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ABSTRACT

We consider the problem of blind sparse deconvolution,

which is common in both image and signal processing. To

counter-balance the ill-posedness of the problem, many ap-

proaches are based on the minimization of a cost function. A

well-known issue is a tendency to converge to an undesirable

trivial solution. Besides domain specific explanations (such

as the nature of the spectrum of the blurring filter in image

processing) a widespread intuition behind this phenomenon

is related to scaling issues and the nonconvexity of the opti-

mized cost function. We prove that a fundamental issue lies

in fact in the intrinsic properties of the cost function itself: for

a large family of shift-invariant cost functions promoting the

sparsity of either the filter or the source, the only global min-

ima are trivial. We complete the analysis with an empirical

method to verify the existence of more useful local minima.

Index Terms— blind deconvolution, sparsity, MAP fail-

ure, deblurring, dereverberation

1. INTRODUCTION

The goal of blind deconvolution is to recover an unknown

source signal s ∈ ℓ2(Zd) from a filtered observation x =
a ∗ s ∈ ℓ2(Zd) when the filter a ∈ ℓ2(Zd) is unknown.

The ill-posed nature of the blind problem implies the in-

troduction of prior knowledge. In particular, for each solu-

tion (a, s), and λ ∈ R
∗, (λa, 1

λ
s) is also a solution : this is

known as the scaling ambiguity. In many physical problems,

energy conservation assumptions avoid this ambiguity. For

instance, early approaches based on Minimum Entropy De-

convolution [1] used scale-invariant cost functions under the

assumption of statistical whiteness of the source.

In many practical image processing or audio processing

scenarios, the statistical whiteness of s is not a reasonable as-

sumption, and other types of prior knowledge are required,

as well as ways to exploit them. Among the range of exist-

ing approaches [2–5], many approaches aim to minimize a

cost function involving a quadratic data fidelity term and ad-

ditional priors derived from the ℓp norm over the source sig-

nal and/or the filter. These approaches are often referred to

as maximum a posteriori (MAP) in connection with Bayesian

modeling and estimation. In the image processing literature,

several priors on the source s are widely used based on image

statistics or gradient domain sparsity [6–9]. In audio signal

processing, sparse priors have been considered over the time-

domain or the short time Fourier transform (STFT) represen-

tation of the source s [10–12]. A sparse prior on the filter a
was also introduced in [13].

The form of these cost functions is reminiscent of those

arising in matrix factorization problems such as sparse princi-

pal component analysis (PCA) [14], sparse non-negative ma-

trix factorization (NMF) [15], dictionary learning [16], or in-

dependent component analysis [17]. In such matrix factoriza-

tion problems, empirical as well as theoretical results have

shown the validity of the approaches based on the minimiza-

tion of these cost functions. In contrast, for blind deconvolu-

tion, many works show both theoretically and practically that

“MAP” approaches often fail: they output the blurred obser-

vation x and a trivial Dirac filter [3].

A domain specific explanation of this failure phenomenon

in image processing [3] blames the nature of the spectrum of

the blurring filter, and was used to guide the design of alter-

native approaches such as the marginalization of the distribu-

tion over the filter [6, 18], the addition of an edge detection

step [19], time varying priors [7], or re-weighted priors [20].

Another widespread intuition behind this phenomenon is re-

lated to scaling issues and the nonconvexity of the optimized

cost function. Non-convexity was heuristically first dealt with

using alternate optimization of a and s [21]. Recent algo-

rithms which have been proposed for the simultaneous es-

timation of a and s [22] using proximal methods are only

known to converge to a stationary point of the cost function.

In this paper, we provide two novel explanations of this

failure phenomenon. First, we show that a large family of cost

functions naturally arising in the context of blind deconvolu-

tion are in fact fundamentally flawed. The cost function itself

is to blame, not the algorithm to minimize it: under mild con-

ditions, all its global minima are trivial. Second, we also pro-

vide an empirical local study of the cost function arising from

typical sparsity inducing audio priors. Inspired by the char-



acterization of ℓ1 minima used in dictionary learning [16],

we observe that the desired solution is a local minimum of

the cost function only when both the filter and the sources

are sufficiently sparse. Besides providing a new interpreta-

tion to a number of experimental observations, these results

can help the design of improved cost functions by providing

some guarantees on their minima independently of the algo-

rithm chosen to minimize them.

This paper is organized as follows. The cost functions

considered in the paper are described in Section 2. We display

in Section 3 our main result on the global minima. Section 4

is dedicated to the local study in an audio processing example.

We conclude in Section 5. The proofs of the results are given

in the appendix.

2. REGULARIZATION WITH PRIORS

The observation x ∈ ℓ2(Zd) is modeled as a convolutive mix-

ture of the source s ∈ ℓ2(Zd) with the filter a ∈ ℓ2(Zd) plus

some noise n, that is for all t ∈ Z
d:

x(t) = (a∗s)(t)+n(t) :=
∑

τ∈Zd

a(τ)s(t− τ)+n(t). (1)

To circumvent its natural ill-posedness, a widespread ap-

proach is to use priors on a and s (making the problem rather

myopic than blind), which typically leads to regularized opti-

mization problems of the type

min
a,s

λ‖x− a ∗ s‖22 + p(a, s) (2)

where the penalty function p(a, s) captures the prior.

The design and exploitation of signal priors is a wide re-

search field and it has proven to be successful for underde-

termined inverse problems in general. In particular, it is well

known that sparsity-inducing priors such as the ℓp norm ‖s‖p
and ‖a‖p with p < 2 can provide computationally efficient

solutions that are accurate provided that s and a are indeed

sparse or at least “compressible”.

Because of the intrinsic scaling ambiguity of the blind

deconvolution problem, some naive priors p(a, s) should be

avoided. In particular, it was shown that it is a bad idea to

only enforce a source prior while using a uniform prior on

the filter (which means no regularization on a) [3]. Denoting

‖ · ‖ a regularization norm penalty on s, this would lead to the

optimization problem

min
a,s

λ‖x− a ∗ s‖22 + C‖s‖. (3)

Such function has been pointed out to be dramatically sensi-

tive to the scaling ambiguity.

Lemma 1 [3, Claim 1] Let a0, s0 ∈ ℓ2(Zd). The global

minima of

L : (a, s) 7→ λ‖a0 ∗ s0 − a ∗ s‖22 + C‖s‖. (4)

are never reached. There exists ak, sk such that

lim
k→∞

sk = 0, and lim
k→∞

L(ak, sk) = 0.

As a consequence (3) has no solution. Due to this remark, we

only consider approaches that depends upon a prior on a.

From now on we consider a regularization ‖·‖ on s which

is a translation invariant seminorm.

Definition 1 A translation invariant seminorm on ℓ2(Zd) is

a function ‖ · ‖ : ℓ2(Zd) → R which satisfies ∀u, v ∈ E

(i). ‖u+ v‖ ≤ ‖u‖+ ‖v‖

(ii). ∀λ ∈ R, ‖λu‖ = |λ|‖u‖

(iii). ∀k ∈ Z, ‖u(· − k)‖ = ‖u(·)‖

The only difference with a norm is that there can be nonzero

vectors u such that ‖u‖ = 0.

Such penalty appear in many practical scenarios. Typical

image applications [6, 18, 20] introduce the gradient sparsity

inducing seminorm ‖s‖ = ‖∇s‖p with p ∈ [0.5, 0.8]. Typical

audio applications [11, 12] use an STFT matrix Φ and regu-

larize in the time-frequency plane with the sparsity inducing

norm ‖s‖ = ‖Φs‖p.

In case of a sparse prior on the filter, the deconvolution

problem is often stated as

min
a,s

λ‖x− a ∗ s‖22 + ‖a‖1 + C‖s‖. (P1)

Alternatively one can add a scaling constraint [11, 20] on a,

resulting in a different problem

min
a,s

λ‖x− a ∗ s‖22 + C‖s‖ s.t. ‖a‖1 = 1. (P2)

Note that in image processing, the estimation of the gra-

dient instead of the image itself is often subject to a regular-

ization framework. Our study apply to the gradient domain

regularized estimation problems [6–9], which are a variants

of (P1).

min
a,s

λ‖∇x− a ∗ ∇s‖22 + ‖a‖1 + C‖∇s‖. (5)

The formulations (P1)-(P2) are quite similar to common

matrix factorization approaches arising in dictionary learn-

ing [16], sparse PCA [14], non-negative matrix factorization

[15], etc, where the goal is to factor a matrix X as X =
AS while promoting certain properties of the factors A and

S. However, in contrast to matrix factorization approaches

which often exhibit good practical performance, we will show

that the cost functions appearing in (P1)-(P2) have fundamen-

tally problematic properties. Although they are not equiva-

lent, both problems (P1) and (P2) fail to characterize a non

trivial solution, for any value of the parameters C or λ.



3. PITFALLS OF GLOBAL MINIMA

3.1. Main result

Given a mixture x, we show here that the global minima of

(P2) and (P1) are trivial reconstructions, in the sense that the

estimated filter is equal to a Dirac pulse. Let δ0 be the Dirac

pulse such that ∀y ∈ ℓ2(Zd), δ0 ∗ y = y.

Proposition 1 Let ‖ · ‖ be a translation invariant seminorm.

For all a, s ∈ ℓ2(Zd), 0 < p ≤ 1, and C > 0, there exist

µ−, µ+ ∈ R
∗
+ such that ∀µ ∈ [µ−, µ+]

‖µδ0‖p + C‖
1

µ
a ∗ s‖ ≤ ‖a‖p + C‖s‖. (6)

Remarks :

• We can extend the proposition to an even more general

case, we may consider a family of linear transforma-

tions (Tt)t∈E such that

∀t ∈ Z x(t) =
∑

τ∈E

a(τ)Tt(s)(τ), (7)

and a norm ‖ · ‖ invariant under these transformations.

For example, the case of the circular convolution x =
a⊗ s of finite length signals in R

T corresponds to

∀t ∈ E Tt(s)(τ) = s (t− τ mod T ) (8)

with E = {1, . . . , T }.

• If ‖ · ‖ is a semi-quasinorm, i.e. satisfies instead of (i)

‖u+ v‖q ≤ ‖u‖q + ‖v‖q

for q ≥ 0, the same result can be obtained under the

condition p ≤ q. This allows to treat the case ‖ · ‖ =
‖ · ‖q with 0 < p ≤ q ≤ 1.

• There is no uniqueness result, but if p < 1 or if ‖ · ‖ is

strictly convex, equality in (6) implies a = δ0 up to a

pure delay (the proof is provided in the Appendix).

We now derive a direct corollary suitable for the noisy case,

without exact reconstruction of x, which corresponds to the

practical situations described by (P1).

Corollary 1 Let x ∈ ℓ2(Zd), 0 < p ≤ 1, C > 0, λ > 0.

There exists µ ≥ 0, â, ŝ ∈ ℓ2(Zd) such that (µδ0,
1

µ
â ∗ ŝ) is a

global minimum of

L : (a, s) 7→ λ‖x− a ∗ s‖22 + ‖a‖p + C‖s‖. (9)

Finally, we show that problem (P2) has a trivial global

minimum.

Corollary 2 Let x ∈ ℓ2(Zd), C > 0, λ > 0. There exists â,

ŝ ∈ ℓ2(Zd) such that (δ0, â ∗ ŝ) is a global minimum of

L : (a, s) 7→ λ‖x− a ∗ s‖22 + C‖s‖ s.t. ‖a‖1 = 1. (10)

In the case when p < 1 or ‖·‖ is strictly convex, all global

minima of (9) and (10) are trivial.

4. LOCAL MINIMA

Globally solving of (P1) without knowing that the global min-

imum is trivial is a priori computationally challenging, since

the optimized cost function is non convex. Optimization prob-

lems of a similar nature appear in the context of matrix fac-

torization, and alternate estimation algorithms have been de-

signed to address them. Such algorithms are never guaranteed

to converge to the global minimum but at best to a stationary

point of (P1). In the case of blind deconvolution, since the

global minimum is trivial, convergence to a local minimum

can in fact be a blessing: provided that the seeked solution

(a, s) is indeed close to a local minimum, one can envision to

exploit side information to initialize the algorithm in a good

basin of attraction and converge to a useful solution. We de-

scribe now on a particular case how to experimentally check

if the original signal is a local minimum.

4.1. Local analysis of (P1) in the ℓ1 case

There is no local minimum in general, unless the constant C
is wisely chosen. We can easily derive the following result

from Proposition 1.

Corollary 3 If (â, ŝ) is a local minimum of

(a, s) 7→ λ‖x− a ∗ s‖22 + ‖a‖1 + C‖s‖, (11)

then C = ‖â‖1

‖ŝ‖ .

Therefore we assume in the following that C = ‖â‖1

‖ŝ‖ .

Then, in the particular case of an ℓ1 penalty ‖ · ‖ = ‖ · ‖1
on the source s, we derive a characterization of local min-

ima. The computation is detailed in [16] in a general setting

not specific to deconvolution. We do not reproduce here the

methodology. It is nevertheless a verification that can be re-

produced in different applications before the design of an al-

gorithm. In a nutshell, there exists two matrices A,B and a

vector c that can be computed from â and ŝ, which lead to the

necessary condition

sup
h∈kerA

| < c, h > |

‖Bh‖1
≤ 1, (12)

where a strict inequality is a sufficient condition. The quantity

on the left-hand side of (12) can be computed using convex

optimization.

4.2. Experimental analysis

We wish to test condition (12) in a typical audio situation. The

cost function uses the (mf ×nf ) = (32×16) STFT matrix Φ
and the ℓ1 norm ‖s‖ = ‖Φs‖1 and an ℓ1 norm on the filters.

For T = 256, we generate a pair of uniform random

signals a ∈ R
T , s ∈ R

T for each pair of sparsity ratios

ρa = ‖a‖0

T
, ρs = ‖Φ‖0

mfnf
. Choosing C = 1 we rescale them



Sparsity level of the filter A

S
pa

rs
ity

 le
ve

l o
f t

he
 S

T
F

T
 o

f t
he

 s
ou

rc
es

 S

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.4

0.5

0.6

0.7

0.8

0.9

 >1

Fig. 1. Estimation of (12) : white areas are not local minima

to satisfy ‖â‖1/‖ŝ‖ = 1. We obtain an estimate of condition

(12) with a convex optimization toolbox and provide Fig. 1

the resulting array. This indicates that the inequality is vio-

lated for non sparse filter and sources (high values of ρa, ρs),

whereas for ρa + ρs ≤ 0.4, the original solution is often a

local minimum of (P1), even though it cannot be its global

minimum.

5. CONCLUSION

We explored some of the theoretical limitations to the blind

sparse deconvolution problem, for several typical approaches.

The consequences of this pitfall are omnipresent in both im-

age and audio processing frameworks. Our study gives a new

interpretation to many well-known experimental failures and

a justification to the choice of scaled constrained models in

the past. An inspired example is the ℓ1/ℓ2 scaled sparsity

regularizer [20] in the gradient domain

min
a,s

λ‖∇x − a ∗ ∇s‖22 + C
‖∇s‖1
‖∇s‖2

s.t. ‖a‖1 = 1, (P3)

which to our knowledge does not admit any trivial reconstruc-

tion as a solution. This regularizer may however not apply

in certain contexts, especially in audio, and our results can

help the design of improved cost functions in these contexts

by providing some guarantees on their minima independently

of the algorithm chosen to minimize them. Besides, the lo-

cal study proves that such approaches are still relevant under

sparsity hypotheses. Further work is needed to extend our re-

sults to the multichannel multisource case, in order to address

blind source separation problems.

Appendix

Proof of Lemma 1

Simply observe that limn→∞ L(na, 1

n
s) = 0 . �

Proof of Proposition 1

First, we minimize g : µ ∈ R
∗
+ 7→ ‖µδ0‖p + C‖ 1

µ
x‖

and obtain with µ̂ =
√

C
‖δ0‖p

‖x‖ an optimum g(µ̂) =

2
√

C‖δ0‖p‖x‖ = 2
√

C‖x‖.

On the other hand, as a consequence of the invariance of

‖ · ‖ we obtain, for 0 < p ≤ 1,

‖a ∗ s‖p ≤





∑

τ∈Zd

|a(τ)| · ‖s(· − τ)‖





p

(13)

= (‖a‖1‖s‖)
p

(14)

≤ ‖a‖pp ‖s‖
p (15)

‖x‖ ≤ ‖a‖p‖s‖ (16)

When p < 1 the inequality in (15) is strict unless a = δ0 up

to a pure delay. The strict convexity of ‖ · ‖ also restricts the

equality cases in (13) if a is not a Dirac. The last inequality

gives an upper bound to the minimum of g :

g(µ̂) ≤ 2
√

C‖a‖p ‖s‖ (17)

≤ ‖a‖p + C‖s‖. (18)

The last line uses the inequality ∀u, v ∈ R, 2uv ≤ u2 + v2.

In addition, a wide range of µ satisfies the conclusion of

Proposition 1, namely µ ∈ [
‖a‖p+C‖s‖−

√
∆

2
,
‖a‖p+C‖s‖+

√
∆

2
],

where ∆ = ‖a‖p + C‖s‖2 − 4‖x‖. Surprisingly, the trivial

mixture without scaling factor (δ0, x) is lower than the origi-

nal for large values of C. Formally, (6) is satisfied for µ = 1

if C ≥
2|‖x‖−1|−‖a‖p

‖s‖ . �

Proof of Corollary 1

First, L is coercive so argminL 6= ∅. Let â, ŝ be a minimum

of L. Using Proposition 1 there exists µ such that L(µδ0,
1

µ
â∗

ŝ) ≤ L(â, ŝ), and (µδ0,
1

µ
â ∗ ŝ) ∈ argminL. �

Proof of Corollary 2

Suppose (â, ŝ) is a solution of (10), and simply recall (16),

C‖â ∗ ŝ‖ ≤ C‖â‖1‖s‖ = C‖ŝ‖. Then for (a, s) such that

‖a‖1 = 1,

‖x− δ ∗ (â ∗ ŝ)‖22 + C‖â ∗ ŝ‖ ≤ ‖x− a ∗ s‖22 + C‖s‖

and (δ0, â ∗ ŝ) is also a solution of (10). �
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