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Multiuser MISO Beamforming for Simultaneous
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Abstract— Simultaneous wireless information and power trans- information transmission. As a result, a unified study on si-
fer (SWIPT) is anticipated to have abundant applications in  multaneous wireless information and power transfer (SWIPT
future wireless networks by providing wireless data and energy paq yecently drawn significant attention, which is not only
access at the same time. In this paper, we study a multiuser . - . .
multiple-input single-output (MISO) broadcast SWIPT system, theoreUcaIIy intricate but also practlcally valuable &rabling _
where a multi-antenna access point (AP) sends wireless in- bOth the ere|eSS data. a.nd ereless energy access to m0b|le
formation and energy simultaneously via spatial multiplexng terminals at the same time.
to multiple single-antenna receivers each of which implemds There have been a handful of prior studies on SWIPT in
information decoding (ID) or energy harvesting (EH). We aim ; ; ;
to maximize the weighted sum-power transferred to all EH the_ Ilte_rature (see e.gj:l[Z_E[Q]). “.D[Z]’ SWI.PT n a poiiot-t
receivers subject to a given set of minimum signal-to-inteference- point smgle-arjtenna "?‘dd't've Wh't,e Gaus§|an noise _(AWGN)
and-noise ratio (S|NR) constraints at different ID receives. Channel was fII‘St Stud|ed from an |nf0rmat|0n'theoret|od{a
In particular, we consider two types of ID receivers (referred point. This work was then extended to frequency-selective
to as Type | and Type II, respectively) without or with the ~AWGN channels in[[B], where a non-trivial tradeoff between
capability of cancelling the interference from @ priori known) information rate and harvested energy was shown by varying
energy signals. For each type of ID receivers, we formulate I fi f Th th i [4] studied
the joint information and energy transmit beamforming design power afloca |qn over irequency. the a!l ors . [4] s u.|e
as a non-convex quadratically constrained quadratic progam SWIPT for fading AWGN channels subject to time-varying
(QCQP). First, we obtain the globally optimal solutions forour co-channel interference, and proposed a new principlegerm
formulated QCQPs by applying an optimization technique so- “gpportunistic energy harvesting” where the receiver ehéts
called semidefinite relaxation (SDR). It is shown via SDR the patyeen harvesting energy and decoding information based o
under the condition of independently distributed user chamels, . . .
no dedicated energy beam is used for the case of Type | ID the W|rele_ss chann_el condlfuon and_lnterference powerl.leve
receivers to achieve the optimal solution; while for the cas In [S], various practical receiver architectures for SWiR@re
of Type Il ID receivers, employing no more than one energy investigated, where a new integrated information and gnerg
beam is optimal. Next, in order to provide further insight to  receiver design was proposed. Moreover, motivated by the
the optimal design, we establish a new form of the celebrated great success of multi-antenna techniques in wireless eemm

uplink-downlink duality for our studied downlink beamform ing . . . .
problems, and thereby develop alternative algorithms to otain  nication, SWIPT for multiple-input multiple-output (MIMO

the same optimal solutions as by SDR. Finally, numerical radts ~channels has been investigated|in [6]-[9]. [[h [6], Zhang and
are provided to evaluate the performance of proposed optima Ho first investigated SWIPT for the MIMO broadcast channel
beamforming designs for MISO SWIPT systems, as compared to (BC) with a multi-antenna transmitter sending informatéoral
other heuristically designed schemes. energy simultaneously to one pair of energy receiver arat-inf
Index Terms—Simultaneous wireless information and power mation receiver, each with single or multiple antennas.&ynd
transfer (SWIPT), energy harvesting, energy beamforming, two practical setups where information and energy recsiver
semidefinite relaxation (SDR), uplink-downlink duality. are either separated or co-located, the optimal precocgme
were developed to achieve various information and energy
transmission tradeoffs. The study [A [6] was also extended t
the cases with imperfect channel state information (CSihet
Energy harvesting from the environment is a promisingansmitter in[[7] and MIMO relay broadcast channels[in [8].
solution to provide cost-effective and perpetual poweipsiep  In [9], a transmitter design based on random beamforming was
for wireless networks. Besides other well known envirorproposed for a multiple-input single-output (MISO) SWIPT
mental sources such as wind and solar power, ambient ragiistem with artificial channel fading generated for impnayi
signals is a viable new source for energy harvesting. On tife performance of opportunistic information decoding)(ID
other hand, radio signals have been widely used for wirelegysus energy harvesting (EH) over quasi-static channels,
when the CSI was not available at the transmitter.
This paper was presented in part at the IEEE Internationaffé€ence on Despite of the above theoretical advance, in order to imple-
ngguf“ggi gﬁifch and Signal Processing (ICASSP), Vaeeolianada, May ment SWIPT systems in practice, many challenging issulés sti
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Engineering, National University of Singapore (email:xgi@nus.edu.sg, information and energy receivers were separately desitmed
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(sensor)

B 1 ccciver | distributed user channels, the SDRs are tight for the foatedl

e non-convex QCQP4dt is revealed that for the case of Type |
ID receivers, no dedicated energy beam is used to achieve the

I EH receiver | (SDR), and show that under the condition of independently

< P receiver2 optimal solution, while for the case of Type Il ID receivers,

: i Emeuphme) employing no more than one energy beam is optimal. It

\ . is worth noting that SDR has been widely applied in the
EH receiver K.

AP MISO broadcast channel (see elg.][10]/[11] and the refeenc
therein) to obtain efficient (and even optimal under certain
conditions) beamforming solutions for various informatio

1D receiver K, transmission problems; however, the existing results ate n

(laptop) directly applicable to our newly formulated problems witie t

. _ o joint energy and information beamforming optimization.
Fig. 1. A MISO broadcast system for simultaneous wirelegsrimation and

power transfer (SWIPT), where EH receivers are close to thdok effective Next, in O_rder o 95"” further |n_5|ght to_ the optimal joint
energy reception. energy and information beamforming design, we reformulate

the QCQP problem for each ID receiver type to an equiv-

alent transmit power minimization problem for the MISO-
receivers such as cellular and Wi-Fi mobile receivers oft@®8C with information transmission onlpy leveraging the
operate with a received power less thaf0 dBm [6]). As a fact that the SDRs are tight for both QCQPs, based upon
result, existing EH circuits for radio signals are not yetleabwhich we establish a new form of the celebrated “uplink-
to be used for ID directly and vice versa. This thus motivatewnlink” duality result By applying the new duality, we
our work in this paper to investigate a practical design ef trdevelop alternative algorithms based on iterative uplink a
MISO broadcast system for SWIPT as shown in Elg. 1, whed®wnlink transmit optimization to obtain the same optimal
a multi-antenna access point (AP) transmits simultangdos| downlink beamforming solutions as by SDR. It is worth
multiple single-antenna receivers each of which implementoting that the uplink-downlink duality has been extenlsive
EH or ID, butnot both at the same time. In particular, weinvestigated in the literature to solve non-convex tramsmi
consider a receiver location based transmission schem&ewheamforming optimization problems in MISO/MIMO BCs for
the EH receivers (e.g., sensors and other low-power dévicesy. SINR balancing in[12], transmit power minimization
are deployed sufficiently close to the AP, while the ID reeesv in [13], [14], and capacity region computation in_[15]. Es-
(e.g., tablet, cell phone and laptop) can be located mauecially, for transmit power minimization in MISO-BC with
distant from the AP. Notice that the proposed transmissigiiven SINR constraints for information transfer only, it sva
scheme resolves the mismatched power issue for EH anddBown in [14] that the downlink beamforming problem can
receivers as mentioned above, and thus makes the SWHRT transformed into its dual multiple-access-channel (MAC
system realizable with existing EH and ID receivers. Alsproblem with an equivalent noise at the receiver charamdri
note that the location based transmission should be debighg a certain positive semidefinite covariance matrix, which
in practice by taking into account the potential mobility ofs then solved by applying a fixed-point iteration [16]. In
receivers to ensure certain fairness in energy and infeomatthis paper, this particular type of uplink-downlink duglis
delivery over time. Under this setup, we aim to jointly deextended to the more challenging case when the equivalent
sign the beamforming weights and power allocation at thwise covariance matrix in the dual MAC is not necessarily
transmitter to optimally balance the performance tradeofpositive semidefinitB, as a result of the new consideration
among different information/energy receivers. Specificale of joint information and energy transmissiomhich renders
study the joint information and energy transmit beamfoignina non-convex beamforming problem that maximizes a convex
design to maximize the weighted sum-power transferred fquadratic) objective function. To the authors’ best krexige,
all EH receivers subject to a given set of minimum signal-tahe uplink-downlink duality for this new setup has not been
interference-and-noise ratio (SINR) constraints at déifé ID  studied before.
receivers. In particular, we consider two types of ID reeesy ~ The remainder of this paper is organized as follows. Section
namely Type | and Type Il receivers, whichdo not possess [ introduces the system model and problem formulations.
and possess the capability of cancelling the interference fron8ections[1ll and IV present the optimal solutions for the
simultaneously transmitted energy signalh¢se waveforms formulated problems based on the approaches of SDR and
are assumed to be priori known at the transmitter anduplink-downlink duality, respectively. Sectignl V proviEleu-
all Type Il ID receivers), respectively. For each type of IDnerical examples to validate our results and compare the
receivers, the design problem is formulated as a quadigticgperformances. Finally, Sectién VI concludes the paper.
constrained quadratic program (QCQP), which is non-convexNotations: Boldface letters refer to vectors (lower case)
and thus difficult to be solved optimally by standard convexr matrices (upper case). For a square mai$ix tr(.S)
optimization technique$ [10].

First. we obtain the optimal solutions to the formulated-non INotice that the covariance matrix of any practical noisencarbe non-
' sitive semidefinite; however, this does not contradi@ tion-positive

. . po
convex. QCQ_PS for t\/\{o types of ID rece.'ver_s .by apply'ngemidefinite noise in our case since it is just a mathematqaivalence,
an optimization technique so-called semidefinite rel@xati and thus needs not be physically realizable.

(low-power device)

=== Energy flow
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and S~! denote its trace and inverse, respectively, whilz,j € K¢ (to be consistent with our proposed distance-
S >0, 85 =<0 S <0andS % 0 mean thatS is based information/energy transmission scheme; see[Fig. 1)
positive semidefinite, negative semidefinite, negativenitefi We also make the following assumptions throughout the paper
and non-positive semidefinite, respectively. For an aabitr on the channel independence of different users, which are
size matrix M, rank(M ), MT, MH, and M7T denote the valid for practical wireless channels in e.g. rich-scatgr
rank, pseudoinverse, conjugate transpose and transpdgg ofenvironments.
respectively, andM ;;, denotes the element in thgh row Assumption 1 (independently distributed user channels):
and kth column of M. I and 0 denote an identity matrix The channel vectoh;’s and g;'s are independently drawn
and an all-zero matrix, respectively, with appropriate e@fim from a set of continuous distribution functiofa, (h;)'s and
sions. The distribution of a circularly symmetric complex,; (g;)’'s, respectivelyi € Kz,j € Ke. Furthermore, we
Gaussian (CSCG) random vector with mean vectoand assume that for ang x M matrix F with 0 < d < M, in
covariance matrix is denoted byCN (x, X); and ~ stands which the d row vectors constitute any subset of channel
for “distributed as”.C**¥ denotes the space ofx y complex vectors fromh;’s andg;’s, it holds with probability one that:
matrices.R denotes the set of real numbeis(-) denotes i) rank (F') = d; and ii) thed (ordered) non-zero singular
the statistical expectatiorj.z|| denotes the Euclidean normvalues of F', denoted byr,--- , 74, are strictly decreasing,
of a complex vectorr, and |z| denotes the magnitude of ai.e., 7, > --- > 74 > 0.
complex numberz. p(B) denotes the spectral radius of dt is further assumed that the AP knows perfectly the instant
matrix B, which is defined as the maximum absolute value ofeous values dk;’s andg;’s, and each receiver knows its own
the eigenvalues oB. For two real vectors andy, > y instantaneous chanifelThe discrete-time baseband signal at
means that is greater than or equal ®pin a component-wise the ith ID receiver is thus given by
manner. D .
v = hix+ z, Vi € Kz, (2)
Il. SYSTEM MODEL AND PROBLEM FORMULATION wherez; ~ CN(0,0?) is the i.i.d. Gaussian noise at tlith
ID receiver. With linear transmit precoding, each ID reeeiv
We consider a multiuser MISO downlink system for SWIPTg interfered with by all other non-intended informatiorabes
over one single frequency band as shown in Elg. 1. It is agnd energy beams. Since energy beams carry no information
sumed that there at€; ID receivers and{z EH receivers, de- pt instead pseudorandom signathose waveformsan be
noted by the set&z = {1,..., K} andKe = {1,...,Kp}, assumed to be known at both the AP and each ID receiver
respectively. Also assume that the AP is equipped Wifh prior to data transmission, their resulting interferenae be
antennas,M/ > 1, and each receiver is equipped with on@ancelled at each ID receiver if this additional operatien i
single antenna. In this paper, we consider linear precodifgplemented. We thus consider two types of ID receivers,
at the transmitter for SWIPT and each ID/EH receiver iﬁamely Type | and Type 11 ID receivers, which do not possess
assigned with one dedicated information/energy transamss and possess the capability of cancelling the interfereneetal
beam without loss of generality. Hence, the transmittedaig energy signals, respectiveljurthermore, we assume that the

from the AP is given by interference precancellation at type Il ID receivers isfeetr
This assumption is practically valid since each ID receiver
— 1D . gEH X ; .
= Z wis;” + Z Visi @ knows its own instantaneous channel, and the received gnerg

iekz jeke signals at each ID receiver have the similar dynamic range

wherew; € CM*! andwv; € CM*! are the beamforming aS the information signals by propagating through the same
vectors for ID receiveri and EH receiverj, while s and wireless channelTherefore, for theith ID receiver of Type |

sPH are the information-bearing signal for ID receiver Of Type I, the corresponding SINR is accordingly expressed

and energy-carrying signal for EH receivgy respectively. as

For information signals, Gaussian inputs are assumed, i.e. |hjw;|? .
sIP's are independent and identically distributed (i.i.d.)@s SR~ = S hwi2+ S R, |? + o2 Vi€ Kz,
random variables with zero mean and unit variance denoted ki keKz jeKe '
by siP ~ CN(0,1),Vi € Kz. For energy signals, sinceé 3)
carries no information, it can be any arbitrary random digna

) . . 2 . 9
provided that its power spectral density satisfies cert@agu+ SINREH) _ |h;w;| Vi € Ky @)

lations on microwave radiation. Without loss of generalitg S |hawi]? + 02’
assume thak?H’s are independent white sequences from an k#i,keKz

arbitrary distribution withE (|3§3H|2) =1,Vj € K¢. Suppose orhi , A Cer 1o bert bl estimatisioed b

. is requires each receiver to perform channel estima ed by
that the AP has %transmlt sum-pfwer ConStran;mfrom Cu) channel feedback to the transmitter, which consumes additienergy.In
we thus haveii(x"x) = > |lwq||* + > [v,]]* < P. practice, there exists a design tradeoff at the EH receivesre accurate

_iEKZ . JeKe channel estimation and feedback may lead to higher had/estergy due
We assume a quasi-static fading environment and deneatehe transmit beamforming gain, but also induce higherggneonsumption

h; € ClxM andg, € C1xM g5 the channel vectors from thdhat can even offset the harvested energy gain (for detdikmiissions on this
AP to ID 2 d EH . . tivelvwh issue, please refer to [17]For simplicity, we assume in this paper that such
0 receiver: an receiven, respectivelywhere energy consumption at EH receivers is negligible compavdti¢ir harvested

|hil? = 0,2171- and ||gj||2 = a_gyj with Ug,j > 0,2171-,% €  energy.



On the other hand, for wireless energy transfer, due to theoblem:
broadcast property of wireless channels, the energy ddosie

all information and energy beams, i.e., batfi's andv;’s, can find {w;}

be harvested at each EH receiver. As a result, the harvested s.t. SINR; > 4, Vi € K7

power for thejth EH receiver, denoted b§);, is proportional Z [wi| < P. (6)
to the total power received][6], i.e., ey

Problem [[6) can be solved kstandard convex optimization
Q;=¢ ( Z |gjwk|2 + Z |gj,,k|2> . Vj € Ke, (5) techniques such as thieterior point method via transforming
keky keke it into a second-order cone program (SOCP)| [13] or by an
uplink-downlink duality based fixed-point iteration alggm
where0 < ¢ < 1 denotes the energy harvesting efficiency. [12].
Our aim is to maximize the weighted sum-power transferred Next, we consider the other extreme case with no ID
to all EH receivers subject to individual SINR constraints d€ceivers, i.e.Cz = ¢, where by settingv; = 0,7; = 0,Vi €
different ID receivers, given by;,,i € K7. Denoteq; as the Kz, both(P1) and (p2) are reduced to

given energy Welgh_t fer EH ret_:ewe’n j Z 0, where Iarger nax Z vHij

weight value of«; indicates higher priority of transferring {v;} £¢ J

energy to EH receivey as compared to other EH receivers. e )

Define G = ¢ Z a;glg;. Then from [b) the weighted st. Y v <P )
JjEKe

sum-power harvested by all EH receivers can be expressLed do - be the d | q q
as > a;Q; = Z w! Gw; + Z HGvJ The design ety andvy be the dominant eigenvalue and its correspond-

jEKe ing eigenvector o5, respectively. Then it can be easily shown
problems by assumlng that all ID recelvers are of either Typlat the optimal value off {7) i§z P, which is attained by
| or Type Il are thus formulated accordingly as follows. settingv; = \/g;ve, Vj € K¢, for any set ofy; > 0,Vj € K¢
satisfying Z g; = P. Accordingly, all energy beams are

(P1): {w } {vj Z w;! Gwi + Z Y ) G, aligned to the same direction asz. Thus, without loss of
() jeke optimality, we can setr; = /Pvg for any j € Kg¢ and

s.t. SINR,’ >, Vie Kz v, = 0, Vk € Kg, k ;é j. For convenience, we refer to

Z w2 + Z v ]2 < P. the beamformer in the form of Pvy as the optimal energy

beamformer (OeBF).
Finally, we consider another special case witmal being
sufficiently small (but still non-zero in general), namehet
“OeBF-feasible” case, in which aligning all informationaras
ZwHG'wl—i—Z'vHij gning

S JjEKe

(P2) : (wtv,) _ to the OeBF is feasible for boiP1) and(P2). In other words,
@CZ(H) jeke there exists a solution to the feasibility problelh (6) giv®n
s.t. SINR; ' >, Vi€ Kz w; = /pive, Vi € Kz with p; > 0,Vi € Kz satisfying
Z s |2 + Z |v;|? < P. igézpi < P, i.e., the following problem has a feasible solution
i€kz JEKe given by {p;}.
Notice that the only difference betweép1) and (P2) lies in find {p;}
the achievable SINR expression for each ID receiverCz. pilhivg|?
Both problems(P1) and (P2) can be shown to maximize a s.t. S prlhovp + o2 >, Vi € Kz
convex quadratic function witlix being positive semidefinite, k#i,k€Kz
i.,e.,, G = 0, subject to various quadratic constraints; thus Z p; < P. (8)
they are both non-convex QCQPs]21], for which the globally Prr

optimal solutions are difficult to be obtained efficiently ir‘ _ L . .
general. n this case, it is easy to verify that the optimal values

of both problems(P1) and (P2) are £gP, which is the
Prior to solving these two problems, we first have a check g
their feasibility, i.e., whether a given set of SINR consits same as that of problerll(7) and can be attaineduby—

2 _
for ID receivers can be met under the given transmit su kEZ}JC S e PivE, Vi € Kz Sat'Sfy'nglgéz lwil[* = P, and

power constraintP. It can be observed fronP1) and (P2) v; = 0,Yj € K¢, i.e., no dedicated energy beam is needed to
that both problems are feasible if and only if their fea#ipil achleve the maximum weighted sum-power for EH receivers.
is guaranteed by ignoring all the EH receivers, i.e, Sglliffo check whether the OeBF-feasible case occurs or not, we
a; = 0 andv; = 0,Vj € Kg. It then follows thatSINR() only need to solve the feasibility problem il (8) which is
SINRZ(-H),VZ' € Kz. For convenience, we denoEE[NRiI = a simple linear program (LP). Therefore, in the rest of this
SINRZ(.H) £ SINR;, Vi € K7 in this case. Thus, the feasibility paper, we will mainly focus on the unaddressed non-trivial
of both (P1) and(P2) can be verified by solving the following case so far whe(P1) and (P2) are both feasible but aligning



all information beams to the OeBF is infeasible for boths
problems, unless otherwise specified.

(SDR2) :
I1l. OPTIMAL SOLUTION VIA SEMIDEFINITE RELAXATION max Y tr(GW;)+tr(GWp)
{Wl}WE €T
In this section, we §tudy the tw_o non-convex QCQPs in tr(hfhiWi) .
(P1) and (P2), and derive their optimal solutions via SDR. st —— = Z tr(h; hiWy,)
For non-convex QCQPs, it is known that SDR is an efficient i k#i, k€K
approach to obtain good approximate solutions in gene@l [1 —02>0,Vie Kz

In the following, by applying SDR and exploiting the specific
problem structures, the globally optimal solutions for Hhot
(P1) and (P2) are obtained efficiently.

First, consider problem(P1) for the case of Type

| ID receivers. Define the following matricesW,; = . ) . .
wiw! Vie KzandWpe = Y vl Then, it follows that Let the optimal solution ofSDR2) be W}, Vi € Kz andW %

Z tr(Wi) + tI‘(WE) <P
1EKT
W, =0,Vie Kz, Wg=0.

jeKe We then have the following proposition.
rank(W;) < 1,Vi € Kz andrank(Wpg) < min(M,Kg).  Proposition 3.2: Under the condition of independently dis-
By ignoring the above rank constraints 8#;'s and W g, tributed user channels given in Assumptioh the optimal
the SDR of(P1) is given by solution of (SDR2) for the case of Type Il ID receivers

satisfies:rank(W;) = 1,Vi € Kz, rank(Wp) < 1 with

(SDR1) : probability one furthermore, it holds thaWj, = ¢*vgvi
max Z tr(GW;) + tr(GWg) with 0 < ¢* < P.
W We ik, Proof: See AppendixB. [
tr(hh,W)) B W Based on Propositidn_3.2, we can obtain the globally opti-
Vi N Z tr(hi hiWy) mal solution of(P2) by solving (SDR2) via CVX. Meanwhile,
ki, k€KL since W73, = ¢*vgvll, all energy beams should be aligned
—tr(h{'h;Wp) —0} >0,Vie Kz to vy, the same direction as the OeBF. Similar to problem
Z tr(W,) + tr(Wg) < P (@), in this case, we can choose to send only one energy beam
ieKy to minimize the complexity of beamforming implementation
W, = 0,YieKs, Wgs 0. at the transmitter as well as the energy signal interference

cancellation at all ID receivers by setting = /¢*vg for
Let the optimal solution ofSDR1) be W, Vi € Kz andW,. anyj € Ke andvy, =0,k € Ke, k # j.
Then we have the following proposition. By comparing the optimal solutions fofP1) and (P2),
Proposition 3.1: Under the condition of independently dis\We can see that their main difference lieswhether energy
tributed user channels given in Assumptioh the optimal beamforming is employed or ndlote that the optimal value
solution of (SDR1) for the case of Type I ID receivers satisfiesof (P2) is in general an upper bound on that @1) since
rank(W?) = 1, Vi € Kz, andW, = 0 with probability one. any feasible solution ofP1) is also feasible for(P2), but
Proof: See AppendiXA. m not vice versa. Ifg" = 0 in Proposition 3.2, then the upper
From Propositioi 311, it follows that the optimal solutioPPUnd is tight; however, iy” > 0, then a higher weighted
of (SDR1) satisfies the desired rank constraints, and thus tRdM harvested power is achievable for EH receivers with Type
globally optimal solution of(P1) can always be obtained by” ID_ receivers. Therefore, the beneﬂt. of using Type Il ID
solving (SDR1). Note that(SDR1) is a semidefinite program M€Ceivers can be realized by employing no more than one
(SDP), which can be efficiently solved by existing softwar&N€rdy beam and at the cost of implementing an additional
e.g.,CVX [22]. Furthermore, it is observed that the optimaftérference cancellation (with priori known energy signals)
solution satisfies thaW?% = 0 for (SDR1) or equivalently _at ID receivers. Neverthel_ess, it is WQrth pomtm_g out an
v; = 0, Vj € K¢ for (P1), which implies that no dedicated'nteresnng_ case with one single ID receiver, for which gyer
energy beam is needed for achieving the maximum weight@@amfc?r.m'”g is always not needed, as stated in the following
sum harvested power ifp1). This can be intuitively explained ProPosition.
as follows. Since Type | ID receivers cannot cancel the inter Proposition 3.3: For the case of Type Il ID receivers, if
ference from energy beams (if any), employing energy beadis = 1, then the optimal solution ofSDR2) satisfies that
will increase the interference power and as a result dedhae Wi =0.
SINR at ID receivers. Thus, the optimal transmission sgate Proof: See Appendik L. [ ]
is to adjust the weights and power allocation of information Remark 3.1: It is worth pointing out that in some special
beams only to maximize the weighted sum-power transferredannel conditions that do not satisfy Assump{ion 1 (er., i
to EH receivers. the case of line-of-sight (LOS) user channels some of which
Next, consider probleniP2) for the case of Type Il ID happen to be linearly dependent), the tightness of SDRs for
receivers. Similar tdP1), the SDR of(P2) can be expressed (P1) and (P2) can still be guaranteed by applying the results



in [18]. Consider a separable SDP in the following form: to the optimal solution structure, in this section we prapos
an alternative approach for solving the non-convex problem

L
(SSDP): _ min Ztr(Ble) (P1) and (P2) by applying the principle of uplink-downlink
XX duality. It is worth noting that the fundamental reason that
L some apparently non-convex downlink beamforming problems
s.t. Ztr(Alel) >mbm,m=1,...,.M (e.g., the transmit power minimization problem [nI[14]) can
=1 be solved globally optimally via uplink-downlink dualitys i
X, -0,1=1,...,L, that they can be recast as certain convex forms (e.g., see the

SOCP reformulation for the problem in_[14]), and thus strong
: ; " P duality holds for these problems. However, for the two non-
matrices (not necessarily positive semidefinite), € R, convex QCQPs inP1) and (P2), we cannot explicitly recast
Pm € {S_,.Z,:},m =1...,M, and Xl =1....L  {hem as convex problems. Nevertheless, our result in $ectio
are Hermitian matrlces: Suppose tt_wiaBDP)_ is feasible and Mthat the SDRs of(P1) and (P2) are both tight implies that
bounded, and the (_thlmal va_lue 'f attam(id. THesDP) strong duality may also hold for them. This thus motivates
always has an optimal solutiofXy, ..., X7) such that o, investigation of a new form of uplink-downlink duality
S (rank(X}))* < M [18]. By applying this result in for solving these two problems, as will be shown next.

lofulr context, it can be verified that there always exists an ) _ ) ) _
optimal solution for(SDR1) satisfying 3 (rank(Wj))2 L A Algorithm for (P1) via Uplink-Downlink Duality
ieKz Consider (P1) for the case with Type | ID receivers at
(rank(W},))® < K; + 1, and one for(SDR2) satisfying first. According to PropositioR 3.and under Assumptiof, 1
> (rank(W7}))? + (rank(W},))® < K + 1. Meanwhile, dedicated energy beamforming is not needed to achieve the

et . . . o .
it can be shown from the SINR constraints th&t; # 0 and optimal solution of(P1); thus, we can seb; = 0,j € K,

W #0, ie., rank(W?) > | andrank(W?) > 1,vi € k7. @nd accordinglySINg,” = SINR[") £ SINR,Vi € K,
Thus, it follows immediately that an optimal solution sitis Similar to [8). Hence(P1) is reformulated as the following
ing rank(W?) = 1, Vi € Kz, andrank(W?) < 1 should Problem.

exist for (P1), while one satisfying-ank(W7) = 1, Vi € K1, (P1.1) : max Z w Gw;

and rank(Wp) < 1 exists for (P2). In other words, the {w:}
SDRs of both(P1) and (P2) are still tight even without
Assumption 1. Note that the tightness of SDRs in the absence

whereB;, A,,l =1,...,L,m = 1,...,M are Hermitian

i€
s.t. SINR; > ’yZ,VZ €Kz

of Assumptiorll can similarly be inferred from [19, Lemma Z [Jwi]|* < P.

1.6]. However, in general, rank-reduction techniques rneed i€k

be applied to the higher-rank solutions of SDRs to obtain thBy denoting3 > 0 as the dual variable associated with the

rank-one solutions [18]. transmit sum-power constraint (r}?l.l)E we can express the
It is interesting to compare our work with [18] in moredual function of(P1.1) as

details. Different from[[18], which only shows the existenc

of rank-one solutions for our problems under general chlanne (8) 2 max Z w’Gw; — <Z lwi|2 — P)

conditions, in Proposition§_3.1 arld 3.2 we provide more {wiy o vl

specific results for the case of independently distributeer u
channels (cf. Assumptidd 1) by applyingw proof techniques
(see AppendiceS]A aridl B). In particular, under Assumptighccordingly, the dual problem ofP1.1) is defined as
[, our results differ from that in_[18] in the following two (P1.2): min f1(B)

main aspects. First, we show that for energy beamforming, U B>0 ¢ '

& = 0 holds for (SDR1) and W, = q*vag*holds for  Since (P1.1) is known to be non-convex, weak duality
(SDR2) (rather thanrank(W7;) < 1 andrank(W7p) < 18S poigs for (P1.1) and (P1.2) in general, ie., the optimal
inferred from [18]), which provides more insight to the opél | 5/e of (P1.2) serves as an upper bound on that(pf.1).
structure of energy beamforming solutions. Second, we Sh%vertheless, motivated by the fact that the SDRRIf.1) is

that the optimal information beamforming solutions(8bR1) tight, the following proposition establishes that stronglity
and (SDR2) are of rank-one with probability one (rather than,qeed also holds fofp1.1) and (P1.2).

the existence of rank-one solutions only frdmi[18]); hemae, Proposition 4.1: The optimal value ofP1.1) is the same
rank-reduction techniques as in [18] need to be applied n OMs that of(P1.2)
case.

s.t. SINR; > v;, Vi € K7. (9)

SHere, we consider the partial Lagrangian formulation (®fi.1) by

IV. ALTERNATIVE SOLUTION BASED ON introducing the dual variable associated with the sum-paveastraint only,
which is for the convenience of discussing the uplink-damknlduality in

UPLINK-DOWNLINK DUALITY different cases (see Sectiohs V-Ala dnd [V-A1b). Alteimdy, one can

In the previous section. we have obtained the globally Opgerive the same results by directly considering the fullraagian formulation
' of (P1.1) via introducing dual variables for all constraints, whislkcbmmonly

mal SOIUtiQnS for our formulated QCQP prqblems by applyingjopted in existing literature on the uplink-downlink dtyatelated works (see
the technique of SDR. In order to provide further insighd.g. [13], [12)).
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Fig. 2. Uplink-downlink duality for MISO-BC and SIMO-MAC.
Proof: See AppendiXD. B The design objective for the dual SIMO-MAC is to minimize

It follows from Propositior4]1 that problem®1.1) and the weighted sum transmit powed_ \;0? by jointly op-
(P1.2) are equivalent. Thus, we can solve problém.1) by '
solving problem(P1.2). Specifically, we first solve problem
@) for obtainingf; () with any givens > 0, and then search
over > 0 to find the optimals* for minimizing f1(8), as
will be shown in the following two steps, respectively.

1) Obtain f;(3) for given 3 > 0: Consider probleni{9) for . 9
obtaining f1(3) with given 8 > 0. Problem[(®) is equivalent go(B) = {{31&1} Z i
to the following problem (by discarding the irrelevant ctamt ek

e
timizing the power allocatiod A; } andI receive beamforming
vectors{w; } subject to the same set of SINR constraififs}
as in the original MISO-BC given by (10). We thus formulate
the dual uplink problem as

term 5P): s.t. SINRMAC({ab;, Ai}) > i, Vi € Kz
9(8) = nin > wh (B1 - G)w; Xi >0, VieKs (13)
w;} .
i . Next, we solve the downlink probleni (110) for any given
s.t. SINR; > 4, Vi € Kz, (10) 38 > 0 by solving the uplink problen{{13) via exploiting the
wheref;(3) = BP — g(5). We thus focus on solving problemuplink-downlink duality. At first, it is worth noting that if >
(I0) to obtaing(;3) as follows. &g (recall thatég is the largest eigenvalue @), then 51 —

Problem [ID) can be solved by considering a MISO-B& = 0 holds, in which case the downlink weighted sum-power
with solely information transmission as shown in the lefb-su minimization problem in[(Z0) can be recast as an equivalent
figure of Fig.[2, by minimizing the weighted sum transmiSOCP, or solved based on the dual uplink problem[id (13)
power, > w! (BI — G)w;, subject to a set of individual by the existing algorithm in [14]. However, f < g, then it

€Kz ) _ ) follows thatSI -G % 0A In this case, solving problei{lL0) is
SINR constraintgy; }. For the MISO-BC, its dual single-input 516 involved due to the following reasons. First, the ofbjec

multiple-output (SIMO) MAC is shown in the right sub-figureq,nction in [10) becomes non-convex and as a result, problem
of Fig. @ by conjugating and transposing the channel VEEIT) cannot be recast as a convex (SOCP) problem asiin [14].
tors, whereK; single-antenna transmitters send independe@écond, the optimal value of problefi}10), i.g(3), may
information to one common receiver with/ antennas. At acome unbounded from below, e.g., whtdh-G < 0. In the
transmitteri,i € Kz, let \; be its transmit power;:° be a following, we solve problent{10) for the two casesdt &5
CSCG random variable representing its transmitted infermg.q o < B < &g, respectively. We first review the ijlink-

tion signgl, an<_h§H bg its channel vector to the receiver. TheQownlink duality based algorithm i [14] for solving{10) in

the received signal in the dual SIMO-MAC is expressed asihe case of3 > ¢p, and then extend this algorithm to solve
g’ = Z h /N5 + 2, (11) problem [ID) for the more challenging case(ok 3 < {p.

i€y For convenience, we denote the optimal solutions of problem
i * K *

wherez ~ CN(0, BI — G) denotes the noise vector at thd LD and KIIB) for any gives > 0 as {wj} and {w;, Aj},

receiver. After applying receive beamforming vectoys, the 'SSPectively.

SINRSs of different users in the dual SIMO-MAC are then given & Solve Problem (I0) for the case of 5 > &g (or I —

by G~ 0): I_n this case, problem$§(110) arld 113) can be shown
MAC (- to be equivalent as ir_[14]. Thus, we can solve the downlink
SINRi ({wl, )\1}) =
/\i'&:f{hiHhi'&:i . 4If BI — G i 0, then the receiver noisg in () for the dual SIMO-
Vi e Kz. (12) MAC cannot be realizable, since the covariance matrix of gmysical signal
’11751 < Z )\kthhk Y g G) ; should be positive semidefinite. Thus, in this case, theiveceoise with

covarianceBI — G # 0 is just a mathematical equivalence, and thus needs

k#i,keKz not be practically realizable.



. . . TABLE |
problem [ID) by first solving the uplink problein {13) and then A\ coritHM For SoLvinG ProBLEM (D) WiTH GIVEN 8 > &5

mapping its solution to that of problem (10).
First, consider the uplink probleni {{13). Since it can be Algorithm 1

shown that the optimal solution of {113) is always achieved

when all the SINR constraints are met with equality|[14], it & Initiaize:n =0, and set\{”) > 0,¥i € Kz.

then follows that the optimal uplink transmit powgx? } must b) Repeat:

X . . NP . . 1 1;
be a fixed point solution satisfying the following equations 2; Z;Ha?: the

uplink  transmit  power asAE.”) =

[20]: m; ({A,ﬁ"*”}) Vi € Kz, with m; (-) given in [13).
A =m; ({\)) = c) Until \)\E”) —A§”71)| < ¢,Vi € Kz, wheree is the required accuracy.
d) Set\r = AE”) ,Vi € K1z, and compute the uplink receive beamforming
~ H wp H _ - vectors{w;} by (I5).
w; (k;ézk:elc /\kh’k hi. + BT G) Wi e) Compute the downlink beamforming vectorswa$ = /p;w;, Vi €
min i,k€EXT ’ Kz, where{p:} is given by [16).
W, =1 wl h hiw;

Vie Kz. (14) N
Proposition 4.2: If 31 — G # 0 andg(8) > —oo, then the
As a result, by iterating™ = m, ({)\Z(-"_l)}) Vi € Kz, with  optimal value of [(ID) is equal to that df {13).
n > 0 being the iteration index, the optiméh’} for (I3) can Proof: See AppendikE. u
be obtained. Wit{ \ } at hand, the optimal receive beamform- Note that the fundamenta_l reason that Proposifioh 4.2 holds
ing vector {w’} can then be obtained accordingly from(14{S_dué to the strong duality of probleni_{10) even when

based on the minimum-mean-squared-error (MMSE) principfgd — & % 0, which is a direct consequence of the result
as that the SDR of problem(10) is tight. The use of SDR in

establishing the uplink-downlink duality is a new conttion
o H f " of this paper, which is different from the conventional cage
kﬂ;ﬂ Avhihe +8I -G | h; B8I — G = 0, where the uplink-downlink duality has been
e . ., Vi € Kz. shown by reformulating[{10) as an equivalent SOCP [14].
. " From Propositiori 412, it follows that the downlink problem
kiizk:e’cz Ahihi + 61 =G | hy (I0) and the uplink probleni_(13) are still equivalent in this
' case. Thus, we can solve problem](10) by solving problem
(15) (13). For problem[{113), we obtain the following properties.
After obtaining the optimal solution of@?, \*} for the ~ Proposition 43: If I — G # 0 andg(5) > —oc, the
uplink problem [[IB), we then map the solution fev*} for optimal solution of problem{13) satisfies that:
the downlink problem{(10). As shown in [14Jw?} and{w}} 1) All the SINR constraints are met with equalitx;
are identical up to a certain scaling factor. Using this argat 2) Itistrue that > A;hfhm—ﬁI—G - # -

i =

together with the fact that the optimal solution Bf](10) iscal _ k#i,keKz

attained with all the SINR constraints being tight|[14] darlly 0, Vi e Kz

to problem[(IB), it follows thafw}} can be obtained as; = Proof: See AppendixF. ]
Vpiw; Vi € Kz, wherep* = [p7, ..., pk,|" is given by From the first part of Proposition 4.3, it is inferred that

. the optimal solution of probleni (13) must also be a fixed
p* = (I— D({{uj,%})) uBC ({@F, i), (16) point. solutign Qf the_ equat(ig)ns given i(E{ll)4. A; a result,
the fixed point iteration by\;"” = m; ( {\; 1), Vi e Kz

0 i — given in Algorithm 1 is still applicable for solving the upk
where Dy, ({w;,v:}) = { 'inlhiﬂ)k‘z _ and problem [IB) in this case. It is worth noting that for the fixed
Thowe 0 ! 7k point iteration in this case, at each iteratienwe need to
BC /[~ | qie? VK Ok, r ensure that > /\Een_l)thhk +8I -G = 0,Vi € Kz,
u ({wlv'yl}) T | Thiw. 2 ‘h’KIﬂ)KI‘Z : k#i,kez
In summary, Algorithm 1 for solving problerfi{1L0) for thesince otherwise we will hava!™ = m ({A§-"‘”}) < 0 if
case ofs > &g is given in Table . > /\](cnfl)hkl—]hk + BT — G # 0 for anyi € Kz, which

b) Solve Problem (I0) for the case of 0 < 3 < &g (OF  kzikeks

BI — G # 0): Given0 < 3 < &g, we study further problem results in an infeasible solution for problem¥13). The abov
(@0) by considering the two cases where the optimal value r(gtﬂéj)irement can be met by carefully selecting the initiahpo
problem [ID) is bounded from below (i.g(3) > —) and {A; ' }-
unbounded from below (i.eg(3) = —), respectively. Specifically, we choosQ/\EO)} as one feasible solution of

First, we solve problem[{10) by considering the case gfoblem [IB) under the givefi < &g, i.e., {/\EO)} satisfies
g(B) > —oo. In this case,a new form ofuplink-downlink that )\Z(,O) > 0 and SINR?AAC({qbZ—,)\Z(.O)}) > v, Vi € Kz
duality is established via the following proposition. with {w,} being any given set of receive beamforming vec-



tors Given such an initial point, the fixed point iteration It is interesting to make a comparison between the two
of A" = m {A§."‘1>}) Vi € Kz will then satisfy the cases ofy(5) > —oco andg(8) = —oc in solving the uplink
following two properties. First, it yields an element-wis@roblem [IB) by the fixed point iteration. With an initial
monotonically decreasing sequence {dfl(n)}, ie. )\1(-") < fea3|ble_p0|nt for both ca(ls)es,_ an elgment-W|se rr_10notdy_|cal
)\l(_n71)’w € K. This can be shown based on the facdfecreasing sequence( {))J\i" } is obtained by the fixed point
0 0 . : 0, . Iteration. However{);"’} is lower bounded by{\;} in the

that )‘1(' fzom ({)‘1(' )}) Vi€ Kz, given that{/\g )} 'S former case, while{ it is}unbounded from belt)){w ii] the latter
feasible for problem[{13). Second, the resultifigi} is case. Therefore, the same fixed point iteration will lead to
lower bounded by{\*}, i.e., )\Z(.”) > A5, Vi € Kz. This is different converged solutions for the two cases.

due to /\EO) > \f,Vi € Kz together with the fact that given To summarize, an algorithm for solving problein](10) with
APY > A W€ Kz, A = n({M)) < m({/\gnfl)}) _ given0 < 3 < &g is provided in Table Il as Algorithm 2.
NOR. tbet Note that Algorithm 2 differs from Algorithm 1 in two main

i Ve € Az, MUSLDE true. aspects: First, in step a), the initial poih\go)} should be set

i (n) * -
By combing the fact that;”* > A/,Vi € Kz, together o' feasiple solution for problefi{13); and second, step b-2
with the second part of Propositibn %.3, it then follows thak added to check the unboundednessgiah).
S A" YRIh + BT - G = 0,¥i € Kz,Yn. As a
k#i, ket
result, the fixed point iteration with the above proposetahi
point will converge to a feasible solution for problem](13).

TABLE Il
ALGORITHM FORSOLVING PROBLEM (TO) WITHGIVEN 0 < B < €g

Furthermore, in the following proposition, we show thatsthi Algorithm 2
converged feasible solution is indeed optimal. Initialize: n = 0. and set\(? > 0.vi e K feasible solution of
| Proposlitio.n4.4:. If BI—G%Oandg(ﬂ)?—oo, the_n the & p?:altjelzrﬁ'&;; . and set\;”” > 0,Vi € Kz, as a feasible solution o
fixed point iteration converges to the optimal solutipi’} b) Repeat:
for problem [IB). 1) nen+l; _ 4
Prot See AppendiCD L m T e e e

With the optimal{\;} at hand{w}} can be obtained from giery k Tk ' ’ ’
(I5). Thus, we have solved the uplink probleml(13) in this and exit the algorithm. Otherwise, continue;
case. 3) Update the wuplink transmit power asAE.”) =

We then mag@w?, \*} for the uplink problem[{T13) tdw}} mi ({(A"7)) Vi € Kz, with = () given in [12).
for the downlink problend(10). Similar to the case®¥f—-G = ¢) until [A™ =AY < ¢, vi € Kz, wheree is the required accuracy.
0, {w?} can be obtained aw} = \/p_;ﬁ;;,w € Kz, with d) Set\r = A,E”),Vi € Kz, and compute the uplink receive beamforming
p* = [p},...,p, |7 given by [I8). Therefore, we have solved _ vectors{w:} by {3). _ L
the downlink problem({10) wheg(3) is bounded from below. Eom\f\’,‘ﬁﬁér{‘e downlink beamforming vectors«as = VW, Vi€
: . T p;} is given by [T6).

Next, we consider the case gf3) = —oo. In this case,
problems [(ID) and{13) are no more equivalent, since it is
evident that the optimal value of problein [13) should be no o ) )
smaller than zero, i.egp(8) > 0, and thusg(3) < gp(5) 2) Minimize f1(5) over 8 > 0: By combing the solutions
must be true. However, we can still apply the fixed poirtﬁep;%?:g‘ K(];)));(r)l:jt?ﬁutg;o(;a)\ses [?;Z 32 (aﬁr;dé)ﬁg f O< f/i/ﬂe
. . n) n—1) . . g 1 = - 4g ) - Y-
lteration Of)\z(' - ({/\E }) Vi € Kz together with an are then ready to solvgP1.1) by finding the optimals* > 0
initial feasible point{)\l(.o)} to solve problem[(13), provided to minimize f1(B). It is easy to show thaf;(5) is a convex
that we check the unboundedness by examining the positi@ction, for which the subgradient at given> 0 is v(B) 2
semi-definiteness of the matrix 3 /\,(cn)thhk +6I — P— Y wiw;if f1(8) < oo in the case ofy(8) > —oc.

ki, k€K1 ieKz

G, Vi € Kz. More specifically, we have the following propo-On the other hand, iff;(3) = oo in the case ofg(3) =
sition. —o00, then it is evident thag* > 5. By applying the above
Proposition 4.5: If SI — G # 0 and g(3) = —oo, then two results, we can thus use the simple bisection method to

the fixed point iteration always converges to a solution witbbtain the optimal3* to minimize f1(3). As a result, the
> /\EC")hfhk + I — G % 0 for somei € Kz for optimal beamforming solutiofiw}} in (I0) corresponding to

gfé’gleelcrﬁ ) (3* becomes the optimal solution ¢f1.1).

Proof: See AppendiXH. [ |
Proposition 4.6 thus provides an efficient way to check the Algorithm for (P2) via Uplink-Downlink Duality
unboundedness af(3) wheng(8) = —cc.
Next, consider(P2) for the case with Type Il ID receivers.
5Such feasible solution ofw; } and {)\EO)} can be constructed as follows. As shown in Propositio,2, employing only one energy
First, set{w;} as the normalized vectors of any feasible downlink transmBeam aligning to the OeBF is optimal fquQ). Hence,

beamforming vectors for problerfi] (6). Next, under syeh;}, we can find
one set of feasible{Al(.O)} by simply solving a linear feasibility problem with we can rePIaca’h <+ UKg by one common energy beam

the following linear constraintsA{” > 0 and SINRMAC ({@;, A(V}) >  WE = Vave,q = 0 without loss of optimality for(PQ)-_ By
i, Vi€ K. noting thatw Gw g = ¢¢x and||wz|?> = ¢, we accordingly
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reformulate(P2) as 72

Region 1: no energ

(P2.1): max Z wl Gw; + ¢¢g
ex beam for (P2)

i >
{w;},q>0 i infeasible

s.t. SINR; > ’yl,\V/Z e Kz

> lwill*+q < P.
€KXz

. Region 2: one energy
L . i Region 3: the OeBF b imal for (P2
Similar to (P1.1), we introduce the dual function ¢f2.1) as cam optimal for (P2)

feasible case
Vo =Ven \q Ve > Ve
A B =P =& B =c>p

f2(8) 0

Ve “Veen

B =p>&

7

H . _ |12 _
{wrrj?);>0 XK; w; Gw; +¢¢p — <z}; leH Ta P) Fig. 3. lllustration of the optimal solution fofP1) and (P2).
T ek ez

s.t. SINR; > v;, Vi € Kz, a7)

whereg > 0 is the dual variable associated with the transmﬁtonmon is given byy” = OE With bothg(65) andh(B) = 0 at

i o - and, we can obtairfz(3) for the case of > ¢g. Then, we
z;nmbpeogee}frigggsat‘;amt|(P2.1). Accordingly, the dual problem solve problem(P2.2) by finding the optimals* to minimize

f2(B). Since f»(5) is a convex function, we can apply the

(P2.2) : min fo(3). bisection method to minimize it ovet > £, given that the
820 subgradient offy(3) at given3 > £x can be shown to be
We then have the following proposition. P— 3 wifwi—¢* = P~ 3 wiw} £ v(B). Therefore,
Proposition 4.6: Strong duality holds betweefP2.1) and i ke

the optimal solution ofP2.2) can be obtained ag*. Then,
(P2.2). o . the corresponding solutiofiw;} for problem [10) becomes
Proof: The proof is similar to that of Propositign 4.1 andy,o optimal solution for problentP2.1), denoted by{w?}. It
thus is omitted for brevity. ‘B should be pointed out that the optimal solutiongdh (P2.1),
Given the above proposition, we can so{¥2.1) by solving  genoted byy*, cannot be directly obtained @& = 0 if 5* =

(P2.2), i.e., first solving probleni(17) to obtaify(5) for given ¢, - byt instead;* should be obtained from the complementary
£ > 0 and then searching the optimal> 0, denoted by3*,

to minimize f»(3). slackness conditiod [21p* [ > wifw! +q¢*—P| =0

First, consider probleni_(17) for givet> 0. We then have . CH iekz )

the following proposition. asq"* = P — z}; wiHw?. Therefore, problemP2.1) is
ez

Proposition 4.7: In order for f5(3) to be bounded from solved.
above, it must hold that > 5.

Proof: Suppose thatt < ¢g. In this case, it is easy to C. Solution Comparison with Type | versus Type Il 1D Re-

verify that the objective value of problef {17) goes to inini ceivers

asq — oo, i.e., fo(B) is unbounded from above. Therefore, ~ ) )
B < &g cannot hold in order forf>(3) to be bounded from Finally, we compare the optlmal solutions for proble(m_s)
above. This proposition is thus proved. m Or (P1.1) with Type | ID receivers versuSD_Q) or (P2.1) with
Proposition[ZJ7 specifies thab(3) = oo if 8 < £z, and Type Il ID receivers. We denote _the optimal values(bt)
thus 8* > £, must hold for(P2.2). Notice that this result is @d (P2) asuv(e;) andv(e,), respectively. From{9)[{10).(17)
different from the case ofP1.2) where f,(3) can be bounded @nd [18), and by noting that(5*) = 0, it follows thatuve,) =
from above even whefi < 5 and thus3* < &g may hold J1(8%) = 8°P — g(5%) andves) = fo(8%) = 5°P — g(57),
for (P1.2). where 5* and_ﬁ* are the optlr_nal dual solutlo_ns fgp1) and
Given 3 > ¢, problem [[IV) is solved as follows. First, we(P2), respectively. By observing that” > (g in (P2) while

_ _ ; ] ; both * > ¢r and 8* < &g can occur in(P1), we compare
express, =pBP+h with defined in [(1D), ’ . h
anzh(ﬂfzéfl)en Ify (8)=9(8) 9(8) ) their optimal values based of* and 5* over the region of

all feasible SINR targets for three cases, where each case
h(B) =maxq(¢r — B). (18) corresponds to one subregion as shown in [Hig. 3 for the case
720 of two ID receivers. In the first subregion with* = 5* > &g,
Accordingly, problem [(Il7) can be decomposed into twib follows thatwve,) = vy andg* = 0 in (P2), indicated as
subproblems (by discarding the irrelevant tefi®), which Region 1 in Fig[B. In this case with sufficiently large SINR
are problem [(T0) for obtaining(3) and problem [(1I8) for constraint values, the transmit power should be all used for
obtainingh (), respectively. information beams to ensure that the SINR constraints at ID

For problem [(ID) with3 > &g, Algorithm 1 in Table |
P ) R 9 6Note that if 3 = ¢f, then the optimal solution af is non-unique and can

direCtly applies 1[0 obtain the_ optimal .SOIUtiO_n. {)’fuf} For take any non-negative value in problem](18). For convemigne letg* = 0
problem [I8) with3 > &g, it is easily verified that one in this case.
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Fig. 4. Average harvested power versus SINR constraint wjgimal Fig. 5. Run-time comparison of SDR and uplink-downlink dyabased
beamforming designs. algorithms.

receivers are all met, and no dedicated energy beam is neeiteBig.[3 holds, where aligning all information beams in the
for the optimal solutions of botfP1) and(P2). In the second direction of the OeBF is not only feasible but also optimal fo
subregion with3* = {g > B*, it follows thatv(p,) > vp;) and  both (P1) and(P2); thus, the same performance for both types
q* > 0 in (P2), indicated as Region 2 in Fig] 3. In this casef ID receivers is observed in Figl 4. On the other hand, when
with moderate SINR constraint values, employing one energyis sufficiently large, this case corresponds to Region 1 in
beam is beneficial for Type Il ID receivers as compared to rig.[3, in which it is optimal to allocate all transmit power t
energy beam for Type | ID receivers. In the third subregidnformation beams to ensure that the SINR constraints at ID
with 3* = p* = {g, it follows thatv(p,) = v(py) andg™ > 0in  receivers are all met; as a result, transmit power alloctied
(P2), shown as Region 3 in Fifll 3, which is the OeBF-feasiblenergy beams is zero for both types of ID receivers, and thus
case given in Sectidn]ll for sufficiently small SINR consttai their performances are also identical. At last, for the aafse
values. moderate values of which corresponds to Region 2 in Fig.
[3, the considerable performance gain by Type Il over Type |
V. SIMULATION RESULTS ID receivers is due to the use of one dedicated energy beam.

In this section, we provide numerical examples to validafe®" €xampleunder this particular channel setugs shown in
our results. We assume that the signal attenuation from th§-[4. @ 41% average harvested power gain is achieved for
AP to all EH receivers is 30 dB corresponding to an equiiH receivers with Type Il ID receivers as compared to Type
distance of 1 meter, and that to all ID receivers is 70 dB hfD receivers whem = 10 dB and K; = 4, thanks to the
an equal distance of 20 meters. The channel vegfar and cancellation of (known) energy signals at ID receivers.
h;’s are randomly generated from i.i.d. Rayleigh fad{tiwus,
satisfying Assumptiohl1yvith the average channel powers seB. Complexity Comparison of SDR and Uplink-Downlink Du-
according to the above average attenuation values. We set ality Based Algorithms

1 Watt(W) or 30 dBm,¢ = 50%, o7 = —50 dBm, andy; = Next, we compare the complexity of the SDR and uplink-

7. Vi € Kz. We also sety; = ¢, Vj € Ke; thus the average gownlink duality based algorithms for solvir@1) and (P2),

harvested power of all EH receivers is considered. by evaluating their average running tinfesVe conduct the
simulations by using Matlab on a computer equipped with

A. Performance Comparison of Type | versus Type Il ID an Intel Core i5-2500 @3.3GHz processor and 8GB of RAM
Receivers memory.

Fig. @ compares the average harvested power obtained byig- B shows the average running times of different al-
solving (P1) for Type I ID receivers and that b§p2) for Type gorlth_ms versus the number of transmit antennas at the AP
Il ID receivers versus different SINR constraint valuesyof M with fixed K; = 4, Kp = 2, andy = 10 dB. It
with fixed M = 4 and K = 2 and over 200 random channeliS observed. that for solving e|the{|P.1) or (P2), the SDR_
realizations. It is observed that Type | and Type Il ID reeesy based algorithm has a longer running time than the uplink-
have the same performance whEn = 1, which is consistent downlink duality based algorithm for a givel. This is due
with Propositior( 3. WIthKI. =2ord, it .IS .ObserVEd that 7It has been shown in_[23] that the SDRs (®ft) and (P2) can be solved
Type | and Type Il ID receivers have similar performancgiy, o worst-case complexity oD ((K3M3® + K4 log(1/¢)), given a
when~ is either large or small, while the latter outperformsolution accuracy > 0. However, we cannot obtain the analytic complexity

g g p
the former notably for moderate valuesfThe reasons can orders of the two uplink-downlink duality based algorithregce they depend
be explained by referring to Fi@ 3 as follows Whefnis on both the inner fixed-point iteration (say, parametar Algorithms 1 and 2)

e ’ _and the outer bisection iteration. Therefore, it is diffidol provide a rigorous
sufficiently small, the OeBF-feasible case shown as Regioralytic complexity comparison for the two approaches.
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to the fact that the SDR is performed over matrices with much
higher number of unknowns than that of the uplink-downlink
duality based algorithm involving beamforming vectorsyonl
It is also observed that the uplink-downlink duality based
algorithm for solving (P1) consumes much longer running
time than that for(P2). This is because in the former case
the algorithm needs to check the positive semidefinitenéss o
> /\,(C”’l)h,{l'h;C +pBI—-G,Vi € Kz, in each iteration of

k#i, ket
n when implementing Algorithm 2 (cf. step b-2) in Algorithm

2), which takes additional running time. 16}

3.2

281

2.6| —+— Type | opt
—O— Type Il opt
2.4 —<— Type | subopt:

—8&— Type Il subopt

66%
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N
T

Average harvested power (mW)

C. Performance Comparison of Optimal versus Suboptimal . . : " - - .
Desi gns SINR constraint (dB)

Finally, we compare the performances of our proposed , _ _ ,
optimal joint information/energy beamforming designs h"’itgégs'ishs Performance comparison of optimal versus suboptiiamforming
two suboptimal designs for Type | and Type Il ID receivers,

respectively, which are described as follows.

1) Separate information/energy beamforming design with 7, given in [19). Then, we allocate the remaining power
Type | ID receivers: In this scheme, the information beamso the energy beam aligning to the OeBF to maximize the
are first designed to minimize the required transmit sumgrowyeighted sum-power transferred to EH receivers (since Type
for satisfying the SINR constraints at all ID receivers, hi || |D receivers are considered in this case, which can cancel

one energy beam is then added to maximize the weighted sufe interference due to energy signals), which is given by
power harvested by the EH receivers with the remaining powgy :IJP — Y [Jwin|2v .

subject to the constraint of no interference to all ID reeesv €Kz

(since Type | ID receivers are considered here and thus anyFig.[d compares the average harvested power over the SINR
interference from energy signals cannot be cancelled at ¢Pnstraint for both optimal and suboptimal designs for the t
receivers). Notice that this scheme is applicable only figr ttypes of ID receivers, wher¢/ = 4, Kp = 2 and K; = 2.

case ofK; < M —1. First, the information beams are obtainedVith Type | ID receivers, it is observed that the separate

by solving the following problem: information and energy beamforming design approach per-
in . ) forms severely worse than the optimal joint design. In castir
{wi™"} = arg (w3 Z [ with Type Il ID receivers, it is observed that the separate
7oieks design obtains comparable performance to the joint design,
s.t. SINR; > ;, Vi € Kz, (19) especially wheny is small. From this result, it is inferred that

which can be solved by conventional methods such as tﬂ%di_cated energy beamformi.n_g is indeed peneficigl when ID
fixed-point iteration based on the uplink-downlink dualitf€C€iVers possess the capability of cancelling the intenfes

similar to Algorithm 1. After obtaining; = w™™, Vi € Kz, from energy signals, even with suboptimal designs.
the energy beanw g is then optimized over the null space of

T
H=|nT ... hIT(I} , Which can be obtained by solving the
following problem:

V1. CONCLUSION

This paper has studied the joint information and energy
transmit beamforming design for a multiuser MISO broad-
max wiGuwg cast system for simultaneous wireless information and powe
we transfer (SWIPT). The weighted sum-power harvested by EH
receivers is maximized subject to individual SINR constisi
|lwg|*< P - Z [|wimin |2, (20) at ID receivers. Considering two types of ID receivers witho
ey or with the interference cancellation capability, the dasi
problems are formulated as two non-convex QCQPs, which
are solved optimally by applying the techniques of SDR and
uplink-downlink duality. The results of this paper provide
useful guidelines for practically optimizing the perfonnca
of multi-antenna SWIPT systems with receiver-locatiosdzh
information and energy transmission.

s.t. Hwg = 0,

Let the singular value decomposition (SVD) Hf be given by

H=UA[V V]H, whereV € CM*(M=K1) consists of the

vectors corresponding to zero singular valuestbfand thus

spans the null space dff. Then the optimal solution of (20)

can be obtained asp = \/P — 3 w2Vl with vl
ieKz

being the dominant eigenvector ¥ GV

2) Separate information/energy beamforming design with -
Type Il 1D receivers. In this scheme, we first set the informa# Proof of Proposition3.1]
tion beams to satisfy the SINR constraints at all ID recaiver Note that(SDR1) is a SDP problem and thus is convex. It is
with the minimum transmit sum-power as; = w™®,Vi € easy to verify that this problem satisfies the Slater’s ctoorali

APPENDIX
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[21] and thus has a zero duality gap. Therefore, we considenere the first equality follows from (24), the second in-

the Lagrangian ofSDR1) expressed as
‘61 ({W’L}a WEa {Az}v B)
:ﬂp— Z AZO'? + Z tr (A1W1) + tr (01WE),

i€z i€z
where
ih{'h;
A; = G+A+— > Mk — I, Vi€ Kz,
i ki, keKz
(21)
Ci = G- Y Mhi'h,—BI, (22)

ket

and \; > 0,i9 € Kz and 83 > 0 are the dual variables
associated with théth SINR constraint and the transmit sum?
power constraint ofSDR1), respectively. As a result, the dualSPaces Of botldr —

problem of (SDR1) is given by

SDR1.D) : ' P- \io2
( ) (A 20}.820 b Z 7
€KL
s.t. C;<0,A;,X0,VieKs.

Suppose that the optimal solution ¢$DR1.D) is {A}, 5*
and the resulting A;},C; are {A}}, C7. Then the optimal
solutions of(SDR1) and (SDR1.D) should satisfy the following
complementary slackness conditions:

tr (AfW7) =0, Vi€ Kz,
tr (CTWpg) =0
which are equivalent t?d\; W = 0,Vi € Kz, andC7

(23)
(24)

0, respectively. Furthermore, it can be verified that in ordé¢hat any W7,

to meet the SINR constraints, it must hold tHat; # 0
or equivalentlyrank(W?7) > 1,Vi € Kz, then from [2B), it
follows thatrank(A}) < M — 1 Vi e Kz.

Next, we prove this proposition by considering the follogiin haverank(A7) > rank(C7) — rank (—)‘*(1 + 3

two cases where\; = 0,Vi € Kz, and (without loss of
generality) there exists at least onec Kz with A >0,
respectively.

First, we consider the case &f = 0,Vi € Kz. In this case,
we haveA; = C] = G — 8*1,Vi € Kz. Sincerank(A}) <
M —1andA; <0,Vi € Kz, it follows that 8* = ¢, where
&g is the dominant eigenvalue @ (cf. (@)). As a result, it
can be verified from[(23) and(R4) thda¥V;,Vi € Kz and

equality usesWr > 0, the third equality holds due to
Al =C7 + )\*(1 + = )hth, and the last equality is true
from the facts ofA} < 0 andrank(A}) < M —1,Vi € Kz.
Thus, it must hold thah*tr (hfth}i;) =0, Vi € Kz or

equivalently\*h/’ h,W?%, = 0, Vi € Kz. As a result, we have

(G- IW = <G - > Nhf'hi - 5*1) W
€KL

:C; 27 =0, (25)
where the last two equalities hold due {01(22) afd] (24),
respectively. Furthermore, singe > 0, i € Kz, it follows that
Hh:W*, = 0. Together with[(Z5)W %, should lie in the null
51 anthh at the same time. However,
since the channgj,’s and h;’s are independently distributed
under AssumpuoEI,lwe haverank(G — 5*I) > M — 1, and
thus the two matrice& — 5* I andh{lh; span the entire space
with probability one As a result, it follows that¥}, = 0.
Therefore, for anyW7, = 0 satisfying [2%), it must hold that

5=

Finally, it remains to prove thatank(W7) 1,Vi
Kz. We prove this result by showing thatank(A})
M - 1,Yi € Kgz. By using C; A7 — X1+
L)hi'h;, Vi € Kz together with the fact thatank(X +
Y) < rank(X) + rank(Y) holds for any two matrices
X andY of same dimension, it follows thatank(C7) <
rank(A}) + rank (—)\*(1+ )hHh),Vz' € Kz. Given
= 0 satlsfymg [2#) should be zero, it
can be shown thatrank(C?7) M; and meanwhile,

( A1+ SRk, ) < 1,Vi € Kz. Therefore, we
L)k h; ) >
M —1,Vi € Kz. Combining this argument W|tlnank(A*) <
M —1,Vi € Kz, it follows thatrank(A}) = M —1,Vi € Kz.

Accordingly, from [2B) we haverank(W}) = 1,V2 € Kz.
Propositiof 3.1l is thus proved.

S

rank

B. Proof of Proposition 3.2
Note that(SDR2) is a SDP problem and thus is convex. It is

W should all lie in the subspace spanneddyy, which can easy to verify that this problem satisfies the Slater’s ciorli
be shown to correspond to the OeBF-feasible case. Therefd2d] and thus has a zero duality gap. Therefore, we consider
the case of\} = 0,Vi € Kz cannot occur here. the Lagrangian ofSDR2) given by
Second, we consider the case when there exists at least one
i € Kz with A > 0. In this case, we first show that any ~ L2({Wi}, Wg, {Ai}. §)
W = 0 satisfying [2%#) should be zero. Given aly 7%, = 0 - Z tr(A;W;) + tr(CaWg) —
i€z i€z

satisfying [2#), it follows that
(1 + ! —)tr (hHh %% ) whereA; is given by [21),C» = G—3I, and)\; > 0,i € Kz
i andg > 0 are the dual variables associated with #ieSINR
—tr ((C* N (14— )hHh ) W ) constraint and the transmit sum-power constrain{3uR2),
Vi respectively. The dual problem ¢£DR2) can be expressed as
Ly wm
<max tr(|(CT+X(1+—)hi h;|X
25 = (G0 Snn ) x) o

Aio; — BP
{A >01,8>0 Z o =P
= tr(AFX) =0, Vi € Kz, "
)Ig'a;{() I‘( ’ ) ! o s.t. CQ j 0, A; <0, Vie Kz.

> Niof + 8P,

(SDR2.D)
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Suppose that the optimal solution ¢§DR2.D) is {A;},3*, C. Proof of Proposition[3.3

and the resultind A, }, C> are {A;}, C,. Then the optimal  Gjven ; = 1, let the optimal dual solution fo(SDR2)

solutions of(SDR2) and (SDR2.D) should satisfy the following pe genoted by\! > 0 and 8* > 0 (see (SDR2.D) in

complementary slackness conditions: Appendix[B). It then follows from[(26) and (27) that the
optimal solution of(SDR2) should satisfy the two equations

xhPh,
of (G+ = —ﬁ*I) W:=0and(G-p*I)Wy=0
xhi'h,
at the same time, wher& + ~—— — 5*I < 0 and

which are equivalent tol; W; = 0,Vi € Kz,andC;W§ = G — g*I < 0. Furthermore, we have®* > &5 due to
0. Note that in order to meet the SINR constraints, it mugl — 3+1 < 0.

tr(ATW?) =0,Vi € Kz, (26)
tr(C3WE) =0, (27)

hold thatW’; # 0 or equivalentlyrank(W7) > 1,Vi € Kz, Next, we prove this proposition by considering the two cases
then from [26) it follows that of §* = &p and 5* > g, respectively. Iff* = &g, then it
. . *h?h,
» ) can be shown that in order to satisfy + Ali — B I <
rank(Aj) < M —1,Vi € K. (28) o andG — B*I < 0 at the same time, it 'must hold that

A7 = 0, which corresponds to the OeBF-feasible case. As
Next, we prove this proposition by focusing on the casg result,3* = ¢z cannot occur here. On the other hand, if
when there exists at least ones Kz with A\ > 08 In this B* > £, thenG — B*I < 0 is of full rank; accordingly, from
case, we first showV 7}, = ¢*vpv# as follows. Due to the (G — B*I)W’ = 0 it follows that W%, = 0. Propositiofi 3.8
fact thatC; = G — "I < 0, we haves” > {p. If 3" = &g, s thus proved.
thenrank(C%5) = M —1; it thus follows from [27) thaWW 7, =
¢ropv with 0 < ¢* < P.If * > &g, thenrank(C3) =

M; it thus follows from [2¥) thatW7, = 0 or equivalently D. Proof of Proposition 4.1

Wi = ¢*vpvll with ¢* = 0. Therefore, W, = ¢*vpvl Denote the optimal values ¢P1.1) and (P1.2) aswy.1)
and accordinglyrank(W7;) < 1 follows. andv(py ), respectively. Sincg¢p1.2) is the dual problem of
Second, we proveank(W?) = 1 by showingrank(A}) = (P1.1), itimmediately follows thav(ps.5) > v(es.1). Therefore,

M —1,Vi € Kz. To this end, we first prove that’,vi € Ky 10 complete the proof of this proposition, we only need togho

are all strictly positive by contradiction. Suppose thagréh that.”(Pl-l) Z V(p1.2)-
exists onei € Kz,i # i satisfying that\r = 0. In  First, we express the SDR of problepi.1) as

(SDR1.1) :
max Z tr(GW,)

« 1, H * = = { i}ieKI
rank | — > Ahphi| > 1 (dueto); > 0,i # 1), tr(h W)

this case, since(— 3 /\thHhk> <0 C; 20,
k#i, k€T

k#i,keK1 B Hy o '
andrank(C3) > M — 1, it can be shown thatank(A7) = °* 7 5 I#;K tr(hihiWi) — o7 2 0,Vi € Kz
1, s
rank (C3— Y. Ahi'hy | = M with probability one Z tr(W;) < P
k#i,k€Kz ik,

provided that the channgj;’s and h;'s are independently
distributedunder Assumptiofil1This induces a contradiction
to (28). Therefore, the presumption cannot be true andFtom Propositio 311, it follows thatSDR1.1) always has

W; = 0,Vi e Kz.

follows that\; > 0, Vi € Kz. a rank-one solution. Hence, by denoting the optimal value
With Af > 0,¥i € Kz, it can be shown that achieved by(SDR1.1) asv(spri.1), W€ havev(py.1) = v(spri.1)-
( . vy H ) , Meanwhile, we can express the SDR of probléin (9) as

rank (C5— > MNhyhy| = MYi € Kz. By

ki keKs . fsor1(B) =
noting that C3 — > Mhihy, = A — #

ketiskeKz X nax tr(GW,) — 8 (Z tr(W;) — P)

we haverank(A;) > rank | C5— > )\thHhk> — . ZEK;Hh W e

p pFkeRs s, TEOTWD S W) — o 2 0,5 € Kz
rank —# > M —1,Vi € Kz. Together with [(2B), i ki, keKz
it follows that rank(A) = M — 1,Vi € Kz; accordingly Wiz 0,¥i€Kz, (29)

rank(W7) = 1,Vi € Kz, holds due to[(26). This thus and accordingly define a new problem as
completes the proof of Proposition B.2.
(SDR].Q) rg;.r& fSDR,l(ﬂ)-

8Note that similarly to the proof given in AppendiX A, the casith Af = o .
0,Vi € K7 can be shown to correspond to the OeBF-feasible case and mgen it is O.bserved thE(SPRl-Q) is also the .du_al problem of
is not considered here. (SDR1.1). Since(SDR1.1) is convex and satisfies the Slater’s
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condition [21], it can be verified that strong duality holds;, — Stk Mhfhy + B - G ThH into (33). As
7, T 1!

between(SDR1.1) and(SDR1.2), i.€., v(spr1.1) = V(sorr.2) With 4 result, problem{31) and hence probldml (10) are equivalent

v(spr1.2) being the optimal value ofSDR1.2). Together with 5 the following problem:

V(p1.1) = U(spri.1), W€ thus havey(p; 1) = v(spr1.2)- )
Moreover, since probleri{29) to obtafig 1 (3) is the SDR max Z Aio;

of problem [®) to obtainf;(3), we have fsps1(3) > f1(6) =0} i,

for any 8 > 0. As a consequence, it follows thagspr; 2) > s.t. max SINRMAC({@y, A }) < i, Vi€ Kz, (34)
U(P1.2)' Hence, |t |S Ve”f'ed tha{}(pll) = U(SDR1.2) 2 U(P1.2)' {w:}
Propositior 3B is thus proved. Next, problem[(IB) can be equivalently re-expressed as
min Z \io?
E. Proof of Proposition 4.2 a0t S
First, we express the SDR of problem](10) as s.t. max SINRMAC({@w;, \;}) > v, Vi€ Kz.  (35)
{w;}
{mm/i.fo} Z tr (51 - G)W5) By comparing problemd (34) an@{35), their difference lies
- ZG’CIH in the reversed SINR constraints as well as the reversed
tr(h; hWi) Z tr(h hWy) objective (maximization in[(34) versus minimization [n}B5

kot heKr Itis evident that the qptimal _solution of both proble(an)i _
2> 0Viek 30 (359) should be obtained with all the SINR constraints being
o; 20, ¥i €Kz, (30) tight, since otherwise the objective value [n](34) {inl(3&n
which can be shown to achieve the same optimal vall@ further increased (decreased) by increasing (dectgasin
of problem [ID), for which the proof is similar to that ofcertainA;’s (\;’s) while satisfying all the SINR constraints,
Propositiof 31l and thus is omitted here for brevity. We thdiovided that both the numerator and denominator of the

express the dual problem df{30) as expression OfSINR}AC({w;, \;}) given in [12) are non-
~ negative. We can thereby show that problems (34) (35)
max Z Aoy, achieve the same optimal value as follows.
(220} €Kz Note that the SINR constraints ih_(34) can be re-expressed
AihPh; R as
s.t. — ——— + Z Achy by
i ‘
k#i,keKt ﬁ)ZH Z /\kthhk + ﬂI -G '11)1
+pI -G =0, Vie Kz, (31) ] k#i k€K
~ i — Vi min . HhHh ~
where)\; > 0,7 € Kz represents the dual variable associated 1w:fl=1 Wi Iy i,

with the ith constraint in[(30). Since probler {30) is convex
and satisfies the Slater’s conditidn [21], strong dualitydko <0, Vie Kz, (36)

between[(30) and(31). As a result, give3) > —oo, (31) ) N
is always feasible, and problenisS{10).](30) and (31) achieVich specifies a convex set ¢f;} due to the fact that the

the same optimal value. minimum of a linear function is concavie [24]. In other words,
We then present the following lemma, which is proved iRroblem [3%) is recast as a convex problem. As a result, any
[14, Lemma 1]. local optimum point of [(34) is globally optimal. Therefore,

Lemma A.1: Let A be ann xn symmetric positive semidef- It ¢an be shown that any\;} in (34) that makes all SINR
inite matrix andb be ann x 1 vector. Then.A = bb” if and constraints being tight is globally optimal and thus acbgv
only b ATHH < 1. - the optimal value for[(34). Hence, it follows that problems

From Lemm_aIIll, it then follows that by settind — (34) and [[3b) achieve the same optimal value. Consequently,

.  m problems[(ID) and (13) also achieve the same optimal value,
k#zk:e,cz Arhi by + BT — G andb = y/5h;" the SINR i completes the proof of Propositibn4.2.

constraints of[(31) are identical to Remark A.1: It is worth pointing out that the proof of the
; uplink-downlink duality for the case oI — G % 0 and
i R . , g(B) > —oco in Propositior 4.R differs from that for the case
Zhi| > Mhihi+BI-G| Bl <1, VieKr. of BT — G = 0 (see [14, Theorem 1]) in two main aspects.
’ k#i,kekz First, to show the equivalent relationship betwegn (10) and
(32) @) in the case 0BT — G i 0 andg(3) > —oo, We use the

Note that the inequalities ifi{B2) are equivalent to theofgil dual problem of the SDR problem ii_{10), i.e., probldml (30),

ing inequalities: given the fact that the SDR df (1L0) is tight; whergas in theecas
~ of ST — G = 0, [14] uses the SOCP reformulation 6 {10) to
max SINRY'AC({@;, \;}) < v, Vi € Kz, (33) show that strong duality holds fdf{1L0) and its dual problem.
{w:} Second, to show that problenis{34) aind (35) achieve the same

which can be easily verified by substituting the optimalptimal value in the case ofI — G / 0 andg(3) > —o0,
solution of the problem in the left-hand side (LHS)[06fl(338,i we use the fact that problefi {34) can be recast as a convex
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problem; whereas in the case 8f — G = 0, [14] uses the  From Lemmd AR, it is evident that i§(3) = —oo, then
technique of standard interference function]|[16]. Morepvehere does not exist any fixed point of > 0,Vi € Kz
note that our proof for Propositidn 4.2 is also applicable watisfying \; = m; ({\;}),Vi € Kz. In this case, since the
the case ofI — G = 0; however, the proof in[[14] cannot fixed point iteration leads to an element-wise monotonycall
be applied for the case ¢fl — G # 0 andg() > —oo to  decreasing sequence 5™}, it will always result in a suffi-

obtain Propositiol 412 here. ciently small{A™}with > A"RIh,+BI-G#0
ki, k€K1
F. Proof of Proposition B3 for s_omez‘ € Kz, given thatI — G * 0. Thus, Proposition
[43 is proved.

The first part of this proposition follows directly from the
proof of Propositiod 4)2 in AppendXIE. Thus, we only need

to prove the second part of this proposition as follows. REFERENCES
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