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ABSTRACT

Rigid body localization refers to a problem of estimating the position
of a rigid body along with its orientation using anchors. We consider
a setup in which a few sensors are mounted on a rigid body. The
absolute position of the rigid body is not known, but, the relative po-
sition of the sensors or the topology of the sensors on the rigid body
is known. We express the absolute position of the sensors as an affine
function of the Stiefel manifold and propose a simple least-squares
(LS) estimator as well as a constrained total least-squares(CTLS)
estimator to jointly estimate the orientation and the position of the
rigid body. To account for the perturbations of the sensors,we also
propose a constrained total least-squares (CTLS) estimator. Analyt-
ical closed-form solutions for the proposed estimators areprovided.
Simulations are used to corroborate and analyze the performance of
the proposed estimators.

Index Terms— Rigid body localization, Stiefel manifold, atti-
tude estimation, tilt estimation, sensor networks.

1. INTRODUCTION

Advances in wireless sensor technology and their usage in networks
have given birth to a variety of sensing, monitoring, and control ap-
plications. The majority of applications with a wireless sensor net-
work (WSN) rely on two fundamental aspects: distributed data sam-
pling and information fusion. For the data to be meaningful it is
important to know not only the time instance (temporal information)
at which the data is acquired, but also the location (spatialinforma-
tion) where the data is acquired. Identifying the sensor’s location is
a well-studied topic [1], and is commonly referred to aslocalization.

Localization can be either absolute or relative. In absolute local-
ization, the nodes are usually localized using a few reference nodes
whose positions are known. Absolute localization problemsare typ-
ically solved using range-square methods from measurements based
on certain physical phenomena, e.g., time-of-arrival (TOA) [1, 2].
Localization can also be relative. In relative localization, the aim is
to identify the topology of the network, and determining theloca-
tion of the nodes relative to other nodes is sufficient. Classical solu-
tions to relative localization are based on multi-dimensional scaling
(MDS) [3,4].

In this paper, we provide a new and different flavor of lo-
calization, calledrigid body localization. The problem in rigid
body localization is to identify the location of the body in athree-
dimensional space and also the orientation of the body alongthese
three-dimensions. Rigid body localization has a huge potential in a
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variety of different fields. To list a few, it is useful in the areas of
underwater (or in-liquid) systems, orbiting satellites, mechatronic
systems, unmanned aircrafts, gaming consoles, or automobiles. In
such applications, traditional localization of the node(s) is not suffi-
cient. For example, in an autonomous underwater vehicle (AUV) [5],
or an orbiting satellite [6], the sensing platform is not only subject to
motion but also to rotation. In such cases, together with positioning,
determining the orientation of the body also forms a key component,
and is essential for both controlling (maneuvering) and monitoring
purposes.

Commonly the termattitude estimation (for flights and space-
crafts) ortilt sensing (for industrial equipments and consumer de-
vices) is used for determining the orientation of the objectin a three-
dimensional space which typically uses inertial sensors [7], or ac-
celerometers [8]. However, inertial sensors and accelerometers gen-
erally suffer from drift errors. On the other hand, in rigid body lo-
calization we propose to exploit the communication packetscon-
taining the ranging information, just as in traditional localization
schemes [1], to estimate both the rotations and the translations. In
short, we present rigid body localization as an estimation problem
from a signal processing perspective.

More specifically, we consider a rigid body on which a few sen-
sors are mounted. The absolute location of the rigid body itself
is unknown, but, the relative position of the sensors or the sensor
topology on the rigid body is known. A novel problem to jointly po-
sition the rigid body and estimate its orientation using a few nodes
with known absolute locations (anchors) is considered. Forthis pur-
pose, we parameterize the Stiefel manifold [9] with a known sensor
topology and propose a newleast-squares (LS) estimator and also
a constrained least-squares (CLS) estimator. The sensor positions
are usually perturbed during fabrication of the body or if the body is
not entirely rigid. To take these perturbations into account, we also
propose aconstrained total least-squares (CTLS) estimator. Analyt-
ical closed-form solutions for the proposed estimators areprovided.
Simulations are provided to validate and analyze the performance of
the proposed estimators.

Notation: Upper (lower) bold face letters are used for matri-
ces (column vectors);(·)T denotes transposition;diag(.) refers to a
block diagonal matrix with the matrices in its argument on the main
diagonal;1N (0N ) denotes theN × 1 vector of ones (zeros);IN
is an identity matrix of sizeN ; E(.) denotes the expectation oper-
ation;⊗ is the Kronecker product;(.)† denotes the pseudo inverse,
i.e., for a full column-rank matrixA the pseudo inverse is given
by A† = (ATA−1)AT ; vec(.) is a vector formed by stacking the
columns of its matrix argument;vec−1(.) is a matrix formed by the
inversevec(.) operation.
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Fig. 1: An illustration of the sensors on a rigid body undergoing a
rotation and a translation.

2. PROBLEM FORMULATION

2.1. The model and preliminaries

Consider a network withM anchors (nodes with known absolute lo-
cations) andN sensors in a3-dimensional space. The sensors are
mounted on a rigid body (e.g., a plane or a pyramid) as illustrated in
Fig. 1. The relative position of these sensors or its topology on the
rigid body is known up to a certain accuracy. However, the absolute
position of the sensors or the rigid body itself in the3-dimensional
space is not known. The rigid body experiences rotations andtrans-
lations in each dimension.

The sensors are mounted on the rigid body (e.g., in the factory)
and the topology of how these sensors are mounted is known. In
other words, we can connect a so-calledreference frame to the rigid
body, as illustrated in Fig. 1, and in that reference frame, the co-
ordinates of thenth sensor are given by the known3 × 1 vector
cn = [cn,1, cn,2, cn,3]

T . So the sensor topology is basically de-
termined by the matrixC = [c1, c2, . . . , cN ] ∈ R

3×N . Let the
absolute coordinates of themth anchor and thenth sensor be de-
noted by a3 × 1 vectoram andsn, respectively. These absolute
positions of the anchors and the sensors are collected in thematri-
cesA = [a1,a2, . . . , aM ] ∈ R

3×M andS = [s1, s2, . . . , sN ] ∈
R

3×N , respectively.
The pairwise distance between themth anchor and thenth sen-

sor is denoted byr(am, sn) = ‖am − sn‖2 and is typically ob-
tained from ranging [1, 2, 10]. The range measurements can beex-
pressed as

r̂(am, sn) = r(am, sn) + emn (1)

whereem,n is the additive stochastic noise resulting from the rang-
ing process. Assuming TOA-based ranging, we modelemn as an
i.i.d. zero mean white random process with a varianceσ2(emn) =
3c2

Nsκ
r2(am,sn)

SNR
[11]. Here,c is the speed of a wave in a medium,

Ns is the number of samples used in the ranging process,κ is a
constant, andSNR is the signal-to-noise ratio of the range measure-
ments. Ther2(am, sn) term in the variance is due to the path-loss
model assumption and penalizes the range measurements based on
distance. Since all the sensors are mounted on the rigid body, it is
reasonable to assume that all sensors experience approximately the

same path-loss, especially when the anchors are far away from the
rigid body. Hence, we use a simplified noise model with variance

σ
2(emn) ≈

3c2

Nsκ

r2(am, s1)

SNR
. (2)

Here, we choose sensors1 just for illustration purposes, and in prin-
ciple, this can be any sensor.

We can now write the squared pairwise distance between the
mth anchor and thenth sensor as

d(am, sn) = r
2(am, sn) = ‖am‖2 − 2aT

msn + ‖sn‖
2 (3)

and

d̂(am, sn) = r̂
2(am, sn) = r

2(am, sn) + 2r(am, sn)em,n + e
2
m,n

= d(am, sn) + nm,n

(4)
wherenm,n = 2r(am, s1)em,n + e2m,n is the new noise term ob-
tained due to squaring. We can compute the meanE(nm,n) ≈ 0 and
the varianceσ2

m = E(n2
m,n) ≈ 4σ2(em,n)r

2(am, s1), ignoring the
higher-order terms under the condition of sufficiently small errors.

Defining theM×1 vectorsd(sn) = [d̂(a1, sn), . . . , d̂(aM , sn)]
T

and u = [‖a1‖
2, ‖a2‖

2, . . . , ‖aM‖2]T , we can now write the
squared pairwise distances of thenth sensor to each anchor in a
vector form as

d(sn) = u− 2AT
sn + ‖sn‖

2
1M + n(sn) (5)

wheren(sn) = [n1,n, n2,n, . . . , nM,n]
T ∈ R

M×1 is the error vec-
tor. TheM × M covariance matrix of the error vectorn(sn) will
beΣn = diag(σ2

1 , σ
2
2 , . . . , σ

2
M ). We whiten (5) to obtain an iden-

tity noise covariance matrix by multiplying both sides of (5) with
W ∈ R

M×M , which leads to

Wd(sn) = W(u− 2AT
sn + ‖sn‖

2
1M + n(sn)) (6)

The optimalW is W∗ = Σ
−1/2
n but depends on the unknown

r(am, s1). Hence, we useW = Σ̂
−1/2

n , whereΣ̂
−1/2

n is computed
usingr̂(am, s1).

In order to eliminate‖sn‖2 and thus the vectorW1M , the
conventional technique is to apply an orthogonal projection matrix

PM , IM −
W1M1T

MW

1T
M

WW1M
∈ R

M×M , such thatPMW1M = 0.

However, this would again color the noise. To avoid this, we propose
to use a unitary decomposition ofPM , i.e.,PM = UMUT

M where
UM is aM × (M − 1) matrix obtained by collecting orthonormal
basis vectors of the null-space ofW1M so thatUT

MW1M = 0.
In order to eliminate the‖sn‖2W1M term in (6) without col-

oring the noise, we left-multiply both sides of (5) withUT
M , which

leads to

U
T
MW(d(sn)− u) =− 2UT

MWA
T
sn +U

T
MWn(sn), (7)

We can now stack (7) for all theN sensors as

U
T
MWD = −2UT

MWA
T
S+U

T
MWN (8)

whereD = [d(s1), . . . ,d(sN )]−u1T
N andN = [n(s1), · · · ,n(sN )]

are bothM × N matrices. The approximation in (2) allows this
stacking by using a common whitening matrixW for all the sen-
sors. In addition, the covariance matrix ofvec(UT

MWN) will be
approximatelyI(M−1)N .



2.2. Sensor topology on the Stiefel manifold

A Stiefel manifold [9] in three dimensions, commonly denoted by
V3,3, is the set of all3 × 3 unitary matricesQ = [q1,q2,q3] ∈
R

3×3, i.e., V3,3 = {Q ∈ R
3×3 : QTQ = I3}. The absolute

position of thenth sensor can be written as an affine function of a
point on the Stiefel manifold, i.e.,

sn = cn,1q1 + cn,2q2 + cn,3q3 + t

= Qcn + t (9)

wheret ∈ R
3×1 denotes the translation and is unknown. Note that

the combining weightscn are equal to the known coordinates of the
nth sensor in the reference frame, as introduced in Section 2.1. This
means that the unknown unitary matrixQ actually tells us how the
rigid body has rotated in the reference frame.

We can further stack (9) for all the sensors as

S = QC+ t1
T
N =

Qe
︷ ︸︸ ︷
[
Q t

]

Ce
︷ ︸︸ ︷
[

C

1T
N

]

. (10)

Note that in (10), we express the unknown sensor locationsS in
terms of the unknown rotationsQ of a known sensor topologyC
and an unknown translationt.

3. THE PROPOSED ESTIMATORS

In this paper, we consider the novel problem to localize the rigid
body by estimating the rotationsQ and translationst in each dimen-
sion relative to the anchors. The matrixQ forms an orthonormal
basis for the subspace spanned by the rigid body which reveals all
the rotations.

3.1. LS estimator (Unconstrained)

Combining (8) and (10) results in the following linear model

U
T
MWD = −2UT

MWA
T
QeCe +U

T
MWN (11)

which can be written as

D̄ = ĀQeCe + N̄ (12)
where D̄ , UT

MWD ∈ R
(M−1)×N , Ā , −2UT

MWAT ∈
R

(M−1)×3, and N̄ = UT
MWN ∈ R

(M−1)×N . We can further
vectorize (12) as

d̄ = (CT
e ⊗ Ā)qe + n̄ (13)

whereqe = vec(Qe) = [qT
1 ,q

T
2 ,q

T
3 , t

T ]T ∈ R
12×1, d̄ =

vec(D̄) ∈ R
(M−1)N×1, andn̄ = vec(N̄) ∈ R

(M−1)N×1.
To jointly estimate the unknown rotationsQ and the translations

t we propose the following joint LS estimator

q̂e,LS = (CT
e ⊗ Ā)†d̄ (14)

which will have a unique solution ifCT
e ⊗ Ā has full column-rank

which requires(M − 1)N ≥ 12. Finally, we haveQ̂e,LS =
vec−1(q̂e,LS) =

[
Q̂LS t̂LS

]
. Note that sincēn is approxi-

mately white, we do not use any weighting in the LS formulation.

3.2. Unitarily constrained LS estimator (CLS)

The solution of the unconstrained LS estimator does not necessarily
lie in the setV3,3, i.e., the columns of the LS estimatêQLS obtained
in (14) are generally not orthogonal to each other and they donot
have a unit norm.

We next propose a LS estimator with a unitary constraint onQ.
For this purpose, we decouple the rotations and the translations in

(10). For this purpose, we adopt a unitary decomposition ofPN ,

IN − 1
N
1N1T

N , i.e.,PN = UNUT
N whereUN is aN × (N − 1)

matrix obtained by collecting orthonormal basis vectors ofthe null-
space of1N so that1T

NUN = 0. Right-multiplyingUN to both
sides of (10) leads to

SUN = QCUN . (15)

Combining (8) and (15) we get the following linear model

U
T
MWDUN = −2UT

MWA
T
QCUN +U

T
MWNUN (16)

which can be written as

D̃ = ĀQC̄ + Ñ (17)

whereD̃ = UT
MWDUN , Ā = −2UT

MWAT , C̄ , CUN , and
Ñ = UT

MWNUN . As before, the covariance matrix ofvec(Ñ)
will be approximatelyI(M−1)(N−1).

To estimateQ we propose a LS problem with a quadratic equal-
ity constraint as given by

min
Q

‖QC̄ −X‖
2

F ,

s.t. Q
T
Q = I3

(18)

whereX , Ā†D̃ assuming that̄A has full column-rank. The opti-
mization problem in (18) is non-convex due to the quadratic equality
constraint and is commonly referred to as theorthogonal Procrustes
problem (OPP) [12].

Remark 1 (Anchor positioning). For M ≥ 3, the anchor positions
can be designed such that the matrix Ā will be full column-rank and
well-conditioned. Then, the matrix Ā is left-invertible, i.e., Ā†Ā =
I3.

Lemma 1 (Solution to unitarily constrained LS [12]). The con-
strained LS problem in (18) has an analytical solution Q̂CLS =
VUT where U and V are obtained from the singular value decom-
position (SVD) of C̄XT which is given by UΣVT .

Subsequently, the LS estimate of the translationst can be com-
puted by usinĝQCLS in (10 ) and (12) as

t̂CLS =
1

N
(Ā†

D̄− Q̂CLSC)1N . (19)

Remark 2 (Weighted orthogonal Procrustes problem [13]). The
pseudo inverse operation in (18) would color the noise. This can
be avoided by solving a weighted orthogonal Procrustes problem.
This does not have a closed-form solution, but can be solved using
Newton iterations [13].

3.3. Unitarily constrained TLS estimator (CTLS)

In the previous section, we assumed that the sensors are mounted
on a rigid body and their topology is accurately known. In practice,
there is no reason to believe that errors are restricted onlyto the range
measurements and there are no perturbations on the initial sensor
positions. The perturbations can be introduced during fabrication of
the rigid body or if the body is not entirely rigid.

The position of thenth sensor in the reference framecn is noisy.
We denote the perturbation oncn asδn, and the perturbations on̄C
as∆ , [δ1, δ2, . . . , δN ]UN . Taking the perturbations of the sensor
into account we can re-write the data model in (17) as

Q(C̄+∆) = X+E (20)



whereE , Ā†Ñ andQ is to be determined as earlier.
The solution to the data model in (20) leads to the classical TLS

optimization problem but with a unitary constraint. The unitarily
constrained TLS optimization problem is given by

min
Q

‖∆‖2F + ‖E‖2F ,

s.t. Q(C̄+∆) = X+ E,

QTQ = I3.

(21)

Lemma 2 (Solution to unitarily constrained TLS [14]). The unitar-
ily constrained TLS problem in (21) has the same solution as the uni-
tarily constrained LS problem, and the solution is Q̂CTLS = VUT .

The algorithms to compute the solution for a unitarily con-
strained LS and TLS are summarized as Algorithm 1.

Algorithm 1 Unitarily constrained LS or TLS

Require: C̄XT , X = Ā†D̃.
Compute: SVD C̄XT = UΣVT

Q̂ = VUT

t̂ = 1
N
(Ā†D̄− Q̂C)1N

4. NUMERICAL RESULTS

We consider six sensors mounted on a rigid pyramid as shown in
Fig. 1. The coordinates of the sensors in the reference frameare
chosen such that,

C =





1 6 7 6 2 2.5
0 0 5 5 5 2.5
0 0 0 0 0 5



 (22)

andM = 10 anchors are deployed uniformly at random in a range
of 100m. We use a rotation of(20,−25, 10) degrees in each di-
mension, which determinesQ, and a translation of5m along each
dimension. The simulations are averaged overNexp = 1000 inde-
pendent Monte-Carlo experiments.

We analyze the performance of the three proposed estimators:
1) LS (unconstrained), 2) unitarily constrained LS, and 3) unitar-
ily constrained TLS. The performance of the estimators for estimat-
ing the rotations are provided in terms of themean angular error

defined as 1
3Nexp

∑Nexp

i=1

∑3
m=1 cos

−1

(

qT
mq̂

(i)
m

‖q̂
(n)
m ‖2

)

. This is shown

in Fig. 2. The root mean square error (RMSE) for estimating the

corresponding translations
√

1
Nexp

∑Nexp

i=1 ‖t̂(i) − t‖
2

2 is shown in

Fig. 3. Here,̂q(i)
m ,m = 1, 2, 3 andt̂(i) are the parameters estimated

during theith Monte-Carlo experiment. Note that in case of the un-
constrained LS estimator‖q̂(i)

m ‖2 6= 1.
Simulations are provided for various reference ranges defined as

10 log10
NsκSNR

3c2
dB. A reference range of100 dB means that for

a range of100m the standard deviation on the estimated range is
1mm. The range measurements in (1) are corrupted with an i.i.d.
Gaussian random process of varianceσ2

m(em,n) derived for the cor-
responding reference range.

For the perturbed case, the sensor topology is corrupted with a
zero mean i.i.d. Gaussian process with a standard deviationof 1mm.
The performance of the unconstrained and constrained estimators in
case of perturbations is shown in Fig. 2b and Fig. 3b.
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Fig. 2: Mean angular error of the estimated rotationsQ.
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Fig. 3: RMSE of the estimated translationst.

5. CONCLUSIONS

We have proposed a problem called rigid body localization, in which
the aim is to jointly localize and estimate the orientation of a rigid
body in a 3-dimensional space. For rigid body localization,we make
use of a few anchors and a known sensor topology of sensors that
are mounted on the rigid body. We parameterize the Stiefel man-
ifold using the known sensor topology and propose unconstrained
and constrained LS estimators. In order to take the perturbations of
the sensor into account, we also propose a unitarily constrained TLS
estimator. Incidentally, the solutions to both the constrained LS and
constrained TLS estimators are the same. Analytical closed-form
solutions for all the estimators have been provided.
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