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Abstract—In this paper, we develop a cooperative IMU/radio- for such nonlinear applications and can generate divergent
location-based navigation system, where each node trackfié position/orientation estimates. Hence, the design of aemor

location not only based on its own measurements, but also via 5ccyrate, but computationally tractable nonlinear IMUefilt
collaboration with neighbor nodes. The key problem is to deign . L
remains a significant challenge.

a nonlinear filter to fuse IMU and radiolocation information . " . )
We apply the Rao-Blackwellization method by using a partiok In this paper, we develop a cooperative IMU-based naviga-
filter and parallel Kalman filters for the estimation of orien tation  tion system, which fuses IMU measurement and radiolocation
and other states (i.e., position, velocity, etc.), respacely. The jnfomation to track the mobile node positions. The major
proposed method significantly outperforms the extended Kahan contributions are summarized as follows:
filter (EKF) in the set of simulations here. . . . )

Index Terms—Cooperative localization, navigation, inertial « We design a Rao-Blackwellized particle filter (RB-PF)

measurement unit (IMU), information fusion, particle filter. for IMU-based navigation. The proposed method signifi-
cantly outperforms the EKF in the simulations here, and
|. INTRODUCTION achieves much better convergence.

Navigation enables numerous emerging wireless app”ca.n We integrate the pOSition information derived from IMU
tions in commercial, public and military operations [1]}-[4 and radiolocation to achieve highly accurate navigation
Conventional techniques based on the global positionisg sy ~ in both line-of-sight (LOS) and non-line-of-sight (NLOS)
tem (GPS) often fail to provide reliable position infornwatiin environments.

harsh and indoor environments, due to the inability of GBS si « We improve the navigation accuracy by using cooperative

nals to penetrate many obstacles. For these reasons, GS-le localization among the mobile nodes. The simulation re-

navigation using compact IMUs [5]-[8] and ultrawideband-  sults validate the importance of cooperation in navigation

based radiolocation [9]-[11] is of great current interest. Il. DYNAMIC AND MEASUREMENTMODEL FORIMU
Inertial measurement units (IMU) have been widely adopted , ) ,

in assisting navigation when the GPS signal is severelyatte In this section, we describe the Process model and the

uated and distorted. The IMU usually contains acceleromef@?asurgmen_t model of the IMU. We defipg(n) as the IMU

and gyroscope sensors, measuring force and angular wloa{lentatlon with resp_egt to the_ _reference _frame, m@n) as

respectively. However, IMU-based navigation is accuratly o a sta_\te vector conta|_n|ng pos_|t|0n,_veloc_|ty, accelergtiand

for a short period of time due to the cubic error drift [12].-Rethe first-order derivative of orientation, given'by

cent work [12], [13] considered a foot-mounted IMU strateg, (n) = [xx(n), yr(n), @k (n), u(n), ix(n), ijx(n), ¢r(n) "

which adopts step detection to correct the error. The drakvba .

is that the step detection could introduce additional biag a The IMU process model can be written as

drift, which degrades the navigation performance. zp(n+1) = Fzy(n) + Gwi(n) (1)
The accuracy of IMU-based navigation depends on the IMU 72
model and filter design. In [14], a linear Gaussian drift mode vr(n+1) = prp(n) + Tor(n) + —Wy ,(n) (2

for IMU-derived position estimates is assumed by a Kalman 2

filter. However, a more realistic IMU model is nonlinear du¥here
to coupling of orientation and acceleration measureméitis. I, TI, T?%/2I; 0 T3/6Iy 0
extended Kalman filter (EKF) is commonly used in such

: 2
navigation applications due to its relative simplicity [§13], F = 82 (1]2 1;12 ol G = TT/1212 0
[15], [16]. It is well known that the EKF is suboptimal 02 2 02 . 0 20 T
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wi(n) = [Wge(n), Wiy (n),wi,(n)]" is an iid. Gaus- where (4) is an approximation qf((pk( )W" ! z') due
sian sequence, wherﬁw,m( ), Wiy (n)]T ~ N(O, ak ») to the computability issu&,and Pl p(nn —1)in (5) is the
and w, ,(n) ~ N(0, o7 Sa) with standard deviation in mis covariance matrix Otpk(nln —1).
and rad/% respectively. The covariance matrix ef;(n) is Then the weight is derived as follow:
denoted ag)y. in

The IMU measurements include the angular velogityand Wi (n) 2 p(er"121)

th_e normalized forcefy,, both with respect to the body frame KU q(¢§;"|z;§)
given by’ _p(ERlep(e") 1
24(n) = [ P ] — H(pw(n)zi(n) + vi(n) () G el
here = pla)le" =) win-1) ©)
o ... 0 0o 1 = wi(n—1)- N (zu(n); H(g}(m)@}(nln - 1),
o) =] o, o, o) s 0 B4 () Pl ~ DB 0) + ) ()

,m—1

and the additive IMU noisey(n) = [Vi.o(n), Vi, f(n)]T is where the approximation(e)"'|z}) ~ q()" '|zp ) is

an i.i.d. Gaussian sequence with Mn) ~ N(0, o—,w) and made in (6) again for computability [20].

Vi, f(n) ~ N(0, cr,ifIQ) The covariance matrix ofrk(n) The particle filter contains sesampling procedure when the

denoted asRy. effective sample size [20] falls below a threshold [18],][21
Remark 1. The IMU measurement model in (3) is a nonWe choose the systematic resampling (Algorithm 2 in [20])

linear function of both the orientatiop;. (n) and state vector for simplicity of implementation.

IIl. RAO-BLACKWELLIZED PARTICLE FILTER FOR
IMU-BASED NAVIGATION

Due to the nonlinearity in the orientation in (3), we de
compose the navigation problem using a separate nonlin
model of p,(n), and adopt particle filters for orientation
estimation. Once the particle streams are specified, thainem .
ing estimation problems become linear Gaussian solvable %&I’h
parallel Kalman filters. Such a method is referred to as Rao-
Blackwellization [17], [18]. K} (n) = P(njn— 1)HT(90;;(”))

In the RB-PF, the estimated states are determined by . ] o —1
- (Hlgh () Pi(nln = DHTo(m) + i) . (8)

B. Kalman Filter for Estimating % (n|n)

The non-orientation states including position, velocég;
celeration, and angle derivative, can be modeled as linear
€Gaussian, once the orientation is specified. Hence, the &alm
fifter is optimal for estimatinge, (n) given the particle stream
d " Specmcally, we uséVs parallel Kalman filters to estimate
,i=1,--+,Ns.

e Kalman filter gain is derived as

= Zw}v(")%(”)' zx(nfn) = Zwk 2.("In)  The correction steps are given by
where wi (n) is the weight of theith particle, 0 (n) is the &} (n[n) = &} (njn — 1)
ith particle, andz(n|n) is the estimated state vector given LK _ i i _1 9
COIAVG TESo oS — (o) 3 = O ] L) (24(n) — B} ()} (nln — 1)) (9)
A. Particle Filter for Estimating ¢ (n) and w (n) Py(nln) = (I - Kllc(”)H(%(”)))Pé(”m — 1) (10)

We consider a particle filter withs particle streams defined  The prediction steps are given by
by .
&4 (n + 1n) = F&i (n|n) (11)

AL (j), j=0,---,n}, i=1,--- Ns. ,
ek = {ek(), g J ; Pi(n+1jn) = FPi(n|n)F" + GQ,GT.  (12)

The particlesp (n) are generated as random samples from
the importance sampling density ¢ (i (n)|¢}" ', 27), which ~ The overall RB-PF for IMU-based navigation is described

is derived as follow: in Algorithm 1.
n—1
Q( k(n )|<PZ " Z/?) IV. INTEGRATEDIMU/RADIOLOCATION NAVIGATION
_ 1 _n—1 . . . o
= p(pi(n )Wn Zp ) (4) In this section, we develop a cooperative navigation algo-

:N(cpk(n—l)—f—TgZ};(nm—l),T2P£,k(n|n—1)+T4/4Uf;) (5) rithm, which _fuses the RB-PFs for IMU measurements and
the Kalman filter for cooperative radiolocation.
2The force is normalized by the constant mass of the IMU.

3We choose the importance density by assuming the orientatiescribed ~ “It is difficult to directly ComDUteP(%(n)W}i’n7 ,zl), since both
by the IMU process model in (2), is a linear Gaussian proc&8k [19]. ¥y (n|n) and PZ x(n|n) depend onpt (n), which is not available.
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Algorithm 1 Rao-Blackwellization Algorithm for the IMU- Jerk noise standard deviation (STD): 5e-5 m/S
based Navigation Angular acceleration noise ST, 5e-4 rad/3
IMU gyro (angular velocity) noise STDx, 8.7e-4 rad/s
Require: ‘Pk(” -1), (n|n - 1), Pli(”|” — 1) and the IMU accelerometer (force) noise STy 2e-3 m/g
measurement ( ) LOS range measurement RMS erreios 1.5m
) kT NLOS range measurement RMS errefj_os 9m
1: fori=1,---,Nsdo ‘ ‘ N Number of IMU updates per SDRS updaf¥gprs | 100
2. Generate particle} (n) ~ N (p}(n—1)+T¢ (njn— Sample timeT’ _ 0.1 sec
1) T2 pi (nln — 1) + T4/402) Total simulation duration 600 sec
’ b,k . . 14 Number of simulation runs for error averaging 16
3 Update the weightv}.(n) via (7) Number of particlesNg 8
4 Updatez; (n|n) and P;(n|n) via (8)-(10)
5. Predict@) (n + 1|n) and P;(n + 1|n) via (11)-(12) TABLE I: Urban corridor simulation parameters
6: end for
7. Normalize the weights by (n) = wi (n)/ Zl L wi(n),

Vi=1,---,Ns
: CaIcuIate effectlve sample siz€ = 1/ ZZ * (i (n))?
9: if Neff < Nt then
10: Systematical resampling (cf. [20]) opi(n), and
wy(n) = 1/Ns
11: end if
12: Calculate the estimated states:¢x(n
)

SO wh ()¢ (n) and@g(nln) = Y0 w(n

[ee]

y-pos (m)

)
:ﬁ (n|n) . X-pos (m)

Fig. 2: The urban corridor with mobile nodes trajectories.

Node k {2k} ( UWB RabIO 1
RANOINGITOA  ToNode s € NY) V. SIMULATION RESULTS
oo ik 25} Nerons J;\ {Z]l}m”‘ " In this section, we simulate the cooperative IMU-based
Emm —— [ Rave navigation algorithm in an urban corridor scenario.
— mienion &, From Node j € (k) The urban corridor is illustrated in Fig. 2, where the stiset
f =2z ru(n), {egm. @5 15 m wide with buildings15 m wide on the north and south
nmod Nsprs = 0 sides. Five anchor nodes are placed on the west end of the
e 2z (n), street, and five mobile nodes move at a nominal velocity of
nmod Nsprs # 0 m/s heading east, and gradually spread out into the budding
NAVIGATION U on two sides. The mobile nodes are also rotating themselves,
e with the small bar on each node denoting the orientation.
The movements and rotations are generated according to the

#p(nln) Gaussian IMU process model in (1)-(2). Range measurements
z1,; are assumed to be LOS when both nodes are in the
street, otherwise the measurements are modeled as NLOS. The

*LOS and NLOS range measurement RMS errors are based on
[22] (Fig. 9). The anchor-to-mobile radio rangeli® m. The
simulation parameters used are summarized in Table I.

The system digram is shown in Fig. 1. For radiolocation, In Fig. 3, we plot all estimation errors averaged over five
a steepest descent random start (SDRS) positioning algaebile nodes and6 simulation runs. We observe that the
rithm [14] is adopted to estimate the node’s position bas@dsition error gradually increases as the nodes move te@ward
on inter-node range measurements. A local navigation filtdre east. This is due to the loss of communications when
treats the SDRS estimates and IMU measurements separatelges are beyond their radio range to anchors or other mobile
to update the final position estimate. We assume that newdes, or due to the NLOS conditions when nodes move into
ranging and SDRS algorithm position estimates are computaudildings.
after everyNsprs IMU measurements. Specifically, the IMU For comparison, we also plot the average estimation error
measurements are treated as nonlinear Gaussian meastgenoémn EKF, which uses a single nonlinear filter to estimate all
zpmu (n) by the RB-PF whenn mod Nsprs # 0; the the states. It shows that the RB-PF significantly outperform
SDRS estimates are treated as linear Gaussian measurentbet&KF, e.g., it reduces position error more tH@mmeters at
zprL(n) by a Kalman filter whenn mod Nsprs = 0. A the end of the corridor. Moreover, the angle estimationgisin
detailed description of the radiolocation Kalman filter igegn  the RB-PF is also much lower, i.e., the error is bela@ rad
in [14]. instead of1.2 rad for the EKF. This is mainly because the

Fig. 1: Cooperative radiolocation and navigation system
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(a) corridor with buildings (mixed LOS and NLOS signals)

Fig. 3: RB-PF achieves lower averaged estimation errors
compared with EKF.

position error

Rao-Blackwellization uses multiple particles to estimtte
angle, which results in better convergence compared with
single EKF.

In Fig. 4, we investigate the performance with differer
extents of node cooperation. Once the mobile nodes mc

o
N _o

angle error  acceleration  velocity error

beyond the anchor radio range, the radiolocation relies g z - ‘ ‘ . ‘ S

inter-mobile range measurements and the IMUs. We consic % 100 200 300 400 500 600
two settings of mobile-to-mobile radio ranggd m which 02} ‘ e e

results in partial cooperation beyond the middle of theidory O-;’ ‘ o ‘ ‘ ‘ 1

and 45 m which generally yields full cooperation. We first St 100 200 300 400 500 600
simulate the urban corridor with buildings (Fig. 2) whert %6 )

both LOS and NLOS conditions exist. In Fig. 4a theé m 25 OMN'M UWW‘ WWW‘ WWWMM

and 45 m range shows that the estimation errors are similz 0 10 200 Ti;‘:’(g) 400 500 600

and the position error with the largel5 m range is only

slightly reduced by2 m at the end. In Fig. 4b, we removed (b) corridor without buildings (only LOS signals)

the two bu!ldlngs SO that_ I_‘OS §|gnals are alwgys avaHabIgig_ 4: Cooperative navigation with larger radio range (enor
The result is a more significant improvement using 4hem cooperation) outperforms that with smaller radio rangesle

range/full cooperation, i.e., the p_osmon error is requd‘.ly _cooperation) in location accuracy.
5 m close to the end of the corridor. Hence, the simulation

results here support the hypothesis that cooperation among
mobile nodes improves the navigation accuracy, espedially

the LOS environment. VII. RELATION TO PRIOR WORK

VI. CONCLUSION This paper has focused on non-GPS navigation, which fuses
IMU and radiolocation information. Previous work on IMU-
In this paper, we proposed a cooperative IMU-based nalased navigation, e.g., [12], [13], employ a foot-mountdtl|

gation algorithm using RB-PFs. The IMU measurements asttategy and require step detection to correct the erroichwh
radiolocation information are integrated to improve theina could introduce additional bias and drift. Moreover, most
gation accuracy. An urban corridor simulation shows that RBrior research [5], [13]-[16] was limited to Kalman filter or
PFs reduce the position error up to ten meters compared WiKF for navigation, which are not as well suited as PFs for
EKF. Moreover, a significant improvement in angle estinraticthe nonlinear IMU model. In this paper, we designed RB-
by a factor of six is observed using the proposed method. TREs for IMU-based navigation, integrating the radiolomati
results also demonstrate the importance of node cooperatioformation, which vyields significant improvement on the
in navigation, especially in the LOS environment. navigation accuracy.
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