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ABSTRACT

Rigid body localization refers to a problem of estimating position
of a rigid body along with its orientation using anchors. \Wesider
a setup in which a few sensors are mounted on a rigid body. Th
absolute position of the rigid body is not known, but, thetigke po-
sition of the sensors or the topology of the sensors on tlie Ibigdy
is known. We express the absolute position of the sensorsaf§iae
function of the Stiefel manifold and propose a simple lesgiares
(LS) estimator as well as a constrained total least-sqU&EES)
estimator to jointly estimate the orientation and the posiof the
rigid body. To account for the perturbations of the sensgesalso
propose a constrained total least-squares (CTLS) estimfatalyt-
ical closed-form solutions for the proposed estimatorgaogided.
Simulations are used to corroborate and analyze the peafurenof
the proposed estimators.

Index Terms— Rigid body localization, Stiefel manifold, atti-
tude estimation, tilt estimation, sensor networks.

1. INTRODUCTION

Advances in wireless sensor technology and their usagetivonies
have given birth to a variety of sensing, monitoring, andtc@rap-
plications. The majority of applications with a wirelesaiser net-
work (WSN) rely on two fundamental aspects: distributechdam-
pling and information fusion. For the data to be meaningfus i
important to know not only the time instance (temporal infation)
at which the data is acquired, but also the location (spatfarma-
tion) where the data is acquired. Identifying the sensacsdion is
a well-studied topid[1], and is commonly referred td acalization.

Localization can be either absolute or relative. In absdiotal-
ization, the nodes are usually localized using a few refererodes
whose positions are known. Absolute localization problenestyp-
ically solved using range-square methods from measurenbased
on certain physical phenomena, e.g., time-of-arrival (J(2].
Localization can also be relative. In relative localizatithe aim is
to identify the topology of the network, and determining tbea-
tion of the nodes relative to other nodes is sufficient. Gtassolu-
tions to relative localization are based on multi-dimenalcscaling
(MDS) [3/4].

In this paper, we provide a new and different flavor of lo-
calization, calledrigid body localization. The problem in rigid
body localization is to identify the location of the body irthaee-
dimensional space and also the orientation of the body aloese
three-dimensions. Rigid body localization has a huge (iatein a
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variety of different fields. To list a few, it is useful in theeas of
underwater (or in-liquid) systems, orbiting satelliteseahatronic
systems, unmanned aircrafts, gaming consoles, or auttesoln
such applications, traditional localization of the noglégsnot suffi-
Eient. For example, in an autonomous underwater vehicla/(4g),
or an orhiting satellite [6], the sensing platform is notyoslibject to
motion but also to rotation. In such cases, together witlitipoing,
determining the orientation of the body also forms a key conent,
and is essential for both controlling (maneuvering) and inoing
purposes.

Commonly the termattitude estimation (for flights and space-
crafts) ortilt sensing (for industrial equipments and consumer de-
vices) is used for determining the orientation of the obijeetthree-
dimensional space which typically uses inertial sendafsdi7ac-
celerometers [8]. However, inertial sensors and acceleters gen-
erally suffer from drift errors. On the other hand, in rigiddy lo-
calization we propose to exploit the communication packets-
taining the ranging information, just as in traditional atization
schemes[]1], to estimate both the rotations and the trams$atIn
short, we present rigid body localization as an estimatiamblem
from a signal processing perspective.

More specifically, we consider a rigid body on which a few sen-
sors are mounted. The absolute location of the rigid bodsifits
is unknown, but, the relative position of the sensors or #reser
topology on the rigid body is known. A novel problem to joingo-
sition the rigid body and estimate its orientation usingwa f@des
with known absolute locations (anchors) is considered tifisrmpur-
pose, we parameterize the Stiefel manifold [9] with a knoemser
topology and propose a nelsast-squares (LS) estimator and also
a constrained least-squares (CLS) estimator. The sensor positions
are usually perturbed during fabrication of the body or & body is
not entirely rigid. To take these perturbations into ac¢pwe also
propose aonstrained total least-squares (CTLS) estimator. Analyt-
ical closed-form solutions for the proposed estimatorspaogided.
Simulations are provided to validate and analyze the pedioce of
the proposed estimators.

Notation Upper (lower) bold face letters are used for matri-
ces (column vectors);)” denotes transpositiodiag(.) refers to a
block diagonal matrix with the matrices in its argument o tiain
diagonal;1x (On) denotes theéV x 1 vector of ones (zerosky
is an identity matrix of sizéV; E(.) denotes the expectation oper-
ation; ® is the Kronecker produc'(;.)T denotes the pseudo inverse,
i.e., for a full column-rank matrixA the pseudo inverse is given
by AT = (ATA71)AT; vec(.) is a vector formed by stacking the
columns of its matrix argumentec™!(.) is a matrix formed by the
inversevec(.) operation.
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same path-loss, especially when the anchors are far awaytfre
rigid body. Hence, we use a simplified noise model with vargan

O
2 .2
9 3c¢* r*(am,s1)
o (e ~ —-— (2)
a (ermn) N.x SNR
Reference frame Here, we choose senser just for illustration purposes, and in prin-
s ciple, this can be any sensor.
We can now write the squared pairwise distance between the
o mth anchor and theth sensor as
Rigid body undergoing 2 .Cii d(am,sn) = ,«2(am7 Sp) = HamH2 _ 2a£sn + HSnH2 (3)
rotations and translation
and
Q2
O 5 2 2 2
O d(am7 STL) =T (am7 Sn) =r (am,Sn) + QT(am,sn)em,n + em,n
= d(am7 Sn) + Nm,n
@ Scnsor (4)
O Anchor wherenm,» = 2r(am,s1)ém,n + efn’n is the new noise term ob-

tained due to squaring. We can compute the ni&an,,») ~ 0 and
Fig. 1: An illustration of the sensors on a rigid body undergoing athe variancer?, = E(n?, ,) ~ 40> (em,n)7>(am, s1), ignoring the

rotation and a translation. higher-order terms under the condition of sufficiently draalors.
Defining theM x 1 vectorsd(s,) = [d(a1,s,), . .., d(ar,sn)]”
2. PROBLEM FORMULATION andu = [||lai||? |laz||?, ..., las|*]", we can now write the
squared pairwise distances of théh sensor to each anchor in a
2.1. The model and preliminaries vector form as
Consider a network witii{ anchors (nodes with known absolute lo- d(sn) = u — 2A s, + [lsnl?1as + n(sn) )
cations) andV sensors in &-dimensional space. The sensors are
mounted on a rigid body (e.g., a plane or a pyramid) as ibtstin wheren(s,) = [n1.n, n2.m, - .., nara]” € RM*1 s the error vec-
Fig.[I. The relative position of these sensors or its topplmgthe 1o The s x M covariance matrix of the error vectar(s,, ) will
rigid body is known up to a certain accuracy. However, thelilte  pesy  — qiag(0?, 02, ...,02,). We whiten[[5) to obtain an iden-

position of the sensors or.the rigid body [tself in thelimensional tity noise covariance matrix by multiplying both sides BJ @ith
space is not known. The rigid body experiences rotationsrams- s < RM*M \which leads to

lations in each dimension.

The sensors are mounted on the rigid body (e.g., in the fgctor Wd(s,) = W(u— 2A s, + HSWHQ]-JW +n(s,)) (6)
and the topology of how these sensors are mounted is known. In
other words, we can connect a so-calfeftrence frameto the rigid  The optimalW is W* =
body, as illustrated in Fig. 1, and in that reference frarhe, do-
ordinates of thenth sensor are given by the knovnx 1 vector
Cn = [Cn,1,Cn2,cn3]". SO the sensor topology is basically de-
termined by the matridC = [c1,ce,...,cn] € R**N, Let the : . . M
absolute coordinates of theth anchor and thesith sensor be de- conventional technlq;le is to apply an orthogonal projectigatrix
noted by a3 x 1 vectora,, ands.,, respectively. These absolute Py = In — % e RM*M gych thatPy, W1y = 0.

positions of the anchors and the sensors are collected iméte-  However, this would again color the noise. To avoid this, wappse

=, '/2 but depends on the unknown
r(am,s1). Hence, we usdv = .17 wheres2, " is computed
using7 (am, s1).

In order to eliminate||s,||* and thus the vectoW1a,, the

C%SX;AV = [a1,22,...,an] € R>M andS = [s1,s2,...,s8] €  to use a unitary decomposition Bfyz, i.e., Par = U, UL, where
R**, respectively. Uwy isaM x (M — 1) matrix obtained by collecting orthonormal
The pairwise distance between thgh anchor and theth sen-  hasis vectors of the null-space W1 ,; so thatUZ, W1, = 0.
sor is denoted by (am,s.) = |am —sa||, and is typically ob- In order to eliminate théfs,, ||*W1,, term in [8) without col-
tained from ranging [L./2. 10]. The range measurements caxbe oring the noise, we left-multiply both sides &1 (5) withy,, which
pressed as leads to
f“(a”“ Sn) = T(am7 Sn) + emn (l)

T _ opT T T
wheree,., is the additive stochastic noise resulting from the rang- UnW(d(sn) —u) = - 2Uy WA sn + Uy Wn(sa),  (7)

ing process. Assuming TOA-based ranging, we maggl as an

S . . . We can now stacK(7) for all th& sensors as
i.i.d. zero mean white random process with a variante,,) = K17)

%’2%\%”) [11]. Here,c is the speed of a wave in a medium, UL, WD = —2UT,WATS + UL, WN (8)
N, is the number of samples used in the ranging process, a
constant, an@NR is the signal-to-noise ratio of the range measure-whereD = [d(s1),...,d(sy)]—ulk andN = [n(s1),--- ,n(sy)]

ments. The?(a,,,s,) term in the variance is due to the path-loss are bothM x N matrices. The approximation ifil(2) allows this
model assumption and penalizes the range measurementsdrase stacking by using a common whitening matV¥ for all the sen-
distance. Since all the sensors are mounted on the rigid, liddy ~ sors. In addition, the covariance matrix afc(U%, WN) will be
reasonable to assume that all sensors experience apptekirttee ~ approximately ;1)



2.2. Sensor topology on the Stiefel manifold

A Stiefel manifold [9] in three dimensions, commonly derbtgy
V33, is the set of alB x 3 unitary matricesQ = [a1,q2,q3] €
R332 e, Vi3 = {Q € R**® : QTQ = I3}. The absolute

position of thenth sensor can be written as an affine function of a

point on the Stiefel manifold, i.e.,

Sn = Cn,1q1 + Cn,2q2 + Cn,3Q3 + t

= Qc, +t 9)

(@0). For this purpose, we adopt a unitary decompositioR of £
Iy — %1n1%, 06, Py = UyUR whereUy isaN x (N — 1)
matrix obtained by collecting orthonormal basis vectorshefnull-
space ofLx so that1i Uy = 0. Right-multiplying Uy to both
sides of[[ID) leads to

wheret € R3*! denotes the translation and is unknown. Note thaR/vhich can be written as

the combining weights,, are equal to the known coordinates of the

nth sensor in the reference frame, as introduced in SectibriThis
means that the unknown unitary matfix actually tells us how the
rigid body has rotated in the reference frame.

We can further stack]9) for all the sensors as

Qe ——
S:QC+t11TV:[Q|t]—1%—]. (10)

Note that in [(ID), we express the unknown sensor locatims
terms of the unknown rotation® of a known sensor topolog®
and an unknown translatian

3. THE PROPOSED ESTIMATORS

e

In this paper, we consider the novel problem to localize tgilr
body by estimating the rotatiord and translations in each dimen-
sion relative to the anchors. The matx forms an orthonormal
basis for the subspace spanned by the rigid body which =edal
the rotations.

3.1. LS estimator (Unconstrained)

Combining [8) and (T0) results in the following linear model

UL, WD = —2UT,WATQ.C. + U, WN (11)

which can be written as
D=AQ.C.+N (12)
whereD 2 UL, WD ¢ RWM-UxN A 2 oyl WAT e

RM=Dx3 andN = UL, WN ¢ RM-DXN_ We can further
vectorize[IP)as B
d=(C!®A)q. +n (13)
whereqe = vec(Qe) = lai,ai,qs,t")" € R, d =
vec(D) € RM=DNX1 ‘andii = vec(N) € R DN,
To jointly estimate the unknown rotatiof¥ and the translations
t we propose the following joint LS estimator
Qe,Ls = (CeT ® A)T(_i (14)
which will have a unique solution I€X ® A has full column-rank
which requires(M — 1)N > 12. Finally, we haveQ.,rs =
vec ' (Ge,Ls) = [ Qrs | trs |. Note that sincen is approxi-
mately white, we do not use any weighting in the LS formulatio

3.2. Unitarily constrained LS estimator (CLS)

The solution of the unconstrained LS estimator does notssaciy
lieinthe selVs 3, i.e., the columns of the LS estime(f}aLs obtained
in (I4) are generally not orthogonal to each other and thepato
have a unit norm.

We next propose a LS estimator with a unitary constrain@on
For this purpose, we decouple the rotations and the tramstain

SUyxy = QCUy. (15)

Combining [8) and{115) we get the following linear model
UL, WDUy = —2UL,WATQCUy + UL, WNUy (16)
D=AQC+N 17)

whereD = UL, WDUy, A = —2UL,WAT, C £ CUy, and
N = U;WNUx. As before, the covariance matrix oéc(N)
will be approximatelyl y;_1y(nv—1)-
To estimate) we propose a LS problem with a quadratic equal-
ity constraint as given by

. = 2
min 1QC — X%,
Q'Q=1

whereX 2 AD assuming thafA has full column-rank. The opti-
mization problem in[{1I8) is non-convex due to the quadragicadity
constraint and is commonly referred to as tinghogonal Procrustes
problem (OPP) [12].

(18)
s.t.

Remark 1 (Anchor positioning) For M > 3, the anchor positions
can be designed such that the matrix A will be full column-rank and
well-conditioned. Then, the matrix A is left-invertible, i.e, ATA =
Is.

Lemma 1 (Solution to unitarily constrained LS [12])The con-
strained LS problem in (I8) has an analytical solution Qcrs =
VUT where U and V are obtained from the singular value decom-
position (SVD) of CX T whichisgivenby ULV,

Subsequently, the LS estimate of the translationan be com-
puted by usindQc s in (I0) and[(IR) as

tors = %(ATD — QcrsC)ly. (19)
Remark 2 (Weighted orthogonal Procrustes problem][13Jhe
pseudo inverse operation in (I8) would color the noise. This can
be avoided by solving a weighted orthogonal Procrustes problem.
This does not have a closed-form solution, but can be solved using
Newton iterations [[13] .

3.3. Unitarily constrained TLS estimator (CTLS)

In the previous section, we assumed that the sensors aret@doun
on a rigid body and their topology is accurately known. Ingice,
there is no reason to believe that errors are restrictectonhe range
measurements and there are no perturbations on the iretiabs
positions. The perturbations can be introduced duringdabon of
the rigid body or if the body is not entirely rigid.

The position of thexth sensor in the reference framgis noisy.
We denote the perturbation ep asd,., and the perturbations ofi
asA £ [61,02,...,0n5]Un. Taking the perturbations of the sensor
into account we can re-write the data modelin (17) as

QC+A)=X+E (20)



whereE £ AN andQ is to be determined as earlier.

The solution to the data model {i{20) leads to the classitsl T e e ithout perturbations (GLS)
optimization problem but with a unitary constraint. Thetarily .
constrained TLS optimization problem is given by 5
= 107k
. 2 2 g
min A%+ Bl
st. Q(C+A)=X+E, 21 ol
QTQ _ 13 40 5‘0 Sb R7e(;erenceséange [3%] 160 liO 120
(a) without perturbations.
Lemma 2 (Solution to unitarily constrained TLS [14])The unitar- 10 T ————
ily constrained TLSproblemin (2I) has the same sol ution as the uni- ke |22 Wit penurbations (LS)
tarily constrained LSproblem, and the solutionisQcrrs = vUT. g \‘B‘:é:;:A :
2 10° [ Y
The algorithms to compute the solution for a unitarily con- 22»10,, \s\:?;:::&\
strained LS and TLS are summarized as Algorifim 1. g TRl
1072 S--e-callzid
Algorlthm 1 Unitarily constrained LS or TLS 10720 50 60 R7;?erencgeange [s(a;%] 160 110 120
Require: CX”, X :TATfD. ., (b) with perturbations.
Compute: SVDCX* =UXV . . .
P G=vu” Fig. 22 Mean angular error of the estimated rotatiéds
P — LAD — O . ‘
t= N(A D QC)IN e —a— without periurbauons (Ls) ‘
10° —=— without perFurballons (CLS)
E 10}
4. NUMERICAL RESULTS %1072,
We consider six sensors mounted on a rigid pyramid as shown in 07
Fig.[d. The coordinates of the sensors in the reference franme 107 ‘ ‘ : : ‘ : :
40 50 60 70 80 90 100 110 120
Chosen SUCh that, Reference range [dB]
(a) without perturbations.
1 6 7 6 2 25 10t
C=]00 5 5 5 25 (22) I penbaens (L oreTLS)
00 0 0 0 5 S S
and M = 10 anchors are deployed uniformly at random in a range Em,,’ ‘\\ﬂ::.‘ﬁ:\& ,
of 100m. We use a rotation of20, —25, 10) degrees in each di- z ' el
mension, which determing®, and a translation o m along each 107} “A
dimension. The simulations are averaged aVer, = 1000 inde- ‘ IR
pendent Monte-Carlo experiments. B = e [T BT o T

Reference range [dB]

We analyze the performance of the three proposed estimators

1) LS (unconstrained), 2) unitarily constrained LS, and Bitar- (b) with perturbations.

ily constrained TLS. The performance of the estimators $ineat- Fig. 3 RMSE of the estimated translatiots
ing the rotations are provided in terms of thmean angular error
NO)
defined as;x— Y cosT! <‘?T’{+)ﬁ> This is shown 5. CONCLUSIONS
e adm " ll2

in Fig.[2. The root mean square error (RMSE) for estimatirgy th We have proposed a problem called rigid body localizatiomyhich
corresponding translatior\§/N1 ZZN:CTP 6@ — tl\; is shown in  the ai_m is to_jointly_ localize and esti_m_ate the orientati_cbraaigid
. erp = body in a 3-dimensional space. For rigid body localizative make

Fig.3. Hereg',m = 1,2,3 andt” are the parameters estimated yse of a few anchors and a known sensor topology of sensdrs tha
during thesth Monte-Carlo experiment. Note that in case of the un-are mounted on the rigid body. We parameterize the Stiefel- ma
constrained LS estimatnﬁlqgfﬁ||2 # 1. ifold using the known sensor topology and propose uncongta

Simulations are provided for various reference rangeseidfais ~ and constrained LS estimators. In order to take the petiorzof
101log,, % dB. A reference range af00 dB means that for the sensor into account, we also propose a unitarily cansttd LS
a range ofl00 m the standard deviation on the estimated range igstimator. Incidentally, the solutions to both the coris&d LS and
1mm. The range measurements [ (1) are corrupted with an i.i.dgeonstrained TLS estimators are the same. Analytical cléseud
Gaussian random process of varian@g(e. ) derived for the cor- ~ solutions for all the estimators have been provided.
responding reference range.

For the perturbed case, the sensor topology is corruptddawit
zero mean i.i.d. Gaussian process with a standard deviatiomm.
The performance of the unconstrained and constrained astisin
case of perturbations is shown in Hig] 2b and Eig. 3b.
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