and the resulting{Ai},C2 are {A∗
i },C∗

2. Then the optimal
solutions of(SDR2) and(SDR2.D) should satisfy the following
complementary slackness conditions:

tr(A∗
iW

∗
i ) = 0, ∀i ∈ KI , (26)

tr(C∗
2W

∗
E) = 0, (27)

which are equivalent toA∗
iW

∗
i = 0, ∀i ∈ KI , andC∗

2W
∗
E =

0. Note that in order to meet the SINR constraints, it must
hold thatW ∗

i 6= 0 or equivalentlyrank(W ∗
i ) ≥ 1, ∀i ∈ KI ,

then from (26) it follows that

rank(A∗
i ) ≤ M − 1, ∀i ∈ KI . (28)

Next, we prove this proposition by focusing on the case
when there exists at least oneī ∈ KI with λ∗

ī
> 0.8 In this

case, we first showW ∗
E = q∗vEv

H
E as follows. Due to the

fact thatC∗
2 = G− β∗I � 0, we haveβ∗ ≥ ξE . If β∗ = ξE ,

thenrank(C∗
2) = M−1; it thus follows from (27) thatW ∗

E =
q∗vEv

H
E with 0 ≤ q∗ ≤ P . If β∗ > ξE , thenrank(C∗

2) =
M ; it thus follows from (27) thatW ∗

E = 0 or equivalently
W ∗

E = q∗vEv
H
E with q∗ = 0. Therefore,W ∗

E = q∗vEv
H
E

and accordinglyrank(W ∗
E) ≤ 1 follows.

Second, we proverank(W ∗
i ) = 1 by showingrank(A∗

i ) =
M − 1, ∀i ∈ KI . To this end, we first prove thatλ∗

i , ∀i ∈ KI

are all strictly positive by contradiction. Suppose that there
exists one ĩ ∈ KI , ĩ 6= ī satisfying thatλ∗

ĩ
= 0. In

this case, since

(

− ∑

k 6=ĩ,k∈KI

λ∗
kh

H
k hk

)

� 0, C∗
2 � 0,

rank

(

− ∑

k 6=ĩ,k∈KI

λ∗
kh

H
k hk

)

≥ 1 (due to λ∗
ī
> 0, ī 6= ĩ),

andrank(C∗
2) ≥ M − 1, it can be shown thatrank(A∗

ĩ
) =

rank

(

C∗
2 −

∑

k 6=ĩ,k∈KI

λ∗
kh

H
k hk

)

= M with probability one,

provided that the channelgj ’s and hi’s are independently
distributedunder Assumption 1. This induces a contradiction
to (28). Therefore, the presumption cannot be true and it
follows thatλ∗

i > 0, ∀i ∈ KI .
With λ∗

i > 0, ∀i ∈ KI , it can be shown that

rank

(

C∗
2 −

∑

k 6=i,k∈KI

λ∗
kh

H
k hk

)

= M, ∀i ∈ KI . By

noting that C∗
2 − ∑

k 6=i,k∈KI

λ∗
kh

H
k hk = A∗

i − λ∗
ih

H

i hi

γi
,

we haverank(A∗
i ) ≥ rank

(

C∗
2 −

∑

k 6=i,k∈KI

λ∗
kh

H
k hk

)

−

rank

(

−λ∗
ih

H

i hi

γi

)

≥ M − 1, ∀i ∈ KI . Together with (28),

it follows that rank(A∗
i ) = M − 1, ∀i ∈ KI ; accordingly

rank(W ∗
i ) = 1, ∀i ∈ KI , holds due to (26). This thus

completes the proof of Proposition 3.2.

8Note that similarly to the proof given in Appendix A, the casewith λ∗
i =

0, ∀i ∈ KI can be shown to correspond to the OeBF-feasible case and thus
is not considered here.

C. Proof of Proposition 3.3

Given KI = 1, let the optimal dual solution for(SDR2)
be denoted byλ∗

1 ≥ 0 and β∗ ≥ 0 (see (SDR2.D) in
Appendix B). It then follows from (26) and (27) that the
optimal solution of(SDR2) should satisfy the two equations

of

(

G+
λ∗
1
h

H

i hi

γi
− β∗I

)

W ∗
i = 0 and(G− β∗I)W ∗

E = 0

at the same time, whereG +
λ∗

1
hH

i hi

γi
− β∗I � 0 and

G − β∗I � 0. Furthermore, we haveβ∗ ≥ ξE due to
G− β∗I � 0.

Next, we prove this proposition by considering the two cases
of β∗ = ξE andβ∗ > ξE , respectively. Ifβ∗ = ξE , then it

can be shown that in order to satisfyG +
λ∗

1
hH

i hi

γi
− β∗I �

0 and G − β∗I � 0 at the same time, it must hold that
λ∗
1 = 0, which corresponds to the OeBF-feasible case. As

a result,β∗ = ξE cannot occur here. On the other hand, if
β∗ > ξE , thenG−β∗I ≺ 0 is of full rank; accordingly, from
(G− β∗I)W ∗

E = 0 it follows thatW ∗
E = 0. Proposition 3.3

is thus proved.

D. Proof of Proposition 4.1

Denote the optimal values of(P1.1) and (P1.2) as v(P1.1)
andv(P1.2), respectively. Since(P1.2) is the dual problem of
(P1.1), it immediately follows thatv(P1.2) ≥ v(P1.1). Therefore,
to complete the proof of this proposition, we only need to show
that v(P1.1) ≥ v(P1.2).

First, we express the SDR of problem(P1.1) as

(SDR1.1) :

max
{W i}

∑

i∈KI

tr(GW i)

s.t.
tr(hH

i hiW i)

γi
−

∑

k 6=i,k∈KI

tr(hH
i hiW k)− σ2

i ≥ 0, ∀i ∈ KI

∑

i∈KI

tr(W i) ≤ P

W i � 0, ∀i ∈ KI .

From Proposition 3.1, it follows that(SDR1.1) always has
a rank-one solution. Hence, by denoting the optimal value
achieved by(SDR1.1) asv(SDR1.1), we havev(P1.1) = v(SDR1.1).

Meanwhile, we can express the SDR of problem (9) as

fSDR,1(β) ,

max
{W i}

∑

i∈KI

tr(GW i)− β

(

∑

i∈KI

tr(W i)− P

)

s.t.
tr(hH

i hiW i)

γi
−

∑

k 6=i,k∈KI

tr(hH
i hiW k)− σ2

i ≥ 0, ∀i ∈ KI

W i � 0, ∀i ∈ KI , (29)

and accordingly define a new problem as

(SDR1.2) : min
β≥0

fSDR,1(β).

Then it is observed that(SDR1.2) is also the dual problem of
(SDR1.1). Since(SDR1.1) is convex and satisfies the Slater’s
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condition [21], it can be verified that strong duality holds
between(SDR1.1) and(SDR1.2), i.e.,v(SDR1.1) = v(SDR1.2) with
v(SDR1.2) being the optimal value of(SDR1.2). Together with
v(P1.1) = v(SDR1.1), we thus havev(P1.1) = v(SDR1.2).

Moreover, since problem (29) to obtainfSDR,1(β) is the SDR
of problem (9) to obtainf1(β), we havefSDR,1(β) ≥ f1(β)
for any β ≥ 0. As a consequence, it follows thatv(SDR1.2) ≥
v(P1.2). Hence, it is verified thatv(P1.1) = v(SDR1.2) ≥ v(P1.2).
Proposition 3.3 is thus proved.

E. Proof of Proposition 4.2

First, we express the SDR of problem (10) as

min
{W i�0}

∑

i∈KI

tr ((βI −G)W i)

s.t.
tr(hH

i hiW i)

γi
−

∑

k 6=i,k∈KI

tr(hH
i hiW k)

− σ2
i ≥ 0, ∀i ∈ KI , (30)

which can be shown to achieve the same optimal value
of problem (10), for which the proof is similar to that of
Proposition 3.1 and thus is omitted here for brevity. We then
express the dual problem of (30) as

max
{λ̃i≥0}

∑

i∈KI

λ̃iσ
2
i ,

s.t. − λ̃ih
H
i hi

γi
+

∑

k 6=i,k∈KI

λ̃kh
H
k hk

+ βI −G � 0, ∀i ∈ KI , (31)

whereλ̃i ≥ 0, i ∈ KI represents the dual variable associated
with the ith constraint in (30). Since problem (30) is convex
and satisfies the Slater’s condition [21], strong duality holds
between (30) and (31). As a result, giveng(β) > −∞, (31)
is always feasible, and problems (10), (30) and (31) achieve
the same optimal value.

We then present the following lemma, which is proved in
[14, Lemma 1].

Lemma A.1: LetA be ann×n symmetric positive semidef-
inite matrix andb be ann× 1 vector. Then,A � bbH if and
only b

H
A†b

H ≤ 1.
From Lemma A.1, it then follows that by settingA =
∑

k 6=i,k∈KI

λ̃kh
H
k hk + βI − G and b =

√

λ̃i

γi
hH
i the SINR

constraints of (31) are identical to

λ̃i

γi
hi





∑

k 6=i,k∈KI

λ̃kh
H
k hk + βI −G





†

h
H
i ≤ 1, ∀i ∈ KI .

(32)

Note that the inequalities in (32) are equivalent to the follow-
ing inequalities:

max
{w̃i}

SINRMAC
i ({w̃i, λ̃i}) ≤ γi, ∀i ∈ KI , (33)

which can be easily verified by substituting the optimal
solution of the problem in the left-hand side (LHS) of (33), i.e.,

w̃i =
(

∑

k 6=i,k∈KI
λ̃kh

H
k hk + βI −G

)†

hH
i , into (33). As

a result, problem (31) and hence problem (10) are equivalent
to the following problem:

max
{λ̃i≥0}

∑

i∈KI

λ̃iσ
2
i

s.t. max
{w̃i}

SINRMAC
i ({w̃k, λ̃k}) ≤ γi, ∀i ∈ KI . (34)

Next, problem (13) can be equivalently re-expressed as

min
{λi≥0}

∑

i∈KI

λiσ
2
i

s.t. max
{w̃i}

SINRMAC
i ({w̃i, λi}) ≥ γi, ∀i ∈ KI . (35)

By comparing problems (34) and (35), their difference lies
in the reversed SINR constraints as well as the reversed
objective (maximization in (34) versus minimization in (35)).
It is evident that the optimal solution of both problems (34)and
(35) should be obtained with all the SINR constraints being
tight, since otherwise the objective value in (34) (in (35))can
be further increased (decreased) by increasing (decreasing)
certain λ̃i’s (λi’s) while satisfying all the SINR constraints,
provided that both the numerator and denominator of the
expression ofSINRMAC

i ({w̃i, λi}) given in (12) are non-
negative. We can thereby show that problems (34) and (35)
achieve the same optimal value as follows.

Note that the SINR constraints in (34) can be re-expressed
as

λi − γi













min
‖w̃i‖=1

w̃H
i

(

∑

k 6=i,k∈KI

λkh
H
k hk + βI −G

)

w̃i

w̃H
i hH

i hiw̃i













≤ 0, ∀i ∈ KI , (36)

which specifies a convex set of{λi} due to the fact that the
minimum of a linear function is concave [24]. In other words,
problem (34) is recast as a convex problem. As a result, any
local optimum point of (34) is globally optimal. Therefore,
it can be shown that any{λ̃i} in (34) that makes all SINR
constraints being tight is globally optimal and thus achieves
the optimal value for (34). Hence, it follows that problems
(34) and (35) achieve the same optimal value. Consequently,
problems (10) and (13) also achieve the same optimal value,
which completes the proof of Proposition 4.2.

Remark A.1: It is worth pointing out that the proof of the
uplink-downlink duality for the case ofβI − G � 0 and
g(β) > −∞ in Proposition 4.2 differs from that for the case
of βI − G � 0 (see [14, Theorem 1]) in two main aspects.
First, to show the equivalent relationship between (10) and
(34) in the case ofβI −G � 0 andg(β) > −∞, we use the
dual problem of the SDR problem in (10), i.e., problem (30),
given the fact that the SDR of (10) is tight; whereas in the case
of βI −G � 0, [14] uses the SOCP reformulation of (10) to
show that strong duality holds for (10) and its dual problem.
Second, to show that problems (34) and (35) achieve the same
optimal value in the case ofβI −G � 0 and g(β) > −∞,
we use the fact that problem (34) can be recast as a convex
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problem; whereas in the case ofβI −G � 0, [14] uses the
technique of standard interference function [16]. Moreover,
note that our proof for Proposition 4.2 is also applicable to
the case ofβI − G � 0; however, the proof in [14] cannot
be applied for the case ofβI −G � 0 and g(β) > −∞ to
obtain Proposition 4.2 here.

F. Proof of Proposition 4.3

The first part of this proposition follows directly from the
proof of Proposition 4.2 in Appendix E. Thus, we only need
to prove the second part of this proposition as follows.

From Appendix E, it follows that due to the equivalence
between problems (34) and (35) the dual variables{λ̃i} in
problem (31) and the uplink transmit power{λi} in problem
(13) are identical. As a result, given that problem (31) is
feasible in the case ofg(β) > −∞, the optimal uplink transmit
power{λ⋆

i } must be a feasible solution of (31) and thus satisfy
the constraints in (31). Accordingly, the second part of the
proposition follows. Therefore, Proposition 4.3 is proved.

G. Proof of Proposition 4.4

For the fixed point iteration with the proposed initial point,
we haveshown that{λ(n)

i } is an element-wise monotonically
decreasing sequence and at the same time lower bounded
by {λ⋆

i }; as a result, the fixed point iteration will converge
to a stationary point for problem (13). Note that problem
(13) is identical to problem (34), which can be recast as a
convex problem (cf. (36)). Therefore, any stationary pointof
(34) as well as (13) should be globally optimal. Accordingly,
the converged stationary point is the optimal solution{λ⋆

i }.
Proposition 4.4 is thus proved.

Remark A.2: It is worth noting that the optimality of{λ⋆
i }

in Proposition 4.4 cannot be shown by using the techniques
of standard [16] or general [24] interference functions that are
normally utilized in existing uplink-downlink duality related
literature (see e.g. [14]). This is because that the equivalent
noise termw̃⋆H

i (βI −G) w̃⋆
i in our case can be negative for

somei ∈ KI due toβI −G � 0. The same challenge exists
when we prove the uplink-downlink duality in Proposition 4.2
(see Remark A.1).

H. Proof of Proposition 4.5

Lemma A.2: If there exists any one fixed point{λ⋆
i } with

λ⋆
i ≥ 0, ∀i ∈ KI satisfyingλ⋆

i = mi ({λ⋆
i }) , ∀i ∈ KI , then it

follows thatg(β) > −∞.
Proof: By substituting the optimal MMSE filter in (15)

into the equationsλ⋆
i = mi ({λ⋆

i }) , ∀i ∈ KI , it follows

that λ⋆
i

γi
hi

(

∑

k 6=i,k∈KI

λ⋆
kh

H
k hk + βI −G

)†

hH
i = 1, ∀i ∈

KI . Then based on Lemma A.1, we haveλ
⋆
ih

H

i hi

γi
+

∑

k 6=i,k∈KI

λ⋆
kh

H
k hk + βI −G � 0, ∀i ∈ KI . As a result, the

fixed point{λ⋆
i } is a feasible solution of (31), which makes the

optimal value achieved by (31) bounded from below. Together
with the strong duality between (30) and (31), it follows that
g(β) > −∞. Lemma A.2 is thus proved.

From Lemma A.2, it is evident that ifg(β) = −∞, then
there does not exist any fixed point ofλ⋆

i ≥ 0, ∀i ∈ KI

satisfyingλ⋆
i = mi ({λ⋆

i }) , ∀i ∈ KI . In this case, since the
fixed point iteration leads to an element-wise monotonically
decreasing sequence of{λ(n)

i }, it will always result in a suffi-
ciently small{λ(n)

i } with
∑

k 6=i,k∈KI

λ
(n)
k hH

k hk + βI −G � 0

for somei ∈ KI , given thatβI −G � 0. Thus, Proposition
4.5 is proved.
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