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Alternating Rate Profile Optimization
In Single Stream MIMO Interference Channels
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Abstract—The multiple-input multiple-output interference
channel is considered with perfect channel information at he
transmitters and single-user decoding receivers. With alkrans-
missions restricted to single stream beamforming, we corgér the
problem of finding all Pareto optimal rate-tuples in the achievable
rate region. The problem is cast as a rate profile optimizatia
problem. Due to its nonconvexity, we resort to an alternatingy
approach: For fixed receivers, optimal transmission is know. For
fixed transmitters, we show that optimal receive beamformiig is
a solution to an inverse field of values problem. We prove the
solution’s stationarity and compare it with existing approaches.

Index Terms—MIMO interference channel; single stream
beamforming; alternating optimization; Pareto optimality

I. INTRODUCTION

for the MIMO interfering broadcast channel. Both algorithm
reach a local optimum of the original max-min problem. While
max-min optimization can achieve points on the nonconvex
parts of the rate region, it still fails to achieve all Pareto
optimal points. In[[10], a boundary intersection approath i
the single stream MIMO interference channel is conducted
using alternating optimization. A semi-definite relaxatis
utilized to solve the problem of maximizing the rate of one
user ensuring a fixed rate for the other users.

We consider the rate profile optimization problem for com-
puting all Pareto optimal points in the single-stream MIMO
interference channel rate region. Due to its nonconvexity,
we adopt the common approach of alternating optimization.
For fixed receiver beamforming, rate profile optimization is
solved in [11]. For fixed transmit beamforming, the receive

In multiuser networks, an efficient operating point is resth beamforming vectors are obtained by solving a set of fea-

if it is not further possible to strictly improve the perfoamce sibility problems each corresponding to an inverse field of
of all users jointly. Such an operating point is called Raretalue problem. With this respect, we reveal a link between th
optimal. The problem of characterizing all Pareto optimdeamforming problem and a problem from matrix analysis.
operating points in the multiple-input multiple-outputMO) The advantage of our approach in comparison to max-min
interference channel is still unsolved. It is known that iigd optimization is the explicit achievement of points along a
specific Pareto optimal rate-tuples such as the maximum sudeterministic rate profile ray. We prove the convergence of
rate, the proportional fair, and the max-min operating t®inour solution to a stationary point of the original problem.

are NP-hard problems1[2]. The significance of solving these Notations: Column vectors and matrices are given in low-
problems is to provide performance bounds for evaluatirggcase and uppercase boldface letters, respectilelyis the
distributed low complexity algorithms, e.g. inl [3].1 [4]. Euclidean norm ots € CV. |b| is the absolute value d@fc C.

An approach to simplify the problem is to characterize the)! denotes Hermitian transposkis an identity matrix. De-
set of necessary transmission strategies for Pareto dptirfiae the collection{a}, := (a1,...,a/x)). CN(0, A) denotes
operation for each user independently [5]. However, thecbeaa circularly-symmetric Gaussian complex random vectoh wit
space remains very large for finding a Pareto optimal transevariance matrixA.
mission strategy. Direct computation of Pareto optimahfmoi
can be performed through a maximization of the weighted |l. SYSTEM MODEL AND PROBLEM FORMULATION
sum-rate([6],[[7]. Alternating optimization algorithmsiteach  Consider a setC = {1,..., K} of interfering links. Each
a local optimum are proposed for the MIMO interferencgansmitterj usesn; antennas and each receierusesm,
channel in[[6] and for the MIMO interfering broadcast chdnneintennas. The flat fading channel matrix from transmitter
in [7]. The drawback of the weighted sum-rate approach is tha to receiverk is Hj, € C™>*". We assume that each
it does not obtain points on the nonconvex part of the ra&insmitter sends a single data stream to its intendedvexcei
region [8]. To deal with this problem, max-min optimizationThe beamforming vector at transmittgiis w, from the set
is suitable and is considered using alternating optinmizain " 9
[2] for the single-stream MIMO interference channel anddh [ wj €W; = {“’ € C | flw[” < 1}, 1)

where we assumed a total transmit power constraint of

one w.l.o.g. The received signal at receiveris y, =
2521 H j,wjz;+z;, wherez; ~ CN(0, 1) is the signal from
transmitterj andz; ~ CN(0, Io?) is additive white Gaussian
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noise. Assuming single-user decoding, the achievableafate
link & after equalization withy;, is

[oi H i ) @)
2w + X, (VL H jrw; |2

Ri(vg, {w}y) = C(


http://arxiv.org/abs/1303.4683v2

with C(z) = log,(1 + ). Since the user rate is not affected 2 Wmmso)mpw ] Ry | MVSEreceers
by receiver power, the beamforming vectog, is chosen from '
RMISO ® RSIMO
2
v €V = {'U e C™ | |jv]|* = 1}, 3 ‘(;\\\Q’OL desired point
. . . . S )
where the receive power is normalized to one. The rate region | &% rate-P‘O“\eal (D (ate-profit®
R:{’I’ERf |rk:Rk(vk,{w},<),wk € Wy, 0 Ry 0 Ry
v € Vi, k €K}, (4) (@) MISO Channels (b) SIMO Channels

is the K-dimensional set composed of all rate tuples. The s&p. 1. llustration of the solutions of rate profile optiration.
of Pareto optimal points ifR is defined as[[12, p. 14]:

W(R) = {x € Rlthere is noy € R with y >z}, (5) For fixed receive beamforminfw} ., problem [7) reduces to

with componentwise inequality irf](5). At a Pareto optimal m{%imli%ze R (9a)
point it is impossible to strictly improve the performande o x

all users jointly. The set o$trong Pareto optimal points is a s.t. Ri(vi, {w}y) > xR, k€K, (9Db)
subset ofW(R) defined as: wi € Wy, kek. (9¢)

P(R) = {x € Rlthere is noy € R with y > z,y # z}, (6) It is ;hgwn in [11] that probleni{9) can be solved by a set of
feasibility problems:
where the inequality in{6) is componentwise.

In this work, we are interested in characterizing all points find Wi, WK (10a)
W(R) in (), the so-calledPareto boundaryf the rate region st Rp(vg,{w}ye) = axt, k€K, (10b)
R. Any Pareto optimal point is attained as a solution of the wy € Wi, ke, (10c)

following rate profile optimization problem . . .
9 P P P where the parameter > 0 is updated based on a bisection

maximize R (7a) method. In order to determine the feasibility, the problem i
whelwhe. R (I0) is transformed in[[11, Section I.D] to a second order
s.t. Ry (vp, {w}) 2 xR, ke K, (Tb) cone programm (SOCP) and solved efficiently.
wy € Wy, v €V, keK. (70) In Fig.[I(@), solutions of probleni](9) are illustrated. For a

rate profile raya passing through the s@(R"<°) (according

Note that the rate profile approach has been first propo?;ga3 ), the solution of[19) achieves a unique point in the rat

for broadcast and multiple-access channelslid [13] and ergion. If the rate profile ray does not pass throGfiR"=°)

MISO interference channels in_[14]. 16](7), the rate profilgs rate profile raye’, then multiple solutions forl{9) exist

(a1,...,ak) satisfiesa, > 0,k € K and Zf_lak = 1. . . . ; .
R ’ . = . corresponding to the points in the illustrated larger eircl
The objective R corresponds to the links’ sum-rate if the P 9 P gere

constraints in[(dc) are satisfied with equality. The ratefilgro g Rate profile Optimization in SIMO Interference Channels

defines the direction of a ray starting in the origin of theerat . . . .
In this section, we assume the transmit beamforming vectors

region, and the point of intersection of the ray and the Bare){w} are fixed. The setting corresponds to a SIMO interfer-
. ) . . c )
boundary is a solution oL(7). Solvinl(7) for all possibléera ence channel. The rate region in the SIMO setting is a subset

profiles, all points inW(R) are characterized. Probler] (7) . . _

is however nonconvex and even NP-hard [2], and hence %‘he rate regiorR in (@) and has the following property.

method is known that can attain its solution efficiently. Proposition 1 The rate region of a SIMO interference channel
We propose to decompose proble (7) into two subproWith fixed transmitters is d -dimensional box:

lems which are solved alternatingly. The first problem op- _swo y .

o . . . . = : <

timizes the transmit beamforming vectors for fixed recelveR {r€Rime < Bi(vi, {whe) k€ K}, with (1)

beamforming vectors. The second problem optimizes the re- ) ot 1

ceive beamforming vectors for fixed transmit beamforming ot — (U I+ Zj;ék ijijjij) Hwy,

vectors. Next, we discuss the two problems independently.” * — 27 topt 7! '

; X ) +3 . Hjpww H! H
Later in Sectior 1V, the solutions of the two problems are I Zyer Hipwjwi Hiy) x|

used to construct the alternating algorithm. Proof: The proof can be found in[1, Appendix A]. m
In Fig. [I(B), an illustration of a two-user SIMO rate region

. OPTIMALITY IN MISO AND SIMO CHANNELS is give_n. A _si_ngle _s?rong Pareto optimal point exists corre-

. VT sponding to joint minimum mean square error (MMSE) receive

A. Rate Profile Optimization in MISO Interference Channelﬁeamforming in[(I2). The rate profile optimization for fixed
In this section, we assume the receive beamforming vect@rgnsmit beamforming vectors is formulated as:

are fixed. The considered MIMO setting reduces to a MISO

(12)

interference channel, and the rate region is a subs&: of m{%:ﬂfe R (132)
RY° = {p € Rlry, = Ry,(vy, {w}lc)’wk € W, k € K}. s.t. Ry (v, {w},c) >apR, ke, (13b)

(8) v €V, kek. (13c¢)



25

Algorithm 1: Alternating rate profile optimization. oo @_(—'weighted sum-rate ['7]

Input: rate profile{a}, = (a1,...,ak) and accuracy 2f . ' \ T
1 Initialize : i = 0; choose randon{v},(co); T 1l |
2 repeat } . § . @ max=min [9]
3 | solve [9) given{v}\? to get ({w} (Y, REHD); & 1f . Jﬁmax_min 2 ]
4 | solve [IB) given{w}{ " to get ({v} ™, RGT2); o5k * . m H |
5 =1+ 2; rate—profile
6 until R — ROG-1 < ¢; 0 : : : : :

: » 0 0.5 1 1.5 2 2.5 3
Output: {w}%), {v},(é) R, [bpcu]

Fig. 2. Plot of a two-user rate region at signal-to-nois®@raNR= 1/02 = 0
. . o . dB and two antennas at each transmitter and receiver. Tiéspoiarked with
The receive beamforming vector that optimiZe](13) is nat, ¢, andO correspond to the rate tuples achieved in each iteratiomef t

necessar”y unique_ In F|E{b), an illustration of the sét alter_nating algorithms in_[9],12], and_ Algorith :'I., re_sp'eely. The filled
points that solve[{13) are contained in the green circle. Ohuenfllled) markers correspond to receiver (transmitterfinojzation.
solution of [13) is joint MMSE beamforming. Another special!
solution corresponds to the intersection of the rate prodije 4
and the Pareto boundary. Note that rate profile optimizati._,
in the SIMO interference channel has been considered in [ ;
Section IV.B] and[[15]. In comparison, we do not optimize thzn
transmission power but only the receive beamforming vectc
by a different approach. 0
In order to attain the desired point on the rate profile ra
we can solve the following set of feasibility problems:

find  wvi,...,vx (14a) R, [bpeu] R, [bpeu]

s.t. Rk(vk’ {w},c) =axt, keK, (14b) Fig. 3. Plot of three-user rate region at SNR dB and three antennas at
vy € Vi, keKk. (14c) each transmitter and receiver. For the two rate profiles fitkeel (unfilled)
markers correspond to receiver (transmitter) optimizatd Algorithm 1.
wheret > 0 is updated according to a bisection method.

In comparison to[{13), the inequality i {I3b) is changed toig.[2 corresponds to random norm-one transmit beamforming

equality in [I4b). We can reformulate (14b) to vectors with MMSE receive beamforming. Using Algorithin 1
; we are able to plot for50 different rate profile samples
v, Qi(t)vr =0, keK, (15)  the points bounding the rate region. In FIg. 2, the points

marked with cross correspond to the algorithniin [7] where an
iterative weighted MMSE algorithm is proposed to optimize
the weighted sum-rate. It can be observed that points on the
nonconvex part of the Pareto boundary are not achieved.

For a selected rate profile not passing through a strong
Pareto optimal point, the solutions of the transmitter and
receiver optimizations are plotted during the alternatipd-
mization. The performance improvement in each iteratian ca
be observed and the alternating optimization terminates at
point very close to the Pareto boundary. In comparison to-max
min optimization in[[2] and[9], Algorithrill delivers a soion
on the rate profile ray. The difference between Algorithmd an

IV. ALGORITHM AND NUMERICAL RESULTS [2, Algorithm ECCAA] is the receiver optimization step wieer

The alternating rate profile algorithm is described in Alin [2] MMSE receive beamforming is performed. While the
gorithm[d. The measur®”) at iterationi is the achieved algorithm in [9] does not terminate at the rate profile rays it
progress from the origin along the rate profile ray. In eagfowerful enough to solve the max-min problem for the general
iteration 4, an improvemen?(Y) — R~ > ¢ > 0 must be setting with multiple data streams per user and multiplesuse
achieved. associated with each transmitter. Note that both algostim
[2] and [9] terminate at the rate profile ray if it passes tigtoa
strong Pareto optimal point. Generally, it is hard to aptaté
whether the rate profile ray passes through a strong Pareto

Proof: The proof is provided in Appendix]A. B optimal point. This can be observed in a three-user rat@negi

In Fig.[2, a two-user rate region is plotted. Single randoin Fig.[3. The terminating points of Algorithad 1, marked with

channel matrix realisations are selected. The cloud oftpdin a square, always achieve points on the rate profile ray.

where the Hermitian matrix@,(t) = Hkkwkw,iHLk -
(206t — 1) (02T + Y., Hjw;w HY, ). The problem in
(I4) with (I3b) replaced by (15) is called theverse field
of values problenf17]. In order to check the feasibility of
(I4) for a chosen, it suffices to test whether lies between
the smallest and largest eigenvaluesf(¢), i.e., 0 is in the
field of values[[18, Chapter 1] @D (¢). After the convergence
of the bisection method which determines the optimalach
vector vy, is determined by the algorithm from [[17] requiring
five eigenvalue decompositioris [17, Section 5].

Theorem 1 The alternating rate profile optimization in Algo-
rithm [ converges to a stationary point ¢f)).



V. CONCLUSIONS

Similarly, {v}x =

U({w}r) in Problem [IB) corresponds

We have considered rate profile optimization in the singf@€ following KKT conditions[(I7a)[(1¥c) and

stream MIMO interference channel in order to characterize
all Pareto optimal points in the rate region. Due to the
nonconvexity of the problem, we have choosen an alternating
optimization approach. For fixed receivers, we use an exgjsti

11V, Bi(Vg, {W} ) — 20,0k = 0, Vk € K,
vk € K.

(18a)

0< 7k, Dok =1, (18b)

Combining the KKT conditiond (1¥a)-(1l7d) of Problei (9)

method for rate profile optimization in MISO channels. Foand [188){(18b) of Problenf (13) and comparing with the
fixed transmitters, we have shown that rate profile optinopat KKT conditions [16&){(16f), we have thitR {w}x, {v}k)
can be solved by a set of feasibility problems each corre$pomssociated with the Lagrange multipli€siy,, Ck, Tk } ¢ satisfy
ing to an inverse field of value problem. In comparison tthe KKT conditions of Probleni{7), i.e[ {1I6&)-(16f). It itigs
existing algorithms, we always achieve points along the rathat (R {w}k,{v}x) is a stationary solution to Problei (7).

profile ray. We prove that the proposed solution is a statipna
point of the original problem.
(1]
APPENDIXA
PROOF OFTHEOREM[] 2]

Denote the optimization of Problern] (9) and the optimiza-
tion of Problem [(IB) by the functioQw}x = ¥({v}k) 3]
and {v}x = @({(w},g) respectively. In Algorithnlll, the
sequence{R({w} v} )}.-, monotonicallyincreases as 4]
the iteration numbef increases due to the optimality 6X(-)
and¥(-), and additionally is upper-bounded. The convergence
of {R({w}fé), {v}fé))}zl and thus the convergence of Algo- [s5]
rithm [ is guaranteed.

Let lim; 0o R{w}?, {v Oﬁ’ R({w}x, {0}c) de- (g
note the convergent pomt It remains to show that
{w}i, {v}x) = {w}k,0 ({v}k)) is a stationary solution 1
to Problem[(¥). Assume thaR*, {w*}«, {v*}x) associated
with Lagrange multiplier${.; } ., {{} }ic, {n) } k) is a station-
ary solution to Problen{7), which must satisfy the follogin ]
KKT conditions of Problem[{]7):

1= phak =0, (16a)
kek [l
D 14V, Ri(vi, {w” k) — 2Gwy = 0, Vk € K, (16b)
kek
WiV, Ri(vf, {w* ) — 20w =0, Vkek, (16c) 10
0<pup L Rp(vi,{w'}x)—arR" >0, Vkek, (16d)
0<¢ L1—wilwy >0, Vkek, (16e) [11]
0<n, vilvp=1, Vkek. (16f)
[12]

Given {v}x = {®}, itis clear (R, {w}x = O({v}x)) is
the optimal solution to Probleni](9). Therefor@R {w}x) [13]
associated with Lagrange multlpl|e|({uk},c,{<k},c) must
satisfy the following KKT conditions of Problen](9): [14]

1—- Z fray = 0, (17a)
keKx [15]
> iV, Ri(Br, {W}x) — 2G5 =0, Vk €K, (17b)

kek

0 < fix L Ri(@p, {@}x) — R >0, Vke Kk, (17c) [°
0<G L1—wlw, >0, VkeK. (17d)
. [17]
1There must exist a cluster point, denoted{lay} «, of {{“’})(C) }z°° , due
to the compactness of the set pfv}x, and the limit of{{v}K)}L L (18]

be expressed @ ({w}x) becaused(-) is a continuous function.
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