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Alternating Rate Profile Optimization
in Single Stream MIMO Interference Channels

Rami Mochaourab, Pan Cao, and Eduard Jorswieck,

Abstract—The multiple-input multiple-output interference
channel is considered with perfect channel information at the
transmitters and single-user decoding receivers. With alltrans-
missions restricted to single stream beamforming, we consider the
problem of finding all Pareto optimal rate-tuples in the achievable
rate region. The problem is cast as a rate profile optimization
problem. Due to its nonconvexity, we resort to an alternating
approach: For fixed receivers, optimal transmission is known. For
fixed transmitters, we show that optimal receive beamforming is
a solution to an inverse field of values problem. We prove the
solution’s stationarity and compare it with existing approaches.

Index Terms—MIMO interference channel; single stream
beamforming; alternating optimization; Pareto optimalit y

I. I NTRODUCTION

In multiuser networks, an efficient operating point is reached
if it is not further possible to strictly improve the performance
of all users jointly. Such an operating point is called Pareto
optimal. The problem of characterizing all Pareto optimal
operating points in the multiple-input multiple-output (MIMO)
interference channel is still unsolved. It is known that finding
specific Pareto optimal rate-tuples such as the maximum sum-
rate, the proportional fair, and the max-min operating points
are NP-hard problems [2]. The significance of solving these
problems is to provide performance bounds for evaluating
distributed low complexity algorithms, e.g. in [3], [4].

An approach to simplify the problem is to characterize the
set of necessary transmission strategies for Pareto optimal
operation for each user independently [5]. However, the search
space remains very large for finding a Pareto optimal trans-
mission strategy. Direct computation of Pareto optimal points
can be performed through a maximization of the weighted
sum-rate [6], [7]. Alternating optimization algorithms toreach
a local optimum are proposed for the MIMO interference
channel in [6] and for the MIMO interfering broadcast channel
in [7]. The drawback of the weighted sum-rate approach is that
it does not obtain points on the nonconvex part of the rate
region [8]. To deal with this problem, max-min optimization
is suitable and is considered using alternating optimization in
[2] for the single-stream MIMO interference channel and in [9]
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for the MIMO interfering broadcast channel. Both algorithms
reach a local optimum of the original max-min problem. While
max-min optimization can achieve points on the nonconvex
parts of the rate region, it still fails to achieve all Pareto
optimal points. In [10], a boundary intersection approach in
the single stream MIMO interference channel is conducted
using alternating optimization. A semi-definite relaxation is
utilized to solve the problem of maximizing the rate of one
user ensuring a fixed rate for the other users.

We consider the rate profile optimization problem for com-
puting all Pareto optimal points in the single-stream MIMO
interference channel rate region. Due to its nonconvexity,
we adopt the common approach of alternating optimization.
For fixed receiver beamforming, rate profile optimization is
solved in [11]. For fixed transmit beamforming, the receive
beamforming vectors are obtained by solving a set of fea-
sibility problems each corresponding to an inverse field of
value problem. With this respect, we reveal a link between the
beamforming problem and a problem from matrix analysis.
The advantage of our approach in comparison to max-min
optimization is the explicit achievement of points along a
deterministic rate profile ray. We prove the convergence of
our solution to a stationary point of the original problem.

Notations:Column vectors and matrices are given in low-
ercase and uppercase boldface letters, respectively.‖a‖ is the
Euclidean norm ofa ∈ C

N . |b| is the absolute value ofb ∈ C.
(·)† denotes Hermitian transpose.I is an identity matrix. De-
fine the collection{a}K := (a1, . . . , a|K|). CN (0,A) denotes
a circularly-symmetric Gaussian complex random vector with
covariance matrixA.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a setK = {1, . . . ,K} of interfering links. Each
transmitterj usesnj antennas and each receiverk usesmk

antennas. The flat fading channel matrix from transmitter
j to receiverk is Hjk ∈ Cmk×nj . We assume that each
transmitter sends a single data stream to its intended receiver.
The beamforming vector at transmitterj is wj from the set

wj ∈ Wj =
{
w ∈ C

nj | ‖w‖2 ≤ 1
}
, (1)

where we assumed a total transmit power constraint of
one w.l.o.g. The received signal at receiverk is yk =∑K

j=1 Hjkwjxj+zk, wherexj ∼ CN (0, 1) is the signal from
transmitterj andzk ∼ CN (0, Iσ2) is additive white Gaussian
noise. Assuming single-user decoding, the achievable rateof
link k after equalization withvk is

Rk(vk, {w}K) = C

(
|v†

kHkkwk|
2

σ2‖vk‖2 +
∑

j 6=k |v
†
kHjkwj |2

)
, (2)
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with C(x) = log2(1 + x). Since the user rate is not affected
by receiver power, the beamforming vector,vk is chosen from

vk ∈ Vk =
{
v ∈ C

mk | ‖v‖2 = 1
}
, (3)

where the receive power is normalized to one. The rate region

R = {r ∈ R
K
+ | rk = Rk(vk, {w}K),wk ∈ Wk,

vk ∈ Vk, k ∈ K}, (4)

is theK-dimensional set composed of all rate tuples. The set
of Pareto optimal points inR is defined as [12, p. 14]:

W(R) = {x ∈ R|there is noy ∈ R with y > x}, (5)

with componentwise inequality in (5). At a Pareto optimal
point it is impossible to strictly improve the performance of
all users jointly. The set ofstrong Pareto optimal points is a
subset ofW(R) defined as:

P(R) = {x ∈ R|there is noy ∈ R with y ≥ x,y 6= x}, (6)

where the inequality in (6) is componentwise.
In this work, we are interested in characterizing all pointsin

W(R) in (5), the so-calledPareto boundaryof the rate region
R. Any Pareto optimal point is attained as a solution of the
following rate profile optimization problem:

maximize
{v}

K
,{w}

K
,R

R (7a)

s.t. Rk(vk, {w}K) ≥ αkR, k ∈ K, (7b)

wk ∈ Wk, vk ∈ Vk, k ∈ K. (7c)

Note that the rate profile approach has been first proposed
for broadcast and multiple-access channels in [13] and for
MISO interference channels in [14]. In (7), the rate profile
(α1, . . . , αK) satisfiesαk ≥ 0, k ∈ K and

∑K

k=1 αk = 1.
The objectiveR corresponds to the links’ sum-rate if the
constraints in (7c) are satisfied with equality. The rate profile
defines the direction of a ray starting in the origin of the rate
region, and the point of intersection of the ray and the Pareto
boundary is a solution of (7). Solving (7) for all possible rate
profiles, all points inW(R) are characterized. Problem (7)
is however nonconvex and even NP-hard [2], and hence no
method is known that can attain its solution efficiently.

We propose to decompose problem (7) into two subprob-
lems which are solved alternatingly. The first problem op-
timizes the transmit beamforming vectors for fixed receive
beamforming vectors. The second problem optimizes the re-
ceive beamforming vectors for fixed transmit beamforming
vectors. Next, we discuss the two problems independently.
Later in Section IV, the solutions of the two problems are
used to construct the alternating algorithm.

III. O PTIMALITY IN MISO AND SIMO CHANNELS

A. Rate Profile Optimization in MISO Interference Channels

In this section, we assume the receive beamforming vectors
are fixed. The considered MIMO setting reduces to a MISO
interference channel, and the rate region is a subset ofR:

RMISO = {r ∈ R|rk = Rk(vk, {w}K),wk ∈ Wk, k ∈ K}.
(8)

W(RMISO)
P(RMISO)

RMISO

0

R2

R1

rate-profileα
′

rate-profile
α

(a) MISO Channels

RSIMO

0

R2

R1

rate-profile

MMSE receivers

desired point

(b) SIMO Channels

Fig. 1. Illustration of the solutions of rate profile optimization.

For fixed receive beamforming{v}K, problem (7) reduces to

maximize
{w}

K
,R

R (9a)

s.t. Rk(vk, {w}K) ≥ αkR, k ∈ K, (9b)

wk ∈ Wk, k ∈ K. (9c)

It is shown in [11] that problem (9) can be solved by a set of
feasibility problems:

find w1, . . . ,wK (10a)

s.t. Rk(vk, {w}K) ≥ αkt, k ∈ K, (10b)

wk ∈ Wk, k ∈ K, (10c)

where the parametert > 0 is updated based on a bisection
method. In order to determine the feasibility, the problem in
(10) is transformed in [11, Section II.D] to a second order
cone programm (SOCP) and solved efficiently.

In Fig. 1(a), solutions of problem (9) are illustrated. For a
rate profile rayα passing through the setP(RMISO) (according
to (6)), the solution of (9) achieves a unique point in the rate
region. If the rate profile ray does not pass throughP(RMISO)
as rate profile rayα′, then multiple solutions for (9) exist
corresponding to the points in the illustrated larger circle.

B. Rate Profile Optimization in SIMO Interference Channels

In this section, we assume the transmit beamforming vectors
{w}K are fixed. The setting corresponds to a SIMO interfer-
ence channel. The rate region in the SIMO setting is a subset
of the rate regionR in (4) and has the following property.

Proposition 1 The rate region of a SIMO interference channel
with fixed transmitters is aK-dimensional box:

RSIMO = {r ∈ R : rk ≤ Rk(v
∗
k, {w}K), k ∈ K}, with (11)

v∗
k =

(
σ2I +

∑
j 6=k Hjkwjw

†
jH

†
jk

)−1
Hkkwk

∥∥(σ2I +
∑

j 6=k Hjkwjw
†
jH

†
jk

)−1
Hkkwk

∥∥
. (12)

Proof: The proof can be found in [1, Appendix A].
In Fig. 1(b), an illustration of a two-user SIMO rate region
is given. A single strong Pareto optimal point exists corre-
sponding to joint minimum mean square error (MMSE) receive
beamforming in (12). The rate profile optimization for fixed
transmit beamforming vectors is formulated as:

maximize
{v}

K
,R

R (13a)

s.t. Rk(vk, {w}K) ≥ αkR, k ∈ K, (13b)

vk ∈ Vk, k ∈ K. (13c)
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Algorithm 1: Alternating rate profile optimization.

Input : rate profile{α}K = (α1, . . . , αK) and accuracyǫ
1 Initialize : i = 0; choose random{v}(0)K ;
2 repeat
3 solve (9) given{v}(i)K to get

(
{w}

(i+1)
K , R(i+1)

)
;

4 solve (13) given{w}
(i+1)
K to get

(
{v}

(i+2)
K , R(i+2)

)
;

5 i = i+ 2;
6 until R(i) −R(i−1) < ǫ;

Output : {w}
(i)
K , {v}

(i)
K

The receive beamforming vector that optimize (13) is not
necessarily unique. In Fig. 1(b), an illustration of the setof
points that solve (13) are contained in the green circle. One
solution of (13) is joint MMSE beamforming. Another special
solution corresponds to the intersection of the rate profileray
and the Pareto boundary. Note that rate profile optimization
in the SIMO interference channel has been considered in [15,
Section IV.B] and [16]. In comparison, we do not optimize the
transmission power but only the receive beamforming vectors
by a different approach.

In order to attain the desired point on the rate profile ray,
we can solve the following set of feasibility problems:

find v1, . . . ,vK (14a)

s.t. Rk(vk, {w}K) = αkt, k ∈ K, (14b)

vk ∈ Vk, k ∈ K. (14c)

where t ≥ 0 is updated according to a bisection method.
In comparison to (13), the inequality in (13b) is changed to
equality in (14b). We can reformulate (14b) to

v
†
kQk(t)vk = 0, k ∈ K, (15)

where the Hermitian matrixQk(t) = Hkkwkw
†
kH

†
kk −

(2αkt − 1)
(
σ2I +

∑
j 6=k Hjkwjw

†
jH

†
jk

)
. The problem in

(14) with (13b) replaced by (15) is called theinverse field
of values problem[17]. In order to check the feasibility of
(14) for a chosent, it suffices to test whether0 lies between
the smallest and largest eigenvalues ofQk(t), i.e., 0 is in the
field of values [18, Chapter 1] ofQk(t). After the convergence
of the bisection method which determines the optimalt, each
vectorvk is determined by the algorithm from [17] requiring
five eigenvalue decompositions [17, Section 5].

IV. A LGORITHM AND NUMERICAL RESULTS

The alternating rate profile algorithm is described in Al-
gorithm 1. The measureR(i) at iteration i is the achieved
progress from the origin along the rate profile ray. In each
iteration i, an improvementR(i) − R(i−1) ≥ ǫ > 0 must be
achieved.

Theorem 1 The alternating rate profile optimization in Algo-
rithm 1 converges to a stationary point of(7).

Proof: The proof is provided in Appendix A.
In Fig. 2, a two-user rate region is plotted. Single random

channel matrix realisations are selected. The cloud of points in
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Fig. 2. Plot of a two-user rate region at signal-to-noise ratio SNR= 1/σ2 = 0
dB and two antennas at each transmitter and receiver. The points marked with
�, ♦, and# correspond to the rate tuples achieved in each iteration of the
alternating algorithms in [9], [2], and Algorithm 1, respectively. The filled
(unfilled) markers correspond to receiver (transmitter) optimization.
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Fig. 3. Plot of three-user rate region at SNR= 0 dB and three antennas at
each transmitter and receiver. For the two rate profiles, thefilled (unfilled)
markers correspond to receiver (transmitter) optimization of Algorithm 1.

Fig. 2 corresponds to random norm-one transmit beamforming
vectors with MMSE receive beamforming. Using Algorithm 1
we are able to plot for50 different rate profile samples
the points bounding the rate region. In Fig. 2, the points
marked with cross correspond to the algorithm in [7] where an
iterative weighted MMSE algorithm is proposed to optimize
the weighted sum-rate. It can be observed that points on the
nonconvex part of the Pareto boundary are not achieved.

For a selected rate profile not passing through a strong
Pareto optimal point, the solutions of the transmitter and
receiver optimizations are plotted during the alternatingopti-
mization. The performance improvement in each iteration can
be observed and the alternating optimization terminates ata
point very close to the Pareto boundary. In comparison to max-
min optimization in [2] and [9], Algorithm 1 delivers a solution
on the rate profile ray. The difference between Algorithm 1 and
[2, Algorithm ECCAA] is the receiver optimization step where
in [2] MMSE receive beamforming is performed. While the
algorithm in [9] does not terminate at the rate profile ray, itis
powerful enough to solve the max-min problem for the general
setting with multiple data streams per user and multiple users
associated with each transmitter. Note that both algorithms in
[2] and [9] terminate at the rate profile ray if it passes through a
strong Pareto optimal point. Generally, it is hard to anticipate
whether the rate profile ray passes through a strong Pareto
optimal point. This can be observed in a three-user rate region
in Fig. 3. The terminating points of Algorithm 1, marked with
a square, always achieve points on the rate profile ray.
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V. CONCLUSIONS

We have considered rate profile optimization in the single
stream MIMO interference channel in order to characterize
all Pareto optimal points in the rate region. Due to the
nonconvexity of the problem, we have choosen an alternating
optimization approach. For fixed receivers, we use an existing
method for rate profile optimization in MISO channels. For
fixed transmitters, we have shown that rate profile optimization
can be solved by a set of feasibility problems each correspond-
ing to an inverse field of value problem. In comparison to
existing algorithms, we always achieve points along the rate
profile ray. We prove that the proposed solution is a stationary
point of the original problem.

APPENDIX A
PROOF OFTHEOREM 1

Denote the optimization of Problem (9) and the optimiza-
tion of Problem (13) by the function{w}K = Ψ({v}K)
and {v}K = Θ({w}K), respectively. In Algorithm 1, the
sequence

{
R({w}

(i)
K , {v}

(i)
K )
}∞
i=1

monotonicallyincreases as
the iteration numberi increases due to the optimality ofΘ(·)
andΨ(·), and additionally is upper-bounded. The convergence
of
{
R({w}

(i)
K , {v}

(i)
K )
}∞
i=1

and thus the convergence of Algo-
rithm 1 is guaranteed.

Let limi→∞ R({w}
(i)
K , {v}

(i)
K )

∆
= R̂({ŵ}K, {v̂}K) de-

note the convergent point1. It remains to show that
({ŵ}K, {v̂}K) = ({ŵ}K,Θ({v̂}K)) is a stationary solution
to Problem (7). Assume that(R∗, {w∗}K, {v∗}K) associated
with Lagrange multipliers({µ∗

k}K, {ζ
∗
k}K, {η

∗
k}K) is a station-

ary solution to Problem (7), which must satisfy the following
KKT conditions of Problem (7):

1−
∑

k∈K

µ∗
kαk = 0, (16a)

∑

k∈K

µ∗
k∇wk

Rk(v
∗
k, {w

∗}K)− 2ζ∗kw
∗
k = 0, ∀k ∈ K, (16b)

µ∗
k∇vk

Rk(v
∗
k, {w

∗}K)− 2η∗kv
∗
k = 0, ∀k ∈ K, (16c)

0 ≤ µ∗
k ⊥ Rk(v

∗
k, {w

∗}K)− αkR
∗ ≥ 0, ∀k ∈ K, (16d)

0 ≤ ζ∗k ⊥ 1−w
∗,†
k w∗

k ≥ 0, ∀k ∈ K, (16e)

0 < η∗k, v
∗,†
k v∗

k = 1, ∀k ∈ K. (16f)

Given {v}K = {v̂}K, it is clear
(
R̂, {ŵ}K = Θ({v̂}K)

)
is

the optimal solution to Problem (9). Therefore,
(
R̂, {ŵ}K

)

associated with Lagrange multipliers({µ̂k}K, {ζ̂k}K) must
satisfy the following KKT conditions of Problem (9):

1−
∑

k∈K

µ̂kαk = 0, (17a)

∑

k∈K

µ̂k∇wk
Rk(v̂k, {ŵ}K)− 2ζ̂kŵk = 0, ∀k ∈ K, (17b)

0 ≤ µ̂k ⊥ Rk(v̂k, {ŵ}K)− αkR̂ ≥ 0, ∀k ∈ K, (17c)

0 ≤ ζ̂k ⊥ 1− ŵ
†
kŵk ≥ 0, ∀k ∈ K. (17d)

1There must exist a cluster point, denoted by{ŵ}K, of
{
{w}

(i)
K

}∞

i=1
due

to the compactness of the set of{w}K, and the limit of
{
{v}

(i)
K

}∞

i=1
can

be expressed asΘ({ŵ}K) becauseΘ(·) is a continuous function.

Similarly, {v̂}K = Ψ({ŵ}K) in Problem (13) corresponds
the following KKT conditions (17a), (17c) and

µ̂k∇vk
Rk(v̂k, {ŵ}K)− 2η̂kv̂k = 0, ∀k ∈ K, (18a)

0 < η̂k, v̂
†
kv̂k = 1, ∀k ∈ K. (18b)

Combining the KKT conditions (17a)-(17d) of Problem (9)
and (18a)-(18b) of Problem (13) and comparing with the
KKT conditions (16a)-(16f), we have that

(
R̂, {ŵ}K, {v̂}K

)

associated with the Lagrange multipliers({µ̂k, ζ̂k, η̂k}K satisfy
the KKT conditions of Problem (7), i.e., (16a)-(16f). It implies
that

(
R̂, {ŵ}K, {v̂}K

)
is a stationary solution to Problem (7).
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