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ABSTRACT of the other descriptions. The decoding stage consistislef

The compressed sensing paradigm allows to efficientlglecoders, able to recover a low-quality version of the data
represent sparse signals by means of their linear measuthen a single description is received, anceatral decoder,
ments. However, the problem of transmitting these measuréble to jointly exploit all the descriptions for the best dee
ments to a receiver over a channel potentially prone to gack&g quality. Multiple descriptions can be produced in vago
losses has received little attention so far. In this paper, wStages of the transmission chain. The MDC literature pro-
propose novel methods to generate multiple descriptiams fr  Poses methods which generate descriptions by preprogessin
compressed sensing measurements to increase the rolsustri8§ sourcedg., a trivial method is to separate even and odd
over unreliable channels. In particular, we exploit the dem Samplesl[B]), by applying a correlating transfoim [4], by us
racy property of compressive measurements to generate d8g an ad-hoc quantizer|[5], or by applying channel codes to
scriptions in a simple manner by partitioning the measure@ layered version of the data to be transmitted [6].
ment vector and properly allocating bit-rate, outperforgni In this paper we propose an MDC approach to CS to make
classical methods like the multiple description scalarngua it more robust to unreliable channels. Previous techniques
tizer. In addition, we propose a modified version of the Basi®ased on the idea of generating descriptions before sensing
Pursuit Denoising recovery procedure that is specificaily t €.d., in [7] an image is partitioned into two subimages be-
lored to the proposed methods. Experimental results shof@re sensing the wavelet coefficients of each. However, we

significant performance gains with respect to existing methargue that it could be much more appealing to create the de-
ods. scriptionsafter the measurement process. This is supported

by the fact that specialised hardwaesg(, [8]) may be used

to directly acquire the measurements, preventing any prepr
cessing of the signals. In particular, in this paper we psepo
two novel techniques, graded quantization (CS-GQ) and CS-
1. INTRODUCTION SPLIT, for multiple description coding of the measurements

In recent years, compressed sensing (CS)[1, 2] has draviife compare their performance to CS-MDSQ, a system ap-
great attention thanks to its remarkable results concgrninPlying a multiple description scalar quantizer to the measu
signal recovery from vastly undersampled measurements. dgent vector. We will show that CS-GQ and CS-SPLIT, which
opened a new path to signal sampling and acquisition, shov@xploit the democracy property of the measurements, have
ing that signals could be acquired directly in a compresselpwer complexity and better performance than CS-MDSQ,
fashion, in the perspective of replacing the traditional apwhich instead relies on a classic MDC method and, as such,

proach based on collecting as many samples as possible afi@es not fully exploit the properties of CS. Moreover, we
then removing the redundancy. show how the parameters of CS-GQ could be optimized on
However, from the standpoint of practical systems, cShe expected description-loss probability. We also ackhtes

measurements typically need to be transmitted to a receiveéfecoding process, proposing a variant of the Basis Pursuit D
This raises the concern of how to protect the measuremen@®ising (BPDN) algorithm for CS reconstruction, which is
when the communication channel is unreliable. A possibldailored to CS-GQ and can provide significant gains with re-
protection technique is represented by multiple desarpti SPect to the standard BPDN. Finally, we provide a bound on
Coding (MDC) MDC a.”OWS to increase the robustness tdhe I’ate-diStOI‘tion performance Of CS-SPLIT and CS'MDSQ
channel losses by creating multiple correlated repretenta

of the original data, each carrying enough information te de 2. BACKGROUND AND NOTATION
code separately the data with a certain fidelity, in casess lo

Index Terms— Compressed sensing, multiple descrip-
tion coding, error resilience

This work is supported by the European Research Councilr CS is a novel theory for signal sensing and acquisifion][1, 2]

European Community’s Seventh Framework Programme (FB7/2013) / ?ble to vaUire_ s_ignals in an.already Compressgd faShieng us
ERC Grant agreement n.279848. ing fewer coefficients than dictated by the classical Nyguis


http://arxiv.org/abs/1310.1217v1

’ B I B I B I B I b I b I bl b ‘ description 1 05 h .
’blblblblBlBlBlB‘ description 2

o
i
&

LS R O Single constraint
o
m m

1 —-— —+l m
2 2

o
S
[

o
w
]

Fig. 1. CS-GQ
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Shannon theory. Let us consider a sigmale R™, hav-

ing a sparse representation under basiss R™"*": x =

vo with |0, = k < n, being||@|, thel, norm of 6,

i.e., the number of its nonzero entries. We acquire measure-
ments as a vector of random projectigns= &x = ®V40,

y € R™, using a sensing matrik € R™*". A very popular “Bo w0 10 a0 1m0

way to recover the original signal from the measurements is trig. 2, Performance of modified BPDN for side decoding of CS-GQ
solve an optimization problem that minimises fgenorm of  ys. standard BPDN

the signal in the domain where the signal is sparse. However, , ,
this problem is computationally intractable due to its Nipeh  |€Vels and the other half with” levels, with B > b, corre-

complexity, so it is common to consider a relaxed form usingsPonding to quantization step sizas and A respectively.

the I, norm, which can be solved by means of convex opti-CONversely, the second description usesnd2” levels re-

mization techniques. In presence of bounded noise it is confP€Ctively. Since the uniform scalar quantizer produces an
mon to consider afy norm constraint using a bouncn the embedded codebook, it is possible to regard the measurement

noise norm, se€(1). This is also used when dealing with qualq_uantized with the lower rate as being made of the most sig-
tization, which is an important issue in practical systefa t nificant bits of the high-rate version of the same measurémen

require finite precision in the representation of the measur 1hanks to the democracy of the measurements, it is indiffer-
ments. In the remainder of the paper we deal with quantize§nt Which measurements are actually finely or coarsely quan-
measurements. tized. This is also the reason why the two.descrlptlon_s turn
out to be balanced. It would also be possible to obtain un-
6 = argmin||0||, subjectto |ly — ®PH|, <e (1) balanced descriptions by varying the ratio of measurements

0 quantized at high and low rates; this is left for further work

These methods are successful provided that enough measure- i

ments have been acquired, typicatty = O (klog #). Itis 3.1.2. Decoding

relevant to notice thdemocracy of the measurements|[9], in  Because each description contains as many measurements as
the sense that each contributes roughly in the same mannergequired during the sensing process, any of them can be de-
the reconstruction of the signal and no measurement carriggded separately to provide a basic quality level, esdbntia
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significantly more information than the others. depending on the quantization step sizes employed (see Sec.
[B). Since there are two distinct groups of measurements (fine
3. MULTIPLE DESCRIPTIONS FOR CS and coarse quantization) inside each description, we can us

this knowledge to improve the BPDN algorithm in the recon-
In this section we describe the proposed multiple desoipti siryction phase at the side decoders. In particular we set tw
techniques with particular focus on the case of two balanceg constraints, one for each subset, instead of a single one.
descriptions. CS-GQ and CS-SPLIT rely on partitioning theyioreover, we add two extra constraints calntization
vector of measurements anql quantize the subsgts. T.hoéﬁnsistency to ensure that the measurements of the recon-
methods are compared against CS-MDSQ that is derivegtyycted signal fall inside the quantization bins of sizeand
from the classical MDC technique of the MDSQ. The mea-a, of the original measurements. Hence, reconstruction at

surements are quantized with a uniform scalar quantizeén (Wi o5ch side decoder is performed solving the following prob-
the exception of CS-MDSQ). More complex quantizers couldgpm:

also be usedeg., the Lloyd-Max method or vector quanti- 1) _ o)
tion, but th ded tationally t | [y - 2Dw6], <
zation, but they are regarded as computationally too cample _ . Hy(l) B <I>(1>\Iu9|| <A
and with little or no gain as shown in [110]. 0 = argmin||6||, subjectto o — 2
’ [y -2 we], <e
3.1. Graded Quantization (CS-GQ) Hy(2) — (1)(2)\110" < %

3.1.1. Encodin . . . o
g In our simulations (see Fid.] 2) the modified reconstruc-

CS-GQ (see Fig]1) creates two descriptions by having eadion problem shows significant gains with respect to staghdar
measurement coded in a redundant way. The first descri@PDN (). This is mainly due to the doublg constraint,
tion contains the first} measurements quantized wi¥  while quantization consistency provides a small gain dlera
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Fig. 3. CS-SPLIT :
The central decoder instead always selects the measureme:
with finer quantization and runs the standard BPDN proce-
dure [1). This means that some pieces of information are *
discarded by the central decoder because they are redunda o—————~—+——+—+— % 2z & & &
The issue of redundancy is central in MDC. The descriptions
must share some information on the signal, in order to be in-
dependently decodable. In the proposed CS-GQ scheme, thieig. 4. n = 256, k = 10, m = 50, Gaussian sensing matrix
amount of redundancy can be tuned in a very flexible way

1 :
through the choice of parametérand B, depending on the k < Z(Eh+ 1%’ Vg::)elgeN“a'ISth? ﬁthen;Z?f e. Furthermpre,
desired level of quality at the side and central decoderss&h assume that the gorithmIs u or reconstruction.

. . o 3 2 . .
levels may also depend on the channel error or packet |OST41en the distortion D = |lx — %[, in the reconstructed sig

rate, in that frequent losses are typically coped with bgel nal ;sbgll_furlction of rate & is bounded as follows, with high
ing a higher degree of redundancy. probability:
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(a) Side relative distortion (b) Central relative distortion

- k2 4ko?272R
3.2. CS-SPLIT _09252_2R S Dside(R) S Oy (2)
CS-SPLIT (see Fid.]3) consists in quantizing all the measure 1— 301%‘71(4;{ —-1)
ments with rate? and partitioning the measurements vector ;.2 Ako29—2R

into two subsets with measurements each. The side de- Eﬁ?_m < Deentral(R) < — 3)

coders receive only one subset and recover the signal using 1— /=2 4k — 1)

(@), whered is the appropriate submatrix of the original sens-

ing matrix. Instead, the central decoder can use all the mea-

surements. CS-SPLIT can be regarded as a special case?%

CS-GQ in whichB = R andb = 0. In this special case

no redundant information is transmitted. In fact, the caintr Theorem 2. Under the same hypotheses of Theorem 1, the

decoder does not discard any information as it happens in C8listortion D = ||x — ][5 in the reconstructed signal as a

GQ. CS-SPLIT may be an appealing solution thanks to its extunction of rate R is bounded as follows, with high probabil-

treme simplicity, as it does not require any additional psse Ity 2 Ao2k2—2R

ing other than splitting the measurement vector. However,w  —£42272% < D4 (R) < =

shall discuss in Sed] 5 how CS-SPLIT always outperforms " 1- ,/151% (4k — 1)
- 2 2 —4R

CS-GQ when the number of measurements is high. &k22‘4R7D < Do (R) 402k2~ 4R

3.3. CS-MDSQ m - /151%% (4k — 1)
CS-MDSQ creates multiple descriptions of the measurements (5)
using a special quantizer called MDSQ. The MDSQ is a genwith

eral technique for MDC developed before the advent of CS, - 27—
so it does not leverage the democracy property as the previou b= [1 _ <<1 _ Dsn;,sidc) B DST,Sidc _ 24R> ]
systems do. The MDSQ can be optimised at several levels an Lk Z5 k2

can be tuned to operate at different points on the central dis

tortion vs. side distortion curve. For the results in thipgra gnd Dam side = E {(yi ye) (yi))ﬂ_
we used the optimization method outlined[ih [5], using ne&:ste

A very similar argument can be used to analyse CS-
SQ. The assumptions are the same as before, but the
SQ performance is limited by the Ozarow bouhd|[11].

(4)

A

assignment for the index assignment matrix. The proofs of the previous results and experimental re-
sults showing their validity are omitted for brevity. By loo
4. RATE-DISTORTION PERFORMANCE FOR ing at the lower bounds it can be seen that CS-SPLIT can po-
CS-SPLIT AND CS-MDSQ tentially achieve( Dgjac, Deentral) POINts that are unavailable
. i . for CS-MDSQ.

Theorem 1. Consider a k-sparsesignal x € R™ and its mea-
tries have zero mean and variance o2. Assume that the en-
tries of the sensing matrix ® arei.i.d. Gaussianrandomvari-  In this section we compare the reconstruction performance

ableswith ®@;; ~ A/(0, %) and such that m > 60logn and  of the side and central decoders of the proposed methods.
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08 Fig. 7. n = 256, k = 20. CS-GQ:m € [78,122], B = 6,
. . R b = 2. CS-SPLIT:m € [90,140], R = 7. CS-MDSQ:m €
Fig. 5. Central vs. side distortion tradeoff plot = 256, (79, 123], R = 4. Gaussian sensing matrix

k = 10, m = 50, Gaussian sensing matrix. Optimal point for
p = 0.08. CS-SPLIT (there are no losses, hence we seek the best central

performance and minimum redundancy) and thatfer 1
full redundancy is approached where CS-GQ behaves like a
repetition code.
We should also notice that CS-GQ providing gains at the
side decoders, with respect to CS-SPLIT, is the typical be-
’ haviour whenm is small €.g., m is so small that CS-SPLIT
fails side decoding, or bigger but still in the regime in whic
. extra measurements are more important than finer quantiza-
N & o, tion). In fact, whenm grows very large, CS-SPLIT is always
el L 5 “eeeae)  favourable due to the convenience in investing the budgeted
. o i " . . bits in finer quantization rather than in extra measurements
(a) Side relative distortion (b) Central relative distortion Comparing the performance with respect to CS-MDSQ,
Fig. 6. n = 256, k = 20. CS-GQ:B = 6, b = 2. CS-SPLIT; We can see that if the number of measurements is fixed a pri-
R = 8. CS-MDSQ:R = 4. Gaussian sensing matrix ori, CS-GQ and CS-SPLIT can benefit from higher quantiza-
tionrates and thus outperform CS-MDSQ most of the times as
As distortion we consider the normalised error n . shown in Fig[b. CS-MDSQ can be advantageous only when
First, we characterise the relative performance of CS-Gf) anwe are forced to acquire few measurements, but for the same
CS-SPLIT at equal bit-rate for the same number of measurdotal bit-rate a slight oversampling can allow to use theenor
ments. Suppose that CS-SPLIT uses a ratR bits per mea- efficient graded quantization. Figl. 5 shows the case of g full
surement, then we must hav®+ b = R. From Fig.[5 we tunable system in which both the number of measurements
can see that CS-GQ improves side decoding performance fand the rate can be adjusted. Also in this case we can see that
increasing redundancy until the full redundancy ca®e<(b)  graded quantization has lower reconstruction distortioth b
is reached, while at the same time central decoding perfofor central and side decoding in many practical settings.
mance worsens. CS-SPLIT is the extreme case with best cen-
tral but worst side performance. The appropriate values of 6. CONCLUSIONS

andb can be selected_ from the trade-off plot s_how in Fig.|n this paper we showed how the democracy property of CS
5, acpord|_ng to the desired trade-off between side an_d_ C€Measurements enables to address the multiple descriptions
tral distortion. If a memoryless channel has a probabijlity problem in a simple and yet effective manner. We proposed

of losing a description, we can define an ayerage distortiofethods to generate multiple descriptions from CS measure-
Davg = 2+ Dsige (1 =p) + Deent - (1 =p)” +p°. Keepingin - enis without the need of preprocessing the signal. Asia ter
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mind thatDcen: is a function ofDs;q. and lettinggz== = 0,  of comparison with classical literature on MDC, CS-MDSQ is
we get% = —IQT”. This is the slope of the straight line derived from the MDSQ, and does not explicitly rely on prop-

that is tar?‘d‘eent to the trade-off plot in the point represanti erties of CS. In fact, we showed that it can be outperformed
the optimal trade-off between central and side distortsorit by the other proposed methods in many cases. CS-GQ and
can be used to determine the optimal value®aindb fora  its limit case CS-SPLIT leverage the democracy of the mea-
channel with given packet-loss rate. In our case the feasiblsurements to create balanced descriptions in a straig¥afdr
points are a discrete set and this method can only selectfonemanner, yet allowing great flexibility in selecting the des

the points lying on the convex hull. Notice that= 0 selects trade-off between central and side distortion.
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