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ABSTRACT

We propose a multistage adaptive approach to spectrum sensing and
estimation with the goal of concentrating more sensing resources on
spectral components of interest. The allocation of resources to min-
imize the mean squared estimation error is formulated as a dynamic
program. An optimal policy is given for the case of two sensing
stages. For more than two stages, tractable approximate policies are
developed based on open-loop feedback control (OLFC). These poli-
cies improve monotonically with the number of stages, and inpartic-
ular upon the optimal two-stage policy. A spectrum sensing simula-
tion shows substantial reductions in mean squared error compared to
non-adaptive sensing and a recently proposed adaptive method. Per-
formance gains in detecting unoccupied channels are also shown.

Index Terms— Adaptive sensing, resource allocation, spectrum
sensing, spectral estimation, cognitive radio/radar

1. INTRODUCTION

Spectral estimation is a classical problem relevant to suchareas as ar-
ray processing, music and acoustics, and the experimental sciences.
Recently, much attention has been focused in particular on spectrum
sensing for cognitive radio [1] and cognitive radar [2], where the ob-
jective is to identify unused portions of spectrum for opportunistic
communication and remote sensing by secondary users while mini-
mizing interference to the licensed primary users.

This paper discusses a multistage adaptive approach to spectrum
sensing and estimation. We assume that spectral componentsare
drawn from two classes, only one of which is of interest. By ob-
serving the spectrum in stages and adapting in response to previous
observations, more sensing resources can be concentrated on com-
ponents of interest, thus improving estimation accuracy. The pro-
posed method can be used for example to better characterize spec-
tral peaks against a noise background. In cognitive radio, the noise
power in channels unoccupied by primary users, i.e., spectral holes,
can be measured more accurately. Similarly in cognitive radar, bands
with low noise or clutter can be identified and estimates of the power
therein can improve target detection and tracking. Noise power esti-
mation has not received much attention in the cognitive radio/radar
literature, which has mostly focused on hole detection [1,2].

Several previous works on adaptive spectrum sensing have
adopted a multiple hypothesis testing viewpoint for hole detection
with an overall resource constraint coupling the channels together.
Sequential thresholding policies inspired by distilled sensing [3] are
proposed and analyzed in [4–6], showing substantial decreases in
sampling and signal-to-noise ratio (SNR) requirements compared to
non-adaptive sensing. The gamma observation model in [4] isclos-
est to the one assumed in the present work; however, [4–6] assume
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knowledge of the primary user and noise powers (or a worst-case
bound) while we assume only statistical knowledge and attempt
to learn the parameters. Statistical modelling and learning is also
considered in [7], which describes a sensing and access policy for
channel occupancies with Markov time evolution. The policyin [7]
however senses a single channel at a time whereas we considerthe
allocation of a sensing budget over multiple channels and stages.

In a somewhat different approach, sequential hypothesis tests
are performed on each channel without an overall budget constraint
[8, 9]. The test in [8] allows for early declaration of primary user
presence under a hard limit on the number of observations. In[9], the
channels are considered in sequence until a single hole is identified.
Beyond adaptive or dynamic methods, an excellent survey of the
main techniques for spectrum sensing can be found in [1].

In this paper, we focus on spectral estimation as opposed to hy-
pothesis testing and consider multistage adaptive sensingunder a
constraint on the total effort. The problem is formulated asa dy-
namic program in Section 2. In Section 3.1, an exact dynamic pro-
gramming policy is presented for the case of two stages. In Section
3.2, a tractable extension to more than two stages is developed based
on the open-loop feedback control (OLFC) approximation [10]. The
same approach is taken in [11] for a Gaussian observation model; the
current work extends [11] to a gamma model. The proposed OLFC
policy improves monotonically with the number of stages, and in
particular upon the optimal two-stage policy. A spectrum sensing
simulation in Section 4 shows substantial reductions in mean squared
error (MSE) compared to non-adaptive estimation and the adaptive
method of [4]. Moreover, the OLFC policy is competitive with[4]
in terms of hole detection even though it is not specifically designed
for that purpose. The paper concludes in Section 5.

2. PROBLEM FORMULATION

We consider a frequency band divided intoN channels (not nec-
essarily contiguous) indexed byi. Channels belong to one of two
classes as indicated by independent Bernoulli random variablesIi.
The prior probabilities of havingIi = 1 are denoted aspi(0) and
are taken to be uniform, i.e.,pi(0) = p(0) for all i, in the absence
of further knowledge. Adaptivity yields larger gains when one of the
classes (class 1 without loss of generality) is rare, i.e.,p(0) is small
and the vectorI is sparse, although we do not assume this.

The channels are observed inT stages indexed byt with effort
levelsλi(t), which may represent sensing time in cognitive radio,
transmitted energy in cognitive radar, or other resources depending
on the application. For a channel with powersi, the observation
yi(t) in staget is conditionally distributed as

yi(t) | si, λi(t−1) ∼ Γ

(

λi(t− 1),
si

λi(t− 1)

)

, t = 1, . . . , T,

(1)



whereΓ(k, θ) denotes a gamma distribution with shape parameterk
and scale parameterθ. It follows that the ratio of the mean ofyi(t)
to the standard deviation isλi(t − 1), and hence higher effort re-
sults in higher measurement precision. In non-adaptive sensing, the
allocationsλ(t) are determined without reference to the observa-
tions. In contrast, with adaptive sensing,λ(t) in staget can depend
causally on the observationsY(t) = {y(1), . . . ,y(t)}. The map-
ping fromY(t) to λ(t) is referred to as the effort allocation policy.
The spectrums is assumed to be constant during the observation pe-
riod. Givens andλ(t− 1), t = 1, . . . , T , the observationsyi(t) are
assumed to be conditionally independent across channels and stages.

The observation model in (1) arises if the random process under-
lying the spectrums is Gaussian. Then the periodogram estimate of
each spectral component is a chi-squared random variable with two
degrees of freedom and mean equal to the true component. The aver-
age ofλi(t−1) independent periodogram estimates, whereλi(t−1)
is an integer, is then gamma-distributed as in (1). Similarly, (1) cor-
responds to energy detection performed onλi(t − 1) observations
of a complex Gaussian frequency component [4]. For convenience
and generality, we allowλi(t− 1) to take on arbitrary non-negative
values, which can model continuous-valued observation times.

Unlike in [4–6], we do not assume that the powerssi are known
or can be bounded deterministically. Instead, eachsi is assumed to
have a prior distribution that depends on the classIi:

si | Ii ∼ Γ−1(αIii(0), βIii(0)), Ii = 0, 1, i = 1, . . . , N,
(2)

where the inverse gamma distribution with shape parameterαIii(0)
and scale parameterβIii(0) is chosen to be conjugate to the gamma
distribution in (1). The componentssi are assumed to be indepen-
dent a priori. As with the probabilitiespi(0), the parametersαIii(0)
andβIii(0) are usually initialized to be uniform over channels, i.e.,
αIii(0) = αIi(0) andβIii(0) = βIi(0), but with(α0(0), β0(0)) 6=
(α1(0), β1(0)) so that the classes are statistically different.

Our goal is to estimate the powerssi assuming that only class1
is of interest. Specifically, the objective is to minimize the MSE,

E

{

N
∑

i=1

Ii (ŝi − si)
2

}

, (3)

corresponding to estimateŝsi based on allT stages of observations,
and subject to a constraint on the total sensing budget,

T−1
∑

t=0

N
∑

i=1

λi(t) = Λ(0). (4)

The expectation in (3) is taken overI, s, andY(T ).

2.1. Formulation as a dynamic program

The selection of an effort allocation policy to minimize theMSE in
(3) subject to (4) can be formulated as a dynamic program. This
involves the definition of a statex(t) that allows the cost (3) to be
rewritten as a sum of terms indexed byt, each depending only on
x(t) and the controlλ(t). In the present case,x(t) is a belief state
composed of the parameters of relevant posterior distributions. The
first such distribution is of the powerssi given Ii and observations
Y(t). It can be shown [12] thatsi | Ii,Y(t) retains an inverse
gamma distribution as in (2) and is independent ofsj , j 6= i for all
t. The parameters of the distribution evolve according to

αIii(t) = αIii(t− 1) + λi(t− 1), (5a)

βIii(t) = βIii(t− 1) + λi(t− 1)yi(t), Ii = 0, 1. (5b)

Next we consider the posterior distribution forIi conditioned on
Y(t). As with the variablessi | Ii,Y(t), it can be shown that
Ii | Y(t) remains independent Bernoulli. Definingpi(t) = Pr(Ii =
1 | Y(t)), we have the following recursion [12]:

pi(t) =
pi(t− 1)f1

pi(t− 1)f1 + (1− pi(t− 1))f0
(6)

wherefIi is the probability density function ofyi(t) | Ii,Y(t− 1).
This last quantity follows a beta prime distribution [13],

yi(t) | Ii,Y(t− 1) ∼ β′

(

λi(t− 1), αIii(t− 1),
βIii(t− 1)

λi(t− 1)

)

,

(7)
whereλi(t− 1) andαIii(t− 1) are shape parameters and the third
parameter is a scale parameter.

Based on the posterior distributions forsi andIi, we define the
state to bex(t) = (p(t),α(t),β(t),Λ(t)), whereα(t) andβ(t)
include all componentsαIii(t) andβIii(t), andΛ(t) represents the
budget remaining in staget. It can be seen from (3) that the estimate
ŝi should be chosen as the conditional meanŝi = E{si | Ii =
1,Y(T )} = β1i(T )/(α1i(T )− 1). The cost can then be expressed
as

EY(T ),I

{

N
∑

i=1

Iiβ1i(T )
2

(α1i(T )− 1)2(α1i(T )− 2)

}

. (8)

Using (5) and (7) and noting thatλ(T−1) does not depend ony(T ),
the expectations overy(T ) andI in (8) can be evaluated to yield [12]

EY(T−1)

{

N
∑

i=1

wi(T − 1)

α1i(T − 1) − 1 + λi(T − 1)

}

, (9)

where

wi(t) =
pi(t)β1i(t)

2

(α1i(t)− 1)(α1i(t)− 2)
. (10)

The quantity in braces in (9) depends only onx(T−1) andλ(T−1)
and hence is of the required form. Thus the effort allocationproblem
is to minimize (9) with respect toλ(0), . . . ,λ(T − 1) subject to the
budget constraint (4). The dependence of (9) onλ(0), . . . ,λ(T −2)
is implicit through the distribution ofY(T − 1). Interestingly, the
functional form of the cost function (9) is the same as for thecase of
Gaussian-distributed observations and MSE in [11], with the main
difference being the definition ofwi(t) in (10).

3. EFFORT ALLOCATION POLICIES

3.1. Exact dynamic programming

Given the dynamic programming formulation in Section 2.1, an op-
timal effort allocation policy can be determined through exact dy-
namic programming. This procedure is tractable for policies of one
and two stages. ForT = 1 (the non-adaptive case), the expectation
in (9) is absent and the problem is an explicitly stated optimization
constrained by (4). Furthermore, because of the form of (9) and the
linearity of the constraint, the optimization problem is convex. For
T = 2, conditioned on the statex(1), the second stageλ(1) of an
optimal policy is determined similarly to theT = 1 case. Defining
J∗
1 (x(1)) as the optimal cost of the second stage, the first stage is

determined recursively by solving

min
λ(0)

Ey(1){J
∗
1 (x(1)) | x(0),λ(0)} s.t.

N
∑

i=1

λi(0) ≤ Λ(0).

(11)



Under a prior that is uniform over channels as discussed in Section 2,
the initial allocationλ(0) is also uniform by symmetry, i.e.,λi(0) =

ρ(2)(0)Λ(0)/N for all i with ρ(2)(0) ∈ [0, 1]. The optimization in
(11) then reduces to a line search with respect toρ(2)(0).

3.2. Open-loop feedback control

For optimal policies with more than two stages, a recursive opti-
mization similar to (11) is required fort = 0, . . . , T − 2 and be-
comes prohibitive fort > 0 because of the loss of symmetry. Thus
for T > 2, we turn to an approximate method known as open-loop
feedback control (OLFC) [10]. We consider the selection of the ef-
fort allocationλ(t) in staget given the current observationsY(t),
or equivalently the statex(t). The simplifying assumption in OLFC
is that future allocationsλ(t+1), . . . ,λ(T −1) can depend only on
x(t). As shown in [12], this assumption allows the conditional ex-
pectation overy(t+1), . . . ,y(T−1) in (8) to be evaluated in closed
form, in addition to the expectations overy(T ) andI from before.
The result is a cost function similar in form to (9). Consequently, the
effort allocation problem under OLFC can be stated explicitly as the
following joint optimization overλ(t), . . . ,λ(T − 1):

min
λ(t),...,λ(T−1)

N
∑

i=1

wi(t)

α1i(t)− 1 +
∑T−1

τ=t
λi(τ )

s.t.
N
∑

i=1

T−1
∑

τ=t

λi(τ ) = Λ(t).

(12)

Similar to the one-stage effort allocation problem, (12) isa convex
optimization and again coincides with the Gaussian case in [11].

As in [11], the OLFC allocation problem (12) yields a water-
filling solution for the variablesλi(t) =

∑T−1

τ=t
λi(τ ). Define

ri(t) = α1i(t)− 1 and re-order the indicesi such that the quantities
√

wi(t)/ri(t) are sorted in non-increasing order. Then the optimal

value ofλ(t) is given by

λ
∗

i (t) =

(

Λ(t) +

k
∑

j=1

rj(t)

)

√

wi(t)
∑k

j=1

√

wj(t)
− ri(t) (13)

for i = 1, . . . , k andλ
∗

i (t) = 0 otherwise. The number of nonzero
componentsk is determined by the interval(b(k−1), b(k)] in which
the budget parameterΛ(t) falls, whereb(k) is a non-decreasing
function defined by

b(k) =
rk+1(t)
√

wk+1(t)

k
∑

i=1

√

wi(t)−

k
∑

i=1

ri(t), k = 0, . . . , N −1,

andb(N) = ∞. The derivation of the solution in (13) follows [11].
The solution in (13) specifies the distribution of effort over chan-

nels but, as can be seen from the form of (12), the division ofλ
∗

i (t)
into λi(t), . . . , λi(T − 1), i.e., the distribution over stages, is not
specified. To fully determine the effort allocation, we chooseλ(t)
to be of the formλ(t) = ρ(T )(t)λ

∗
(t) and perform an additional op-

timization overρ(T )(t) ∈ [0, 1], the fraction of the remaining effort
budget used in staget. ForT = 1, 2, the optimal policies discussed
in Section 3.1 belong to the OLFC class withρ(1)(0) = ρ(2)(1) = 1

andρ(2)(0) chosen according to (11). ForT > 2, we follow the
strategy in [11] and recursively setρ(T )(t) = ρ(T−1)(t − 1) for
t = 1, . . . , T − 1. DefiningJ(T )

0 (x(0)) to be the cost of aT -stage

OLFC policy given initial statex(0), the first-stage fractionρ(T )(0)
is chosen as follows:

ρ(T )(0) = arg min
0≤ρ≤1

Ey(1)

{

J
(T−1)
0 (x(1)) | x(0), ρλ

∗
(0)
}

.

(14)
Since the optimization in (14) depends only on the initial statex(0)
and the previously determinedT − 1-stage policy, it can be per-
formed offline. Specifically, we perform a line search with respect
to ρ and for eachρ we generate samples ofy(1) and simulate the
T − 1-stage policy, starting from the resulting statesx(1), to eval-
uate the expectation in (14). As shown in [11], this optimization
ensures that the OLFC policies improve with the number of stages,
i.e.,

J
(T+1)
0 (x(0)) ≤ J

(T )
0 (x(0)), T = 1, 2, . . . .

In particular, OLFC policies with more than two stages improve
upon the optimal two-stage policy in Section 3.1.

4. NUMERICAL SIMULATIONS

We simulate a spectrum sensing scenario to evaluate the proposed
OLFC policy and compare it to non-adaptive sensing and the adap-
tive policy in [4]. For concreteness, we adopt the terminology of
cognitive radio although the simulation is equally applicable to cog-
nitive radar. The number of channelsN is set to1000 and classes0
and1 correspond to the presence or absence of primary users. The
goal therefore is to estimate the noise power in unoccupied chan-
nels assuming that they are sparse as also assumed in [4]. Spectra
and observations are generated from the model in Section 2 with
α0(0) = α1(0) = 6 andβ1(0) = 5 so that the mean noise power is
normalized to1. The parameterβ0(0) is determined by the primary
user SNR, equal to10 log10((β0(0) − β1(0))/β1(0)) dB. Follow-
ing [4], the sensing budget is chosen asΛ(0) = 5N and the alloca-
tionsλ(t) are restricted to be integer-valued. For OLFC, this integer
constraint is met by rounding. We make two modifications to the
policy in [4]. First, to accommodate the distribution of spectral com-
ponents assumed in this work, we change the observation threshold
in [4] to the median of the beta prime distributionf(yi(t) | Ii = 0)
in (7) withλi(t−1) = 1. Second, estimates and decisions are made
on the basis of all observations using the Bayesian update equations
(5) and (6), and not just the final stage.

In Fig. 1, we show the reduction in MSE relative to non-adaptive
sensing for the adaptive policies as a function of SNR. The aver-
ages are computed from40000 simulations. For the same number
of stages, the OLFC policy yields lower MSE than the policy in[4]
at all SNR, with the differences becoming larger at higher SNR. The
T = 2 OLFC policy is optimal for policies with two stages. We
also compare the integer-rounded OLFC policy (‘OLFC’) to anun-
rounded version (‘OLFC-NR’). The loss due to rounding is minor
and occurs when the MSE reduction is already quite large. Larger
gains are seen forp(0) = 0.01 since resources can be concentrated
to a greater extent. We note that increasing the sensing budgetΛ(0)
has a similar effect as increasing the SNR since both make thetwo
classes more distinguishable.

Figure 2 plots the MSE reduction as a function of the number
of stagesT for p(0) = 0.01 and three SNR levels. The mono-
tonic improvement property of the OLFC policy is verified, except
for small finite-sample deviations visible at SNR= 2 dB because of
the small gain overall. Incremental gains diminish asT increases but
less quickly at lower SNR. For SNR= 10, 20 dB, a3-stage OLFC
policy gives lower MSE than a10-stage policy from [4], whereas for
SNR= 2 dB, [4] does not yield any MSE improvement.
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Fig. 1. MSE reduction relative to non-adaptive estimation as a function of SNR for (a)p(0) = 0.1 and (b)p(0) = 0.01. For the same number
of stagesT , the proposed OLFC policy yields lower MSE than the policy in[4] at all SNR and especially at higher SNR. At high SNR the
benefit of the OLFC policy increases by more than a factor of6 as the sparsity increases fromp(0) = 0.1 in (a) top(0) = 0.01 in (b).
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Fig. 2. MSE reduction as a function of the number of stagesT .
Gains diminish asT increases but less quickly at lower SNR. In all
cases shown, a3-stage OLFC policy results in lower MSE than a
10-stage policy from [4].

Figure 3 compares the hole detection performance of the OLFC
and non-adaptive policies and the policy from [4]. The probability
of primary user misdetection is shown on a log scale since thelimits
on interference to primary users are usually stringent while the re-
quirements for hole detection are less so, i.e., it is often unnecessary
to detect all or even most holes. In terms of the receiver operating
characteristics (ROC), the OLFC policy is competitive with[4] and
significantly better than non-adaptive sensing even thoughit is not
specifically designed for detection. At0 dB SNR, the policy in [4]
has a slightly higher hole detection probability at low primary user
misdetection probabilities, while the OLFC policy is slightly better
at higher misdetection probabilities. At4 and10 dB SNR, the OLFC

policy consistently outperforms [4]. Above10 dB SNR or below0
dB SNR, the policy in [4] is better once again but both policies per-
form either very well or very poorly.
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Fig. 3. ROC for the proposed OLFC policy with6 stages, the policy
in [4] with 6 stages, and non-adaptive sensing at SNR =0, 4, 10 dB
(lower to upper within each set of curves). The OLFC policy iscom-
petitive with [4] and significantly better than non-adaptive sensing.

5. CONCLUSION

We have discussed a multistage adaptive approach to spectrum sens-
ing and estimation based on dynamic programming. The proposed
effort allocation policy results in significantly lower estimation MSE
compared to non-adaptive sensing and to the policy of [4]. Gains in
hole detection performance are also observed, and further improve-
ments may be expected by developing a dynamic programming pol-
icy aimed specifically toward detection.
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