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ABSTRACT

We consider a resource-constrained scenario where a compressed
sensing- (CS) based sensor has a low number of measurements
which are quantized at a low rate followed by transmission orstor-
age. Applying this scenario, we develop a new quantizer design
which aims to attain a high-quality reconstruction performance of
a sparse source signal based on analysis-by-synthesis framework.
Through simulations, we compare the performance of the proposed
quantization algorithm vis-a-vis existing quantization methods.

Index Terms— Quantization, compressed sensing, analysis-by-
synthesis, sparsity, mean-square error

1. INTRODUCTION

Using a model of under-determined linear set of equations, com-
pressed sensing (CS) [1] aims to reconstruct a high-dimensional
sparse source vector (where most of coefficients are zero) from an
under-sampled low-dimensional measurement vector. With alim-
ited number of measurements (or a limited resource of sampling),
CS has emerged as a new powerful tool for sparse signal acquisition,
compression and reconstruction. In many practical applications, CS
measurements need to be quantized into a finite resolution represen-
tation, and then transmitted to a destination point for sparse signal
reconstruction followed by other inference tasks. In this paper, we
consider application scenarios where both measurement (orsam-
pling) and transmission resources are constrained. For transmission
resource, we mean that the available bits to quantize the CS mea-
surements are limited. Considering availability of limited number
of measurements and quantization bits, we design new quantization
algorithms where our goal is to achieve high quality sparse signal
reconstruction from the quantized CS measurements.

CS with quantized measurements has recently started to gain
significant attention in literature, and most commonly, thefocus in
this area is on three main categories: (1) extensions to existing CS
reconstruction algorithms while quantization schemes remain un-
changed [2–8]. (2) In the second category, trade-offs between the
aspects of quantization (e.g., quantization rate) and CS (e.g., num-
ber of measurements and loss in sparse reconstruction) havebeen
considered [5, 9, 10]. (3) In another important class, the main con-
centration is on quantizer design for CS measurements whileCS re-
construction methods are fixed [11–15].

The main contribution of this work is in the third category men-
tioned above, i.e., quantizer design for CS measurements while CS
reconstruction methods are fixed. We develop a new framework
for scalar quantization of CS measurements with the objective of
achieving a lowerend-to-end reconstruction distortionrather than
quantization distortionfor CS measurements. Technically, given

a fixed quantizer look-up table and a CS reconstruction algorithm,
our proposed algorithm strategically employs a two-stage mecha-
nism in a closed-loop: (1) the synthesis step uses a sparse signal
reconstruction technique for measuring the direct effect of quanti-
zation of CS measurements on the final sparse signal reconstruction
quality, and (2) the analysis step decides appropriate quantized val-
ues to maximize the final sparse signal reconstruction quality. This
closed-loop strategy is known asanalysis-by-synthesis(AbS) which
has been widely used in multi-media coding [16–18]. To the best of
our knowledge, the AbS approach has not been used for quntization
of CS measurements, where we show by exploiting this framework,
a significantly better reconstruction performance is provided com-
pared to the schemes which only consider quantization distortion,
but at the expense of a higher computation. We analyze computa-
tional complexity of the proposed algorithm, where it is shown that
the complexity depends upon the availability of two compression re-
sources, i.e., quantization bit rate, and number of CS measurements.

Notations: Scalar random variables (RV’s) will be denoted by
upper-case letters and their instants by the respective lower-case let-
ters. Random vectors will be represented by boldface characters.
Further, a set is shown by a calligraphic character and its cardinality
by | · |. We will also denote the transpose of a vector by by(·)T .
We will useE[·] to denote the expectation operator. Theℓp-norm
(p ≥ 0) of a vector will be denoted by‖ · ‖p.

2. PROBLEM STATEMENT

2.1. Preliminaries of CS Framework
Formally, we let a random sparse (in a fixed basis) signalX ∈
R

M be linearly encoded using a known deterministic sensing ma-
trix Φ ∈ R

N×M (N < M ) representing measuring (sampling)
system which results in an under-determined set of linear measure-
mentsY = ΦX ∈ R

N . We letX be aK-sparse vector, i.e., it
has at mostK (K < N ) non-zero coefficients, where the loca-
tion and magnitude of the non-zero coefficients are drawn randomly
from known distributions. We also note that the sparsity level K is
known in advance. We define the support set of the sparse vector
X = [X1, . . . , XM ]T by S , {m : Xm 6= 0} ⊂ {1, . . . ,M} with
|S| = ‖X‖0 ≤ K.

In order to estimate a sparse source vector from under-determined
linear measurements, several efficient techniques have been devel-
oped based on convex optimization (see e.g. [2,19]), iterative greedy
search (see e.g. [20–23]) and Bayesian estimation approaches (see
e.g. [24–27]). The results of this paper are generic, and we do not
use a specific CS reconstruction algorithm. Denoting a sparse recon-
struction function byR, it is defined by a mappingR : RN → R

M

which takes a (possibly corrupted) measurement vector inN -
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dimensional space, and produces an estimate of the sparse source
vector inM -dimensional space (N < M ).

2.2. Quantization of CS Measurements

We consider scalar quantization of the random CS measurements
Yn’s (n = 1, . . . , N ). For this purpose, quantization is divided into
encodingand decodingtasks. We consider a scalarquantizer en-
coder which maps each measurement to an appropriate index in a
finite integer set in order for aquantizer decoderto make an esti-
mate of the measurements based on the received index and a known
decoding look-up table. We assume that the total bit budget (rate)
allocated for quantization isRx , Mrx bits per vectorX in which
rx ∈ R

+ is the assigned quantization rate to a scalar component
of X. Having the observationsY = ΦX, each entry of the mea-
surement vector,Yn (n = 1, . . . , N ), is encoded viary , Mrx/N
bits. For each entryYn, a quantizer encoder is defined by a map-
ping E : R → I, whereI denotes the index set defined asI ,

{0, 1, . . . , 2ry − 1} with |I| = 2ry . Denoting the quantized in-
dex by the RVIn (n = 1, . . . , N ), the encoder acts according to
Yn ∈ R

in ⇒ In = in, where the sets{Rin}2
ry−1

in=0 are called

encoder regions and
⋃2ry−1

in=0 R
in = R. In words, whenYn be-

longs to the regionRin , the encoder picks the indexin ∈ I. Next,
we define quantizer decoder which is characterized by a mapping
D : I → Cn. The quantizer decoder takes the indexIn, and per-
forms according to an available look-up table;In = in ⇒ Ŷn = cin
such that when the received index isin, the decoder outputs the
codepointcin . Note thatŶn is the quantized measurement RV asso-
ciated with the entryYn, and the set of all reproductioncodepoints
Cn , {cin}

2ry−1
in=0

associated with this entry is called acodebook.

We denote byX̂ = R
(
[cI1,. . .,cIN ]T

)
∈ R

M the estimation of the
source from the quantized measurements using a CS reconstruction
functionR.

2.3. Objective and Performance Criterion

In this paper, we are interested in addressing the followingquantizer
design problem: Given a CS measurement vectorY = ΦX ∈ R

N ,
a CS reconstruction functionR and codebook setsCn = {cin}

2ry−1
in=0

(n = 1, . . . , N ) for a fixed bit budgetRx, the objective is to find
encoding indexesin ∈ I (n = 1, . . . , N ), such that the end-to-
end MSE of the estimated vector̂X ∈ R

M , i.e. E[‖X− X̂‖22], is
minimum. In other words, we address the optimization problem

{i⋆1 , . . . , i
⋆
N} = argmin

{in∈I}N
n=1

E[‖X− X̂‖22], (1)

where{i⋆n}
N
n=1 are the optimal encoding indexes (w.r.t. to mini-

mizing the end-to-end MSE given codebook sets) for quantization
of the measurement vectorY = [Y1, . . . , YN ]T . Also, note that the
end-to-end distortionE[‖X−X̂‖22] depends upon CS reconstruction
distortion as well as quantization distortion.

In this paper, our aim is higher than just minimizing thequanti-
zation distortionE[‖Y − Ŷ‖22] considered in the design ofnearest-
neighbor codingwhere each measurement entry is coded to its near-
est codepoint. The nearest-neighbor coding does not necessarily
guarantee that theend-to-end distortion, i.e.,E[‖X − X̂‖22], is also
minimized subject to fixed codebook sets. This is due to nonlinear
behavior of CS reconstruction algorithms and non-orthogonality of
the CS system.

Unfortunately, solving (1) jointly for all encoding indexes is not
analytically and practically feasible for a generic sparsereconstruc-
tion algorithm since it is performed by searching over all possible
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Fig. 1. AbS quantization of CS measurements.

2Mrx codepoints, leading to high complexity. Instead, in this work,
we focus on a suboptimal technique for quantization of CS measure-
ments which is computationally efficient and also provides ahigh-
quality reconstruction performance.

3. ANALYSIS-BY-SYNTHESIS QUANTIZATION OF CS
MEASUREMENTS

Our proposed AbS-based quantization system is illustratedin Fig-
ure 1. In order to feasibly solve (1), we consider optimizingone
variable by fixing the others, that is, optimizing the indexin by fix-
ing the indexesi1, . . . , in−1, in+1, . . . , iN using analternating op-
timizationapproach which is potentially suboptimal compared to a
joint optimization method, but provides a feasible solution. In what
follows, we show how an MSE-minimizing transmission index can
be chosen by fixing the others.

3.1. Optimizing Encoding Indexes
Let us first rewrite the end-to-end MSE,E[‖X−X̂‖22], as (3), where
(a) is followed by marginalization overIn andY. Also, (b) fol-
lows from interchanging the integral and summation and the fact
that Pr{In = in|Y = y} = 1, ∀yn ∈ Rin , and otherwise the prob-
ability is zero. Moreover,f(y) is theN -fold probability density
function (p.d.f.) of the measurement vector. Note that by denoting
X̂(In) , R ([ci1 , . . . , cIn , . . . , ciN ])T , we imply that the recon-
structed signal is dependent only upon the index (equivalently code-
point) associated with thenth measurement entry. Now, let denote
theminimum mean square error(MMSE) estimation ofX given the
measurementsY = y by

x̃(y) , E[X|Y = y] ∈ R
M , (2)

then, given the fixed codebooksCn (n = 1, . . . , N), the MSE-
minimizing index (assuming other indexes are fixed) is identical
to finding the index that minimizes the term in the braces in the
last expression of (3) sincef(y) is non-negative. The resulting
index denoted byi⋆n ∈ I is given by (4), where(a) follows from
the fact thatX is independent ofIn conditioned onY, hence,
E
[
‖X‖22|Y=y, In= in

]
= E

[
‖X‖22|Y=y

]
which is pulled out

of the optimization. Also,(b) follows from a similar rationale, i.e.,
X̂(In) is independent ofY given In. Further,X andX̂(In) are
independent givenY andIn.

Following (2), the last expression in (4) can be rewritten as

i⋆n = arg min
in∈I

{
‖x̂(in)‖

2
2 − 2x̃(y)T x̂(in)

}
. (5)

One method to predict the MSE-minimizing encoding index is to
find the codepoint which after passing through a sparse reconstruc-
tion algorithm reproduces a signal vector that is the best estimation
to the current input signal vector. Interestingly, (5) implies such an



E[‖X− X̂‖22] = E[‖X − X̂(In)‖
2
2]

(a)
=

∫

y

∑

in

Pr{In = in|Y = y}E[‖X − X̂(In)‖
2
2|Y = y, In = in]f(y)dy

(b)
=

∫

y1

. . .

∫

yn−1

∫

yn+1

. . .

∫

yN

∑

in

∫

yn∈Rin

{
E[‖X− X̂(In)‖

2
2|Y = y, In = in]

}
f(y)dy

(3)

i⋆n = argmin
in∈I

E[‖X− X̂(In)‖
2
2|Y = y, In = in]

(a)
= argmin

in∈I

{
E[‖X̂(In)‖

2
2|Y=y, In = in]−2E[X

T
X̂(In)|Y = y, In = in]

}

(b)
= argmin

in∈I

{
E[‖X̂(In)‖

2
2

∣∣In = in]− 2E[XT
∣∣Y = y]E[X̂(In)

∣∣In = in]
} (4)

analysis-by-synthesis(AbS) method. We use this principle to first
find the optimized encoding index for each measurement entrysep-
arately (while others are fixed given the codepoints), and then com-
bine them in an alternate-iterate procedure which will be described
in details in the next section. Note that we also assume that the code-
book sets are available at the encoder as well as the decoder.

3.2. Proposed Quantization Algorithm
We first describe the framework of the proposed quantizationmethod
summarized in Algorithm 1. Suppose that the codebook setsCn
(n = 1, . . . , N ) are designed offline, and let the quantizer encoder
have access to the sensing matrixΦ and sparsity levelK as well
as the measurementsy (step (1)). In our formulations (e.g. (5)), the
MMSE estimator is required, however, in practice, implementing the
MMSE estimator may not be feasible. Therefore, in order to obtain a
locally reconstructed vector̃x(y), we will approximate the MMSE
estimator by the output of the low-complexity greedyorthogonal
matching pursuit(OMP) [20,21] reconstruction algorithm (step (2)).
Now, we define a dummy vectorz ∈ R

N where at the first iteration,
its nth component is chosen uniformly at random from the setCn
(∀n) (step (3)). Indeed, the vectorz implies the predicted quantized
measurement which is synthesized at the encoder. Throughout iter-
ations, the entries of the vectorz are adjusted towards the directions
of the codepoints (in a sequential manner) which give the minimum
reconstruction MSE when retrieved using a CS reconstruction algo-
rithm. Now, we describe the subroutineAbS seq(·) executed in
Algorithm 1.

Algorithm 1 : AbS-based Quantization

1: input: Cn = {cin}
2ry−1
in=0 (∀n = 1, . . . , N ) andΦ,y, K, γ

(stopping threshold)
2: compute: x̃(y) in (2)
3: initialize z(0) ∈ R

N , wherez(0)n ∈ Cn, ∀n.
4: Setl← 0 (iteration counter)
5: repeat
6: [i⋆n, x̂

(l+1)(i⋆n), z
(l+1)] = AbS seq(Cn, x̃(y), z

(l)) , ∀n
7: l← l + 1

8: until
∣∣∣‖x̂(l)(i⋆n)‖

2
2 − 2x̃(y)T x̂(l)(i⋆n)

−‖x̂(l−1)(i⋆n)‖
2
2 + 2x̃(y)T x̂(l−1)(i⋆n)

∣∣∣ > γ , ∀n

9: output: In = i⋆n , Ŷn = ci⋆n , ∀n

Sequential AbS quantizationThe proposed AbS-based quan-
tization method is summarized in the subroutineAbS seq(·) where
the main idea is that each measurement entry is sequentiallyad-
justed towards the direction of its MSE-minimizing codepoint at
each iteration. Using Algorithm 1, the functionAbS seq(·) ac-
cepts the codebooksCn, ∀n, the locally reconstructed vector̃x(y)

and the dummy vectorz. At iteration l, thenth (n = 1, . . . , N )
entry of z(l), denoted byz(l)n , is replaced by all2ry codepoints
from the setCn (step (3)) while the other entries are fixed, and
the reconstructed vectors, denoted byx̂(l)(in) = R(z(l)) (in ∈
I = {0, . . . , 2ry − 1}), are synthesized corresponding to each
vector (step (4)). Then, an optimization is carried out by solving
argmin
in∈I

‖x̂(l)(in)‖
2
2−2x̃(y)T x̂(l)(in) so as to find the wining MSE-

minimizing encoding indexi⋆n (step (6)). Now, thenth entry of the
vectorz(l) is updated by the codepoint associated with the analyzed
index, i.e.,ci⋆n (step (7)). This procedure continues for each entry of
z(l) sequentially, and the subroutine produces the optimized trans-
mission indexi⋆n, and the reconstructed vectorx̂(l)(i⋆n) as well as
the updated quantized vectorz(l) which will be used by the function
at the next iteration of Algorithm 1 (step (9)).

Subroutine: AbS seq

(
Cn, x̃(y), z

(l)
)

1: for n = 1 : N do
2: for i = 0 : 2ry − 1 do
3: z

(l)
n ← cin

4: compute: x̂(l)(in) = R(z(l))
5: end for
6: i⋆n = argmin

in∈I

‖x̂(l)(in)‖
2
2 − 2x̃(y)T x̂(l)(in)

7: update: z(l)n ← ci⋆n (in)
8: end for
9: output: i⋆n , x̂(l)(i⋆n) , z(l)

Algorithm 1 iterates until convergence where the stopping crite-
rion is that reconstruction improvement at two consecutiveiterations
is smaller than a predefined thresholdγ > 0. After convergence, the
algorithm outputs the transmission indexesIn’s and the quantized
CS measurementŝYn’s, ∀n = 1, . . . , N , (step (9)).

Now, we analyze the computational complexity of the proposed
quantization method. We quantify how many times a CS reconstruc-
tion algorithm is invoked throughout the procedures. First, recall
from (1) that an exhaustive search for the joint optimization requires
O(2Mrx), orO(2Nry ) (sinceMrx = Nry), computations of a CS
reconstruction algorithm which is not permissible in practice. Next,
let us consider the sequential AbS-based quantization (Subroutine
AbS seq) at one iteration of Algorithm 1. The operations for calcu-
lating the transmission indexes increase at most likeO(2Mrx/NN).
This implies that for a fixed bit budgetRx = Mrx, by increasing
the number of measurements, first the complexity decreases sharply,
and then at some point it starts increasing with a small slope. This
is due to the fact that the complexity depends on the compression
resources, i.e., number of measurements through the lineartermN



and quantization ratery through the exponential term2Rx/N .

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setups and Results

We quantify the performance using normalized MSE (NMSE) de-

fined as NMSE, E[‖X−X̂‖22]

E[‖X‖2
2
]

. In order to measure level of under-

sampling, we define the measurement rate asα , N/M (0 <
α ≤ 1). We chooseα for given values of sparsity levelK and
input vector sizeM , and round the number of measurementsN to
its nearest integer. We randomly generate a set ofK-sparse vector
X where the support setS is chosen uniformly at random over the
set{1, 2, . . . ,M}. Non-zero coefficients ofX are drawn according
to i.i.d. standard Gaussian random variables. We let the elements
of the sensing matrix beΦij

iid
∼ N (0, 1/N), and then normalize

the columns ofΦ to unit-norm. We apply the OMP reconstruction
algorithm as a realization of the CS reconstruction function R.

Using simulation parametersM = 512, K = 35 (sparsity ra-
tio ≈ 6.8%), rx = 0.75 bit per component ofX, we have per-
formed 1000 Monte-Carlo simulations to illustrate the performance
(NMSE). For implementation of Algorithm 1 using the subroutine
AbS seq, we choose the stopping thresholdγ = 10−6, where we
have observed that Algorithm 1 converges in at most5 iterations.
We have compared our proposed quantization method (labeledby
“sequential AbS quantization”in the figures) with relevant methods
such as“nearest-neighbor coding”of the measurement entries and
“support set coding”[28]. Employing the support set coding, theK
largest non-zero components ofx̃ (in estimated support set) can be
represented byK log2 M bits, and then their magnitudes are coded
to nearest codepoints usingRx −K log2 M bits. Another possible
scheme is to quantize each component of the reconstructed signal
directly using available bit budget. However, our simulations (not
included here) have shown that this coding scheme provides avery
poor at the decoder, and the remaining bits for quantization. Further,
we use the same codebooks for each individual scheme which are de-
signed by theLloyd algorithm[29, Chapter 6]. Further, we initialize
Algorithm 1 with the same codebook sets for the nearest-neighbor
coding. Using the support set coding, a codebook set is designed for
a Gaussian scalar component. Hereafter, we make a convention that
NMSE = 1 for the support set coding scheme if the total available
bit-budget isRx < K log2 M bits.

The performance of the qunatization algorithms as a function of
measurement rateα is reported in Figure 2. Let us first consider the
nearest-neighbor coding and the proposed AbS-based quantization
scheme. From the curves, it can be observed that given a very small
values ofα, the OMP algorithm fails to detect the sparsity pattern
and reconstruct the source which results in a poor performance al-
though the quantization rate per entry is high. Asα increases to a
certain amount, the reconstruction algorithm succeeds to reconstruct
the sparse source precisely out of the measurements since the num-
ber of measurements is sufficient, and the quantization error is small
enough. At this point (α = 0.25 for Figure 2), the curves reach the
best performance. However, for higherα’s, due to the limited quanti-
zation ratery , the quantization error per entry increases which leads
to a poorer performance. Next, we evaluate the performance of the
support set coding where the quantization is performed on the locally
reconstructed signal domain. Similarly, at smallα’s, the OMP re-
construction algorithm fails to reconstruct the locally sparse source,
where the performance is insignificant. It can be seen that asα in-
creases and the OMP is able to reconstruct the input signal vector,
the performance improves slightly by further increasing measure-
ment rate since the allocated quantization bits using this method are
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Fig. 3. NMSE as a function of quantization raterx.

independent of number of measurements. In the spirit of exploiting
CS for practical applications, we are mainly interested in the lower
ranges ofα (e.g. α = 0.25), where the AbS-based quantization
scheme achieves a considerable3 dB reduction in MSE.

Now, we show the performance (NMSE) as a function of quan-
tization rate per entry ofX (i.e., rx) in Figure 3 using parameters
M = 512, K = 35 at α = 0.25. It can be observed that at
low to moderate-high rates, the AbS quantization outperforms the
other schemes, while at high rates the support set coding attains a
slightly better performance. At very high rates, the performance of
the support set coding is expected to saturate since, atα = 0.25, the
distortion due to recovery of the locally reconstructed vector x̃, ac-
cording to which the quantization is performed, remains constant. In
total, the AbS-based quantization outperforms at operational ranges
of measurement and quantization rates where the available resources
(number of sensors and quantization rate) are constrained.

5. CONCLUSIONS

We have developed a new framework of quantizer design for CS
measurements. We have considered a resource-constrained applica-
tion where both measurements and transmission rates are limited.
Using this scenario, we have addressed the problem of encoding CS
measurements where inspired by the AbS framework, a new quanti-
zation algorithm has been proposed for coding of linear CS measure-
ments. Numerical results have shown the promising performance
gain obtained using this scheme.
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