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ABSTRACT

Sinusoidal transforms such as the DCT are known to be
optimal—that is, asymptotically equivalent to the Karhunen-
Loève transform (KLT)—for the representation of Gaussian
stationary processes, including the classical AR(1) processes.
While the KLT remains applicable for non-Gaussian signals,
it loses optimality and, is outperformed by the independent-
component analysis (ICA), which aims at producing the
most-decoupled representation. In this paper, we consider
an extension of the classical AR(1) model that is driven by
symmetric-alpha-stable (SαS) noise which is either Gaussian
(α = 2) or sparse (0 < α < 2). For the sparse (non-Gaussian)
regime, we prove that an expansion in a proper wavelet basis
(including the Haar transform) is much closer to the opti-
mal orthogonal ICA solution than the classical Fourier-type
representations. Our criterion for optimality, which favors
independence, is the Kullback-Leibler divergence between
the joint pdf of the original signal and the product of the
marginals in the transformed domain. We also observe that,
for very sparse AR(1) processes (α ≤ 1), the operator-like
wavelet transform is indistinguishable from the ICA solution
that is determined through numerical optimization.

Index Terms— Operator-like wavelets, Independent com-
ponent analysis, Auto-regressive processes

1. INTRODUCTION

Wavelets are widely used for signal and image processing.
Typical examples of application are JPEG2000 for image
compression [1] and shrinkage methods for denoising [2].
However, despite this popularity in practice, there are few
theoretical results about their optimality for the representa-
tion of stochastic processes.

It is known that that wavelets are optimal (up to some
constant) for the N -term approximation of deterministic
functions in Besov spaces [3]. There is also some empirical
evidence of the statistical optimality of wavelet-like func-
tions. In [4], Cardoso and Donoho performed two indepen-
dent component analysis (ICA) experiments with realizations
of Meyer’s ramp process, which is non-stationary with the
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same second-order statistics as Brownian motion [5], and the
sawtooth process—a stationary variant of the former. For
both cases, they observed that the basis vectors of ICA had a
multiresolution structure similar to wavelets. Another well-
known study is Olshausen and Field’s ICA experiment on
a huge database of natural images. These authors pointed
out that the resulting components have properties that are
reminiscent of 2D wavelets and/or Gabor functions and made
interesting connections with visual perception [6].

Recently, Unser et al. have specified a broad class of
sparse stochastic processes based on a generalized continu-
ous-domain innovation model [7, 8]. These processes are
specified as solutions of linear stochastic differential equa-
tions (SDE) driven by general continuous-domain white noise
that is not necessarily Gaussian.

In this paper, we rely on a generalized innovation model to
establish the optimality of a class of wavelets in some stochas-
tic sense. We focus on the sparse AR(1) processes that are
defined by first-order SDE driven by α-stable noise. AR(1)
systems and α-stable distributions are at the core of signal
modeling and probability theory. Since stable processes have
heavy-tailed statistics for α < 2, they are prototypical repre-
sentatives for sparse signals [9], while one recovers the clas-
sical Gaussian processes for α = 2.

Specifically, we are interested in determining the best
orthogonal expansion of these processes with minimal depen-
dency between transform-domain coefficients. Our measure
of quality is based on the Kullback-Leibler divergence. Clas-
sically, we know that, for α = 2 (Gaussian input), Fourier-
type transforms (FT) such as the DCT are asymptotically
equivalent to the Karhunen-Loéve transform [10,11] and thus
result in a fully decoupled (independent) representation. In
this paper, we shall see that, for α < 2, this classical result
does not hold anymore and that the operator-like wavelet
transforms proposed in [12] outperform the FT. Also, by find-
ing the optimal transform for different values of α, we shall
observe that, for α less than some threshold, operator-like
wavelet are optimal.

We start with preliminaries about the exact signal model
and the concept of operator-like wavelets. In Section 3, we
describe our performance criterion and provide an iterative
procedure for finding the optimal basis (ICA). Results for dif-
ferent AR(1) processes and different transform domains are



discussed in Section 4. The last two sections are dedicated to
the recapitulation of the main results, and the relation to prior
work.

2. PRELIMINARIES

2.1. Continuous and Discrete SαS AR(1) Processes

A continuous-domain symmetric-α-stable AR(1) process s
can be generated by applying a first-order differential system
to a white noise excitation as

s(t) = (ρκ ∗ w) (t) =

∫ t

−∞
eκ(t−τ)w(τ)dτ, (1)

where w is an SαS innovation process; that is, a continuous-
domain α-stable white noise that is formally equivalent to the
weak derivative of an SαS Lévy process [7, 13]. The im-
pulse response of the system is the causal exponential ρκ(t) =
eκt1+(t), where 1+(t) is the unit step. The AR(1) process
is well-defined for κ < 0. The limit case κ = 0 can also
be handled by changing the lower limit of integration in (1)
from −∞ to 0, which results in a Lévy process that is non-
stationary.

It can be shown (see [7]) that (1) is formally equivalent to
the innovation model1

Ls = w, (2)

where L = d
dt + κI is the whitening operator of the

continuous-domain AR(1) process.
Now, if we sample s at the integers, we get a sequence

{sk = s(k)}k∈Z that satisfies the first-order difference equa-
tion

sk − eκsk−1 = wk (3)

with
wk = 〈w, βκ(· − k)〉,

where βκ(t) = 1[0,1)e
κt is the exponential B-spline with pa-

rameter κ [8]. Since the kernels {βκ(· − k)}k∈Z have dis-
joint support, according to the properties of the white noise,
{wn}k∈Z is an i.i.d. sequence of SαS random variables with
the common characteristic function

E
{

ejω〈w,βκ〉
}

= e−|‖βκ‖αω|
α

(4)

and width parameter ‖βκ‖α, which is the Lα (pseudo)norm
of the B-spline. The conclusion is that the continuous-domain
model (1) maps into the discrete AR(1) process {sk}∞k=1 that
is uniquely specified by (3).

1The proper mathematical interpretation of this equation is in the weak
sense of generalized functions, with 〈ϕ,Ls〉 = 〈ϕ,w〉 for all ϕ in Schwartz
class of smooth and rapidly decreasing test functions.

We now consider n consecutive samples of the process
and define the random vectors

s =

s1...
sn

 and w =

w1

...
wn

 .
This allows us to rewrite (3) as

s = Lw (5)

in which L = [lij ]n×n and

lij = eκ(j−i) · 1{j≥i}.

This yields the discrete-domain counterpart of the innovation
model (2).

In the next sections, we are going to study linear trans-
forms applied to the signal s (or s). Here we recall a funda-
mental property of stable distributions that we shall use in our
derivations.

Property 1 (Linear combination SαS random variables)
If r1, . . . , rk are i.i.d. random variables with symmetric α-
stable distributions around 0 with width parameter 1, and if
a1, . . . , ak are k real numbers, then a1r1 + · · · + akrk has
the same distribution as (

∑k
i=1 |ai|α)1/αr1.

2.2. Operator-Like Wavelets

It is well-known that conventional wavelet bases act like
smoothed versions of a derivative operator. If we want to
apply a wavelet-like transform to uncouple the AR(1) signal
(1), we need to select basis functions that essentially behave
like the whitening operator L in (2). The good news is that
such wavelet-like basis functions exist and that they can be
tailored to any given differential operator L [12]. Specifically,
the operator-like wavelet at scale i and location k is given by

ψi,k = L∗φi(· − 2ik),

where φi is a scale-dependent smoothing kernel. Based on
the fact that s = L−1w and the orthogonality of {ψi,k}, we
can compute the wavelet coefficients of the signal as

vi,k = 〈s, ψi,k〉 = 〈L−1w,ψi,k〉
= 〈w,L−1∗L∗φi(· − 2ik)〉 = 〈w, φi(· − 2ik)〉, (6)

from which we can deduce two properties (see [7]). First,
the wavelet coefficients at scale i follow an SαS distribution
with width parameter ‖φi‖α. Second, since w is indepen-
dent at every point, the level of decoupling is directly de-
pendent upon the degree of overlap of the smoothing kernels
φi(· − 2ik). In the case of a first-order operator, the operator-
like wavelets of Khalidov et al [12] are very similar to Haar
wavelets, except that they are piecewise exponential instead



of piecewise constant (for κ = 0). They are orthogonal with
non-overlapping support within a given scale. This allows us
to conclude that the operator-like wavelet coefficients are in-
dependent and identically (SαS) distributed within each scale.
This property suggest that this type of transform is an excel-
lent candidate for decoupling AR(1) processes.

3. DEPENDENCY OF THE COEFFICIENTS OF
REPRESENTATION OF AR(1) PROCESSES IN

TRANSFORM DOMAINS

The transformed representation of the signal is denoted by
s̃ = [s̃1 · · · s̃n]> = Hs, where H = [hij ]n×n is the under-
lying orthogonal transformation matrix (DCT, wavelet trans-
form, or ICA). We take the Kullback-Leibler Distance (KLD)
between the exact probability density function ps̃ (s̃) of s̃ and
the product ps̃1(s̃1) · · · ps̃n(s̃n) of its marginals as the mea-
sure of quality of the transformation H. It is given by

R(H) =
1

n
D(ps̃ (s̃) ‖ps̃1(s̃1) · · · ps̃n(s̃n)), (7)

where D(·‖·) is the KLD function. The function R(H) de-
pends continuously on H. Since R(H) ≥ 0 and since the
equality holds if and only if the s̃i are completely indepen-
dent, a lower value of R means that the s̃i are less depen-
dent. This criterion is commonly used in ICA to find the
most-independent representation [14].

Simplifying (7), we write

R(H) =
1

n

n∑
i=1

H(s̃i)−
1

n
H(s̃) (8)

=
1

n

n∑
i=1

H(s̃i)−H(w1)− 1

n
log detHL,

where H(·) is the entropy function. The first observation is
that log detHL = 0. In addition, since the wi are α-stable,
the distribution of s̃i is the same as the distribution of h̄iw1,
where h̄i is the α-(pseudo)norm of the ith row of HL (see
Property 1). Thus,

R(H) =
1

n

n∑
i=1

log h̄i, (9)

where

h̄i =

(
n∑
r=1

∣∣∣∣∣
n∑
k=1

hiklkr

∣∣∣∣∣
α) 1

α

. (10)

These simple formulas can be calculated for any given H.
While ICA is usually determined empirically based on the

observations of a process, we take advantage of the underly-
ing stochastic model to derive an optimal solution based on
the minimization of (9), which involves the computation of
`α norms of the transformation matrix. Specifically, we im-
plemented the following iterative algorithm, which finds the
optimal transform H for different values of κ, α, and n:

• Initialize H and η > 0.

• Repeat

∗ h̃ij ← hij − η ∂R
∂hij

for all i, j = 1, . . . , n.

∗ Set H to the projection of H̃ =
[
h̃ij

]
n×n

onto

the space of unitary matrices.

until convergence.

The algorithm requires the computation of the partial deriva-
tives of R(H) whose closed formula

∂R
∂hij

=

1

nh̄αi

n∑
r=1

ljrsgn

(
n∑
k=1

hiklkr

)∣∣∣∣∣
n∑
k=1

hiklkr

∣∣∣∣∣
α−1

is derived from (9) and (10).

4. RESULTS

First, we investigate the case of a Lévy process (i.e., κ = 0)
for which the operator-like wavelet transform coincides with
the classical Haar transform. We give in Figure 1 the value of
our performance criterion as a function of α for various trans-
forms with n = 64: the identity (which is used as baseline),
the discrete cosine transform (DCT), the Haar wavelet trans-
form (HWT), and the optimal solution (ICA) provided by our
algorithm. For α = 2 (Gaussian scenario), the process s is
a Brownian motion whose KLT is a sinusoidal transform that
is known analytically. In that case, we observe that R van-
ishes for the DCT and the optimal transform, which is con-
sistent with the fact that they both converge to the KLT. The
latter achieves perfect decorrelation, but this is equivalent to
independence only in the Gaussian case. By contrast, as α
decreases, the DCT becomes less favorable while the perfor-
mance of the HWT gets closer to the optimal one. In fact, it
becomes indistinguishable from that of ICA for α ≤ 1, which
is a remarkable finding since ICA is tuned to the data while
HWT is not.

Next, we switch to a stationary AR(1) process with eκ =
0.9 and n = 64. For α = 2, we get the classical Gaus-
sian AR(1) process which is well studied in the literature and
for which the DCT is known to be asymptotically optimal
[10, 11]. The performance curves for the DCT, the HWT, the
operator-like wavelet matched to the process, and the optimal
ICA solution are plotted in Figure 2. Here too, the trend is
essentially the same as before, with the operator-like wavelet
transform mimicking the optimal ICA solution as α ≤ 1 (see
Figure 3). Also, note that the operator-like wavelet transform
generally outperforms the HWT. This highlights the benefits
of tuning the wavelet to the differential characteristics of the
process.
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Fig. 1. R(H) of Lévy processes versus α when n = 64 for
different H.
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Fig. 2. R(H) versus α when eκ = 0.9 and n = 64 for differ-
ent H.

To substantiate those findings, we could also prove the
theorem below, which states that, for any α < 2, the operator-
like wavelet transform outperforms the DCT (or, equivalently,
the KLT associated with the Gaussian member of the family)
as the block-size n tends to infinity.

Theorem 1 If α < 2 and Re(κ) ≤ 0, we have

lim
n→∞

R(OpWT) < lim
n→∞

R(DCT) =∞, (11)

where OpWT stands for the operator-like wavelet transform.
The proof is omitted in the interest of conciseness.

5. SUMMARY AND FUTURE STUDIES

In this paper, we have shown that operator-like wavelets are
the optimal basis for representing very sparse (α . 1) α-
stable AR(1) processes. Also, we saw that, for any α < 2,
these wavelets almost systematically outperform sinusoidal
transforms. This result is unexpected because the DCT is
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Fig. 3. Three rows of the optimal H for α = 1 and n = 64.
Parts (a) and (b) show the dyadic structure of the wavelets.

known to be asymptotically optimal for α = 2. The cri-
terion we used is the KLD between the distribution of the
coefficients in the transform domain and the product of its
marginals.

A challenging topic that deserves further investigation
is finding a closed form for the optimal transform for any
given α, κ, and n. Our results also call for extensions for
broader classes of stochastic processes within the boundaries
of generalized innovation model, such as other white noises
or/and higher-order differential operators. In addition, there
is a strong incentive for studying the problem in the original
continuous domain.

6. RELATION TO PRIOR WORKS

The present study builds upon the theory of sparse stochas-
tic processes proposed by Unser et al., where the argument
is made that continuous-domain innovation models do induce
a sparse behavior when switching to a non-Gaussian excita-
tion within the limit of mathematical admissibility [7]. Here,
we focus on the simplest non-Gaussian version of this model
(first-order differential system) with an SαS excitation. Due
to the underlying innovation model and the properties of SαS
laws, we are able to obtain an explicit characterization of the
optimal transform for this particular class of stochastic pro-
cesses via Equations (9) and (10), which is a novel model-
based point of view for ICA. As far as we know, the con-
clusions that we draw are the first theoretical results on the
optimality of wavelet-like basis functions for a given class
of stochastic processes—this was confirmed to us by David
Donoho, who is a pioneer of the field. His prior work provides
empirical evidence that points to a similar direction with the
help of the ICA machinery developed by Cardoso [4].

7. REFERENCES

[1] D. S. Taubman and M. W. Marcellin, JPEG2000: Im-
age Compression Fundamentals, Standards and Prac-



tice. Kluwer Academic Publishers, 2001.

[2] C. Taswell, “The what, how, and why of wavelet shrink-
age denoising,” Computing in Science Engineering,
vol. 2, no. 3, pp. 12 –19, may/jun 2000.

[3] R. A. Devore, “Nonlinear approximation,” Acta Numer-
ica, vol. 7, pp. 51–150, 1998.

[4] J. F. Cardoso and D. L. Donoho, “Some experiments on
independent component analysis of non-gaussian pro-
cesses,” in Proceedings of the IEEE Signal Processing
Workshop on Higher-Order Statistics, 1999, pp. 74 –77.

[5] Y. Meyer, “Wavelets and applications,” in Lecture at
CIRM Luminy Meeting, Luminy, France, March 1992.

[6] B. A. Olshausen and D. J. Field, “Emergence of simple-
cell receptive field properties by learning a sparse code
for natural images,” Nature, vol. 381, pp. 607–609,
1996.

[7] M. Unser, P. D. Tafti, and Q. Sun, “A unified formula-
tion of gaussian vs. sparse stochastic processes-part i:
Continuous-domain theory,” arXiv:1108.6150v1.

[8] M. Unser, P. D. Tafti, A. Amini, and H. Kirsh-
ner, “A unified formulation of gaussian vs. sparse
stochastic processes-part ii: Discrete-domain theory,”
arXiv:1108.6152v1.

[9] A. Amini, M. Unser, and F. Marvasti, “Compressibility
of deterministic and random infinite sequences,” IEEE
Transactions on Signal Processing, vol. 59, no. 11, pp.
5193–5201, November 2011.

[10] J. Pearl, “On coding and filtering stationary signals by
discrete fourier transforms,” IEEE Transactions on In-
formation Theory, vol. 19, no. 2, pp. 229–232, March
1973.

[11] M. Unser, “On the approximation of the discrete
karhunen-loeve transform for stationary processes,” Sig-
nal Processing, vol. 7, no. 3, pp. 231–249, 1984.

[12] I. Khalidov and M. Unser, “From differential equations
to the construction of new wavelet-like bases,” IEEE
Transactions on Signal Processing, vol. 54, no. 4, pp.
1256–1267, April 2006.

[13] G. Samorodnitsky and M. S. Taqqu, Stable Non-
Gaussian Random Processes. Chapman and Hall,
1994.

[14] J. V. Stone, Independent Component Analysis. The
MIT Press, September 2004.


