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ABSTRACT knowledge of the primary user and noise powers (or a worst-ca

We propose a multistage adaptive approach to spectrurmsgeasil bound) while we assume onl_y _statistical k_nowledge a_n_d gitem
estimation with the goal of concentrating more sensinguessss on (0 léarn the parameters.  Statistical modelling and legrisralso
spectral components of interest. The allocation of resmute min- ~ considered in [7], which describes a sensing and accessyfoli
imize the mean squared estimation error is formulated amardic ~ channel occupancies with Markov time evolution. The polirey7]
program. An optimal policy is given for the case of two segsin howevgr senses a §|ngle channel at a time whereas we cottgder
stages. For more than two stages, tractable approximataesohre  allocation of a sensing budget over multiple channels aagest
developed based on open-loop feedback control (OLFC).&Tjais In a somewhat different approach, sequential hypothesis te
cies improve monotonically with the number of stages, anghitic- &€ performed on each channel without an overall budgetizons
ular upon the optimal two-stage policy. A spectrum sensingik- [8,9]. The testin [8] a!loyvs for early declaration of prirganser
tion shows substantial reductions in mean squared erropated to ~ Presence under a hard limit on the number of observatiorjS],Ithe
non-adaptive sensing and a recently proposed adaptiveothefter- channels are considered in sequence until a single holengifigdd.

formance gains in detecting unoccupied channels are atsersh Beyond adaptive or dynamic methods, an excellent surveyef t
main techniques for spectrum sensing can be found in [1].

Index Terms— Adaptive sensing, resource allocation, spectrum |4 this paper, we focus on spectral estimation as opposey-to h

sensing, spectral estimation, cognitive radio/radar pothesis testing and consider multistage adaptive sensidgr a
constraint on the total effort. The problem is formulatedaady-
1. INTRODUCTION namic program in Section 2. In Section 3.1, an exact dynamtie p

gramming policy is presented for the case of two stages. tti@e

Spectral estimation is a classical problem relevant to sueas as ar- 3.2, a tractable extension to more than two stages is des@lopsed
ray processing, music and acoustics, and the experimaigsices.  on the open-loop feedback control (OLFC) approximatior].[The
Recently, much attention has been focused in particulapectsum  same approach is taken in [11] for a Gaussian observatioelythe
sensing for cognitive radio [1] and cognitive radar [2], wéhe ob-  current work extends [11] to a gamma model. The proposed OLFC
jective is to identify unused portions of spectrum for oppoistic policy improves monotonically with the number of stagesy &m
communication and remote sensing by secondary users while m particular upon the optimal two-stage policy. A spectrumsseg
mizing interference to the licensed primary users. simulation in Section 4 shows substantial reductions inmseg@ared

This paper discusses a multistage adaptive approach tsmpec error (MSE) compared to non-adaptive estimation and thetasa
sensing and estimation. We assume that spectral compoaents method of [4]. Moreover, the OLFC policy is competitive wiH
drawn from two classes, only one of which is of interest. By ob in terms of hole detection even though it is not specificaéigigned
serving the spectrum in stages and adapting in responseumps  for that purpose. The paper concludes in Section 5.
observations, more sensing resources can be concentratuho
ponents of interest, thus improving estimation accuradye pro- 2. PROBLEM EORMULATION
posed method can be used for example to better charactpeze s '
tral peaks against a noise background. In cognitive rat®nbise  \ye consider a frequency band divided ind channels (not nec-
power in channels unoccupied by primary users, i.e., speobles,  ossayily contiguous) indexed by Channels belong to one of two
can be measured more accurately. Similarly in cognitiverdsnds  |a5ses as indicated by independent Bernoulli randomblegd;.
with low noise or clutter can be identified and estimates efgower 11,4 prior probabilities of having; = 1 are denoted ag;(0) and
therein can improve target detection and tracking. Noisesp@sti- 516 taken to be uniform, i.ep; (0) = p(0) for all 4, in the absence
mation has not received much attention in the cognitiveor@alar o frther knowledge. Adaptivity yields larger gains whereaf the
literature, which has mostly focused on hole detection]1,2. classes (class 1 without loss of generality) is rare, @) is small

Several previous works on adaptive spectrum sensing havg.q the vectol is sparse, although we do not assume this.
adopted a multiple hypothesis testing viewpoint for holéedgon The channels are observedihstages indexed bywith effort
with an overall resource constraint coupling the channegether. |eygls \, (1), which may represent sensing time in cognitive radio,
Sequential thresholding policies inspired by distilledsiag [3] are  yansmitted energy in cognitive radar, or other resouregsedding
proposed and analyzed in [4-6], showing substantial dsesetn 4, the application. For a channel with power the observation

sampling a_1nd signal-to-noise ratio (SNR) req_uirementsp_[zmed _to yi(t) in staget is conditionally distributed as
non-adaptive sensing. The gamma observation model in plbss

est to the one assumed in the present work; however, [4—6iress

yi(t) | s, Mi(t=1) ~T [ As(t = 1), ——2— ), t=1,...,T,
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wherel'(k, §) denotes a gamma distribution with shape paranieter Next we consider the posterior distribution fdy conditioned on
and scale parametér It follows that the ratio of the mean af; (¢) Y (t). As with the variabless; | I;,Y(¢), it can be shown that
to the standard deviation is;(¢ — 1), and hence higher effort re- I; | Y (¢) remains independent Bernoulli. Definipgt) = Pr(I; =
sults in higher measurement precision. In non-adaptiveisgnthe 1| Y (¢)), we have the following recursion [12]:
allocations(t) are determined without reference to the observa- (t—1)f

tions. In contrast, with adaptive sensirX|t) in staget can depend pi(t) = Pi ! (6)
causally on the observationg(¢) = {y(1),...,y(t)}. The map- pi(t =1 fi+ (1 —=pi(t = 1)) fo

ping fromY (¢) to A(t) is referred to as the effort allocation policy. wheref;, is the probability density function af; (¢) | 7;, Y (£ — 1).
The spectruns is assumed to be constant during the observation pethis last quantity follows a beta prime distribution [13],

riod. Givens and\(t —1),¢t = 1,...,T, the observationsg; () are Brslt— 1)
assumed to be conditionally independent across channstages. ) ) N A i e L\t —

The observation model in (1) arises if the random processmund w1 Y(E=1) ~ 8 ()\’L(t D, ara(t=1), it —1) ) ’
lying the spectruns is Gaussian. Then the periodogram estimate of @)
each spectral component is a chi-squared random variabiletwd ~ where);(¢ — 1) anday,; (¢t — 1) are shape parameters and the third
degrees of freedom and mean equal to the true componentv&he a parameter is a scale parameter.
age of\;(t—1) independent periodogram estimates, whefe—1) Based on the posterior distributions farandI;, we define the
is an integer, is then gamma-distributed as in (1). Sinyildl) cor-  state to bex(t) = (p(t), «(t), B(t), A(t)), wherea(t) and 3(t)
responds to energy detection performed)a(¢ — 1) observations include all componenta;,;(t) andgr,:(t), andA(t) represents the
of a complex Gaussian frequency component [4]. For connerie budget remaining in stage It can be seen from (3) that the estimate
and generality, we allowk; (¢t — 1) to take on arbitrary non-negative 3, should be chosen as the conditional méan= E{s; | I, =

values, which can model continuous-valued observatioagim 1,Y(T)} = B1:(T)/(c1:(T) — 1). The cost can then be expressed
Unlike in [4—6], we do not assume that the powersire known  as
or can be bounded deterministically. Instead, eadls assumed to N 1B (T)?
have a prior distribution that depends on the class Ev(m)1 Z (o) = )2 (M) =2) [ (8)
i=1

-1 _ .
si| L~ T (0i(0), Bris(0), L =0,1, i=1,...N Using (5) and (7) and noting tha{7"— 1) does not depend gn(T'),

@ : ; .
where the inverse gamma distribution with shape paranetef0) the expectations over(7") andI in (8) can be evaluated to yield [12]

and scale parametér;,; (0) is chosen to be conjugate to the gamma N wi(T —1)
Ev@r-1 - 9)

distribution in (1). The components are assumed to be indepen-

dent a priori. As with the probabilities; (0), the parameterar, ; (0) ; (T =1) =14 (T = 1)

andgy,(0) are usually initialized to be uniform over channels, i'e"where

ar;i(0) = ar,(0) andr,:(0) = 1, (0), but with (ao(0), 5o (0)) # pilt)Bri(t)?

(a1(0), B1(0)) so that the classes are statistically different. w;(t) = (o) = Diou@ =3 (10)
Our goal is to estimate the powersassuming that only class i i

is of interest. Specifically, the objective is to minimize tMSE,

The quantity in braces in (9) depends onlysgff’—1) andA(7'—1)
and hence is of the required form. Thus the effort allocapiablem
N ) is to minimize (9) with respect ta(0), ..., A(T" — 1) subject to the
E Z Ii (8 — s:)" p s (3)  budget constraint (4). The dependence of (9N\G8), . .., A(T'—2)
i=1 is implicit through the distribution o (7" — 1). Interestingly, the
corresponding to estimatés based on all” stages of observations, functional form of the cost function (9) is the same as fordase of
and subject to a constraint on the total sensing budget, Gaussian-distributed observations and MSE in [11], with rifmin
difference being the definition ab; (¢) in (10).

T—-1 N
Z Z Ailt) = A(0). “) 3. EFFORT ALLOCATION POLICIES
t=0 i=1

The expectation in (3) is taken ovErs, andY (T'). 3.1. Exact dynamic programming

. ) Given the dynamic programming formulation in Section 2ripp-
2.1. Formulation as a dynamic program timal effort allocation policy can be determined throughaexdy-
The selection of an effort allocation policy to minimize tE in ~ namic programming. This procedure is tractable for pofigéone
(3) subject to (4) can be formulated as a dynamic programs Thijand two stages. Faf = 1 (the non-adaptive case), the expectation
involves the definition of a state(t) that allows the cost (3) to be N (9) is absent and the problem is an explicitly stated og@ion
rewritten as a sum of terms indexed hyeach depending only on Constrained by (4). Furthermore, because of the form offé)the
x(t) and the controA(¢). In the present case,(t) is a belief state linearity of thg constraint, the optimization problem iswex. For
composed of the parameters of relevant posterior disteist The 7 = 2, conditioned on the state(1), the second stagk(1) of an
first such distribution is of the powers given I; and observations ~©Ptimal policy is determined similarly to thig = 1 case. Defining
Y (). It can be shown [12] that; | I;, Y (t) retains an inverse Ji(x(1)) as the optimal cost of the second stage, the first stage is

gamma distribution as in (2) and is independens ofj # i forall ~ determined recursively by solving
t. The parameters of the distribution evolve according to N
ari(t) = ans(t — 1) + Ai(t — 1), (5a)  Win By {Ji(x(1) [x(0), A0} st g Ai(0) < A(0).

Briilt) = Bralt —1) + Mt — Dya(t), L =0,1.  (5) | (11)



Under a prior that is uniform over channels as discusseddtid®e2, =~ OLFC policy given initial statex(0), the first-stage fractiop™ (0)

the initial allocation\ (0) is also uniform by symmetry, i.e)\;(0) = is chosen as follows:
p@(0)A(0)/N for all i with p™®(0) € [0,1]. The optimization in - . .
(11) then reduces to a line search with respegtt6(0). p(0) = arg Tin Eyq) {Jo (x(1)) [ x(0), pA (0)} :
P>
(14)
3.2. Open-loop feedback control Since the optimization in (14) depends only on the initiatesk (0)

and the previously determinefl — 1-stage policy, it can be per-
formed offline. Specifically, we perform a line search witkpect

comes prohibitive for > 0 because of the loss of symmetry. Thus to p and for eac.ho we ggnerate samples y(l) and simulate the
for T > 2, we turn to an approximate method known as open-loopT — l-stage pollcy, startlng from the resu!tlng staif{_sl) ’ to_ey_al-
feedback control (OLFC) [10]. We consider the selectionhef ¢f- uate the expectation in (14).' A.S shown n [11], this optirticza
fort allocationA(t) in staget given the current observationg(t), iegsures that the OLFC policies improve with the number afesa
or equivalently the state(¢). The simplifying assumption in OLFC "~

is th(jit future gllocationsgt)—i— 1),..., )F\)(;y—%) can dgpend only on JéTH) (x(0)) < JéT) x(0), T=12....

x(t). As shown in [12], this assumption allows the conditional ex In particular, OLFC policies with more than two stages inyero

For optimal policies with more than two stages, a recursip-o0
mization similar to (11) is required far = 0,...,7 — 2 and be-

pectation ovey (t+1),...,y(7T—1) in (8) to be evaluated in closed upon the optimal two-stage policy in Section 3.1.
form, in addition to the expectations ove(7’) andI from before.
The result is a cost function similar in form to (9). Consetlye the 4. NUMERICAL SIMULATIONS
effort allocation problem under OLFC can be stated expyieis the '
following joint optimization overA(¢), ..., A(T" — 1): We simulate a spectrum sensing scenario to evaluate thesedp
N OLFC policy and compare it to non-adaptive sensing and tap-ad
min Z w; (1) tive policy in [4]. For concreteness, we adopt the termigglof
Ay A(T=1) e oni(t) — 14 ZT:: Ai(T) cognitive radio although the simulation is equally apgiesto cog-

(12)  nitive radar. The number of channglsis set to1000 and classe8
fly and1 correspond to the presence or absence of primary users. The

S.t. Z Ai(T) = A(2). goal therefore is to estimate the noise power in unoccupiethc

1 7=t nels assuming that they are sparse as also assumed in [4itr&Spe
and observations are generated from the model in Sectiortt2 wi
ao(0) = a1(0) = 6 andp;(0) = 5 so that the mean noise power is
normalized tol. The parametef, (0) is determined by the primary
user SNR, equal t@0 log,,((50(0) — 81(0))/B1(0)) dB. Follow-

S LaT=t " ing [4], the sensing budget is chosen/$) = 5N and the alloca-

ri(t) = aa1(t) —1and re-prder the |nd|c§$uch that the quantltlgs tionsA(t) are restricted to be integer-valued. For OLFC, this integer
\/ wi(t)/ri(t) are sorted in non-increasing order. Then the optimalconstraint is met by rounding. We make two modifications ® th

z

7

Similar to the one-stage effort allocation problem, (123 isonvex
optimization and again coincides with the Gaussian casglih [

As in [11], the OLFC allocation problem (12) yields a water-
filing solution for the variables\;(t) = S.7 "' Xi(7). Define

value ofX(t) is given by policy in [4]. First, to accommodate the distribution of sfral com-
ponents assumed in this work, we change the observatioshibice
— u w; (t) in [4] to the median of the beta prime distributigiy;(¢) | I; = 0)
Ai () = | A(t) + Z r5(t) ki\/—t —ri(t)  (13) i (7)with \;(t — 1) = 1. Second, estimates and decisions are made
j=1 Zy:l w; () on the basis of all observations using the Bayesian updai&tiegs

— ) (5) and (6), and not just the final stage.
fori =1,...,kandX; () = 0 otherwise. The number of nonzero ~ | Fig. 1, we show the reduction in MSE relative to non-adapti
components; is determined by the intervab(k —1),b(k)] inwhich  sensing for the adaptive policies as a function of SNR. Tre-av
the budget parametek(t) falls, whereb(k) is a non-decreasing ages are computed fros9000 simulations. For the same number
function defined by of stages, the OLFC policy yields lower MSE than the policy4h
® L at all SNR, with the differences becoming larger at higheRSTkhe
o reya(t 0 . T = 2 OLFC policy is optimal for policies with two stages. We
b(k) = m Z wi(t) - Z ri(t), k=0,...,N-1, also compare the integer-rounded OLFC policy (‘OLFC’) touan
=1 i=1 rounded version (‘OLFC-NR’). The loss due to rounding is anin
andb(N) = oo. The derivation of the solution in (13) follows [11]. @and occurs when the MSE reduction is already quite largegetrar
The solution in (13) specifies the distribution of effort oean- ~ 9ains are seen fgr(0) = 0.01 since resources can be concentrated

nels but, as can be seen from the form of (12), the divisioTn:Qf) toa gre_att_er extent. We_note th_at increasing t_he sensingebidg)
into Ai(t), ..., (T — 1), i.e., the distribution over stages, is not has a similar effect as increasing the SNR since both makawine

specified. To fully determine the effort allocation, we chea(t) clas;es mo;e (l’”sttir;ﬁmi;'gge' ducti function of th o
to be of the formA (¢) = o™ (¢t)X" () and perform an additional op- \gure < plots the reaucion as & Tuncion o the number

oo T 11 the fracti fth - t of stagesT” for p(0) = 0.01 and three SNR levels. The mono-
timization overp (t) € [0,1], the ractlon_o the remaining e o1t tonic improvement property of the OLFC policy is verifiedcept
budget used in stage ForT = 1, 2, the optimal policies discussed

in Section 3.1 bel he OLFC ol it (0) = p® (1) = for small finite-sample deviations visible at SNR2 dB because of
in Section 3.1 belong to the OLFC class with’(0) = p** (1) = 1 the small gain overall. Incremental gains diminist¥ascreases but

and P(z)(Q) chosen according to (11T))- Far > (2TLV;/)G follow the  |ess quickly at lower SNR. For SNR 10, 20 dB, a3-stage OLFC
strategy in [11] and recursively spt™ (t) = p (t — 1) for  policy gives lower MSE than &0-stage policy from [4], whereas for
t=1,...,T — 1. Defining JéT) (x(0)) to be the cost of &-stage  SNR= 2 dB, [4] does not yield any MSE improvement.
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Fig. 1. MSE reduction relative to non-adaptive estimation as atfan of SNR for (a)p(0) = 0.1 and (b)p(0) = 0.01. For the same number
of stagesrI’, the proposed OLFC policy yields lower MSE than the policydhat all SNR and especially at higher SNR. At high SNR the
benefit of the OLFC policy increases by more than a factdr & the sparsity increases frgrit0) = 0.1 in (a) top(0) = 0.01 in (b).
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Fig. 2. MSE reduction as a function of the number of stafes
Gains diminish a§" increases but less quickly at lower SNR. In all
cases shown, a&-stage OLFC policy results in lower MSE than a
10-stage policy from [4].

Figure 3 compares the hole detection performance of the OLF&

and non-adaptive policies and the policy from [4]. The piolis
of primary user misdetection is shown on a log scale sincérttits
on interference to primary users are usually stringententhie re-
quirements for hole detection are less so, i.e., it is oftamegessary
to detect all or even most holes. In terms of the receiveraijyay
characteristics (ROC), the OLFC policy is competitive wghand
significantly better than non-adaptive sensing even thaughnot
specifically designed for detection. AtdB SNR, the policy in [4]
has a slightly higher hole detection probability at low paip user
misdetection probabilities, while the OLFC policy is slilyhbetter
at higher misdetection probabilities. Aand10 dB SNR, the OLFC

policy consistently outperforms [4]. Abovi® dB SNR or below0
dB SNR, the policy in [4] is better once again but both poBqgier-
form either very well or very poorly.
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Fig. 3. ROC for the proposed OLFC policy withstages, the policy
in [4] with 6 stages, and non-adaptive sensing at SNR4; 10 dB
ower to upper within each set of curves). The OLFC policyam-
petitive with [4] and significantly better than non-adaptaensing.

5. CONCLUSION

We have discussed a multistage adaptive approach to spestmns-
ing and estimation based on dynamic programming. The peapos
effort allocation policy results in significantly lower eéatition MSE
compared to non-adaptive sensing and to the policy of [4]n&ia
hole detection performance are also observed, and furttygnoive-
ments may be expected by developing a dynamic programmiRg po
icy aimed specifically toward detection.
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