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Abstract
We consider the smoothing problem for a class of mixed linear/nonlinear
state-space models. This type of models contain a certain tractable sub-
structure. When addressing the filtering problem using sequential Monte
Carlo methods, it is well known that this structure can be exploited in a
Rao-Blackwellised particle filter. However, to what extent the same prop-
erty can be used when dealing with the smoothing problem is still a ques-
tion of central interest. In this paper, we propose different particle based
methods for addressing the smoothing problem, based on the forward fil-
tering/backward simulation approach to particle smoothing. This leads to
a group of Rao-Blackwellised particle smoothers, designed to exploit the
tractable substructure present in the model.

Keywords: Nonlinear estimation, smoothing, particle methods, Rao-
Blackwellisation
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Abstract—We consider the smoothing problem for a class of
mixed linear/nonlinear state-space models. This type of models
contain a certain tractable substructure. When addressing the
filtering problem using sequential Monte Carlo methods, it is well
known that this structure can be exploited in a Rao-Blackwellised
particle filter. However, to what extent the same property can be
used when dealing with the smoothing problem is still a question
of central interest. In this paper, we propose different particle
based methods for addressing the smoothing problem, based on
the forward filtering/backward simulation approach to particle
smoothing. This leads to a group of Rao-Blackwellised particle
smoothers, designed to exploit the tractable substructure present
in the model.

Index Terms—Nonlinear estimation, smoothing, particle meth-
ods, Rao-Blackwellisation.

I. INTRODUCTION

Sequential Monte Carlo (SMC) methods, or particle filters
(PFs), have shown to be powerful tools for solving nonlinear
and/or non-Gaussian filtering problems; see e.g. [[1]-[3]] for an
introduction. Since the introduction of the PF by [4]], we have
experienced a vast amount of research in the area. For instance,
many improvements and extensions have been introduced to
increase the accuracy of the filter, see e.g. [2] for an overview
of recent developments. One natural idea is to exploit any
tractable substructure in the model [5]-[7]. More precisely, if
the model, conditioned on one partition of the state, behaves
like e.g. a linear Gaussian state-space (LGSS) model it is
sufficient to employ particles for the intractable part and make
use of the analytic tractability for the remaining part. Inspired
by the Rao-Blackwell theorem, this has become known as the
Rao-Blackwellised particle filter (RBPF).

With a foundation in SMC, various particle methods for ad-
dressing other types of state inference problems have emerged
as well. When dealing with marginal, fixed-interval and joint
smoothing, a few different approaches have been considered,
most notably those based on forward/backward smoothing [5]],
[8-[10] and two-filter smoothing [[11], [[12].

For the filtering problem, the Rao-Blackwellisation idea can
be applied rather straightforwardly. The reason is that the
specific types of models that are considered, are “conditionally
tractable in the forward direction”. This property can thus
be exploited in the (forward in time) filtering recursions.
However, to what extent and in which ways, the same property
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can be exploited when addressing the smoothing problem, is
still a question of central interest. In [[13]], a Rao-Blackwellised
particle smoother (RBPS) based on the forward/backward ap-
proach, has been proposed for a certain type of hierarchical
state-space models. The same model class is considered in
[11], where a two-filter RBPS i proposed. In this paper, we
continue this line of work and consider the problem of
Rao-Blackwellised particle smoothing in a type of mixed
linear/nonlinear Gaussian state-space models.

The remaining of this paper is outlined as follows. In
Section [[I] we introduce the smoothing problem and the class
of models which we will be dealing with. We then provide
a preview of the contributions of this paper in Section
In Section we review some standard methods for particle
filtering and smoothing, before we turn to the derivation of
two Rao-Blackwellised particle smoothers in Section |V| and
Section respectively. In Section we discuss some of
the properties of these smoothers, and in Section they
are evaluated in numerical examples. Finally, in Section
we draw conclusions.

II. PROBLEM FORMULATION

To simplify the presentation, all distributions are assumed
to have densities w.r.t. Lebesgue measure. The conditional
distribution of any variable z conditioned on some other
variable y will be denoted p(dx | y) £ P(x € dx | y) and the
density of this distribution w.r.t. Lebesgue measure is written
p(z |y).

Let {x;};>1 be the state process in a state-space model
(Ssm). That is, {z;};>1 is a discrete-time Markov process
evolving according to a transition density p(x¢11 | ). The
process is hidden, but observed through the measurements y;.
Given z;, the measurements are conditionally independent and
also independent of the state process g, s # t. Hence, the SSM
is described by,

(1a)
(1b)

Ti41 ™ p($t+1 \ Cft),
Yo ~ p(ye | ).

The fixed-interval smoothing distribution,

p(d'rs:t | yl:T)a (2)

for some s < t < T is the posterior distribution of the
states x, ..., o; given a sequence of measurements yi.; =
{y1, ..., yr} (a similar notation is used for other sequences
aswell). f wesets =1andt =T, coincides with the joint
smoothing distribution, i.e. the distribution of the full state se-
quence x1.7 conditioned on the measurements y;.7. This is the
“richest” smoothing distribution, since it can be marginalised



to obtain any fixed-interval or marginal smoothing distribution.
In this paper we will in particular seek the marginal smoothing
distribution p(dx; | y1.7) fort =1, ..., T. The reason for this
is for notational convenience, since it would be cumbersome
to address the (more general) joint smoothing distribution in
all cases. However, the methods presented here can all be
extended to fixed-interval or joint smoothing.

In this paper, we shall study the smoothing problem for a
special case of (I). More precisely, we assume that the state
can be partitioned according to zy = (& 2 )T, where the
z-process is conditionally linear Gaussian. Hence, conditioned
on the trajectory &+, the z-process follows a linear Gaussian
state-space (LGSS) model. Models with this property will
be denoted conditionally linear Gaussian state-space (CLGSS)
models. We shall call &; the nonlinear state and z; the linear
state.

In particular, we will consider a specific type of CLGSS
models, denoted mixed linear/nonlinear Gaussian. A mixed
linear/nonlinear Gaussian state-space model can be expressed
on functional form as,

Eir1 = fe(&e) + A (&) e + ve s (3a)
Zip1 = f2(&) + AL (&) 2 + vz, (3b)
yr = h(&) + C(&)zt + e, (3¢)

where the process noise is white and Gaussian according to

w= e ~n (o] ey T6)) @

and the measurement noise is white and Gaussian according to
et ~ N (0, R(&;)). For each time ¢ > 0, the model can be seen
as an LGSS model if we fix the nonlinear state trajectory &1.; up
to that time. Note that there is a connection between the &-state
and the z-state through the dynamic equation for the nonlinear
state (3a). Hence, if we fix (i.e. condition on) the nonlinear
state process, @) can be seen as an “extra measurement”,
containing information about the linear z-state. Note that it is
necessary to condition on the entire trajectory &;.; to attain the
linear Gaussian substructure, i.e. to condition on just &; is not
sufficient.

We will also make use of a more compact reformulation of
(3) according to,

Top1 = f(&) + A(&)ze + v, (5a)
ye = h(&) + C(&)2e + e, (5b)
with
- &t _ [ fe(&e) _ [ Ae(&)
=[] =[] ae= 3] e

Remark 1. In this paper, we focus the derivation of the
proposed smoothers on mixed linear/nonlinear Gaussian state-
space models, as defined above. Note, however, that this spe-
cific model is only a special case of the general class of CLGSS
models. The results presented in this paper can straightfor-
wardly be modified to any other CLGSS model. The reasons for
why we choose to work with mixed linear/nonlinear models
are; i) to obtain explicit algorithms, which would not be
possible if we were to address the most general CLGSS model

ii) mixed linear/nonlinear models highlight all the challenging

parts of the derivations iii) mixed linear/nonlinear models

constitutes an often encountered and important special case.
O

It is a well known fact that the conditionally linear Gaussian
substructure in a CLGSS model can be exploited when ad-
dressing the filtering problem using SMC methods, i.e. particle
filters. This leads to the RBPF; see Section and [5]-[7].
However, to what extent and in which ways, the same property
can be exploited when addressing the smoothing problem, is
still a question of central interest. It is the purpose of this
paper to propose functioning, SMC based algorithms for this
problem, and also to highlight some of the difficulties that
arise when dealing with it.

III. A PREVIEW OF THE CONTRIBUTIONS

As mentioned in the previous section, we will consider the
problem of Rao-Blackwellised particle smoothing for CLGSS
models and in particular for mixed linear/nonlinear Gaussian
state-space models. We will focus on “backward simulation”
type of smoothers [9]], [10]]. Basically, a backward simulator
is a forward filtering/backward smoothing particle method.
A PF (see Section is run forward in time on a fix
data sequence y;.7. The output from the PF is then used to
approximate a backward kernel, used to simulate approximate
realisations from the joint smoothing distribution. The output
from the backward simulator is thus (generally) a collection
of backward trajectories, {i1.}}L, which are approximate
realisation from the joint smoothing distribution. We will
discuss this further in Section Based on these back-
ward trajectories, we can construct an empirical distribution
approximating the joint smoothing distribution according to,

M
1
p(dzir | yr.7) = i z:l%{m (dwy.7). (6)
jra

Now, as previously mentioned, we wish to do this in a
way which exploits the CLGSS structure of the model, leading
to a Rao-Blackwellised particle smoother (RBPS). However,
we will see that, as opposed to the RBPF, there is no single
“natural” way to construct an RBPS. Due to this, we will
in this paper propose and discuss two different RBPS, based
on the backward simulation idea. In a numerical evaluation
(see Section [VIII), it is shown that the methods have similar
accuracy and that they both improve the performance over
standard particle smoothing techniques.

The first is an extension of the RBPS previously proposed
by [13]]. This smoother simulates backward trajectories jointly
for both the nonlinear state and the linear state, i.e. the
smoother generates a collection of joint backward trajectories
{Z10}M, = {€.,,2 }M,, targeting the joint smoothing
distribution. This results in a “joint point-mass representation”
of the joint smoothing distribution in complete analogy with
(6). Note that this is quite different from the representa-
tion of the filtering distribution generated by the RBPF. This
method will be denoted joint backward simulation RBPS (JBS-
RBPS). The difference between the JBS-RBPS and a ‘“non-Rao-
Blackwellised” backward simulator is that the former uses an



RBPF to approximate the backward kernel, whereas the latter
uses a PF. In [13]], a class of hierarchical CLGSS models is
considered, in which the transition kernel of the nonlinear
state process {&; }+>1 is independent of the linear state process
{#t}1>1, i.e. it is only applicable to mixed linear/nonlinear
models @) in case A¢ = Q¢. = 0. In Section [V] we extend
this smoother to fully interconnected mixed linear/nonlinear
models (3).

Furthermore, in Section we propose an extension to the
JBS-RBPS. Here, we complement the backward simulation with
a constrained smoothing of the linear states. This replaces the
point-mass representation of the linear states with a continu-
ous representation, by evaluating the conditional smoothing
densities for the linear states. Hence, instead of using an
approximation of the form (6), we can then approximate the
marginal smoothing distribution according to,

M
1 —
Plde, dza | yrr) ~ 52 >N (ds Hpp, Py ) 0 (d60),
j=1

(N
for some means and covariances, {2i|T}§i1 and {ﬁtj‘T M,
respectively. This representation more closely resembles the
RBPF representation of the filtering distribution.

One obvious drawback with this “add-on” to the JBS-
RBPS, is that we need to process the data twice, i.e. we
make two consecutive forward filtering/backward smoothing
passes. A natural question is then; can we make a single
forward/backward smoothing pass and obtain a representation
of the marginal smoothing distribution similarly to (7)? This
will be the topic of Section Here we propose an RBPS
which aims at sampling backward trajectories only for the
nonlinear state (just as the RBPF samples forward trajectories
only for the nonlinear state). The mean and covariance func-
tions for the linear state are updated simultaneously with the
backward simulation, conditioned on the nonlinear backward
trajectories. However, to enable this we are forced to make
certain approximations, which will be discussed in Section
and in Section This smoother will be referred to as
marginal backward simulation RBPS (MBS-RBPS). We have pre-
viously used a preliminary form of the MBS-RBPS for parameter
estimation in mixed linear/nonlinear models in [14].

IV. PARTICLE FILTERING AND SMOOTHING

Before we continue with the derivation of the RBPS men-
tioned in the previous section, we review some standard
particle methods for filtering and smoothing. This is done
to give a self-contained presentation and to introduce all the
required notation. Readers familiar with this material may
consider to skip this section.

A. PFarticle filter

Let p(x1) be a given prior density of the state process.
The filtering density and the joint smoothing density can
then be expressed recursively using the Bayesian filtering
and smoothing recursions, respectively. Using the convention

p(z1 | y1.0) = p(x1), the latter recursion is given by the two-
step updating formulas,

(8a)
(8b)

p(xl:t | yl:t) OCp(yt | xt)p(xlzt | yl:tfl)»
D141 | Y1:t) = p(@eq1 | To)p(@1t | Y1:e)s

for any ¢ > 1. Despite the simplicity of these expressions,
they are known to be intractable for basically all cases, except
for LGSS models and models with finite state-spaces. In the
general case, approximate methods for computing the filtering
or smoothing densities are required. One popular approach
is to employ SMC methods, commonly referred to as particle
filters (PFs); see e.g. [1[|-[4].

The essence of these methods is to approximate a sequence
of probability distributions with empirical point-mass distri-
butions. In the PF, a sequence of weighted particle systems
{xi,,wi}N | for t = 1,2, ... is generated, each defining
an empirical distribution approximating the joint smoothing
distribution at time ¢ according to,

N
p(dxlzt ‘ yl:t) ~ Z/)\(dl.ltt ‘ yl:t) é Zw?géx’if (dxlzt)' (9)
i=1

We have, without loss of generality, assumed that the impor-
tance weights {wi}¥ | are normalised to sum to one.

The basic procedure for generating these particle systems is
as follows. Assume that we have obtained a weighted particle
system {x%, ;,wi_;}N, targeting the joint smoothing distri-
bution at time ¢ — 1. We then proceed to time ¢ by proposing
new particles from a (quite arbitrary) proposal density 7,

zy ~ (@ | 211, Y1), (10)
fori =1, ..., N. These samples are appended to the existing
particle trajectories, i.e. 2%, := {z%, ;,xi}. The particles are
then assigned importance weights according to,

p(ye | #)p(a | =iy

7}(1’% | xi:t—l? yl:t)

i i
t X Wy_g

) (11a)

where the weights are normalised to sum to one. If the
sampling procedure outlined above is iterated over time, we
end up with the sequential importance sampling method [15].
However, it is well known that this approach will suffer from
depletion of the particle weights, meaning that as we proceed
through time, all weights except one will tend to zero [1].
To remedy this, a selection or resampling step is added to
the filter. This has the effect of discarding particles with low
weights and duplicating particles with high weights. This is a
crucial step, needed to make the PF practically applicable.
As indicated by (9), the PF does in fact generate weighted
particle trajectories targeting the joint smoothing distribution.
However, as an effect of the consecutive resampling steps,
the particle trajectories will suffer from degeneracy; see e.g.
[1]. This means that the PF in general only can provide good
approximations of the filtering distribution, or a fixed-lag
smoothing distribution with a short enough lag. For instance,
an approximation of the filtering distribution is obtained from
(@) by simply discarding the history of the particle trajectories,



resulting in a point-mass approximation according to,

p(dl't \ yl:t) dlt \ Y1: t Zwt dmt (12)

B. Forward filter/backward simulator

As pointed out in the previous section, due to particle
degeneracy, the PF is in general insufficient when it comes to
approximating the joint smoothing distribution or a marginal
smoothing distribution p(dz; | y1.7) for ¢ < T. This
problem can be circumvented by complementing the PF with a
backward recursion. In [5]], a forward filter/backward smoother
algorithm is proposed, designed to target the marginal smooth-
ing densities p(x; | y1.7) for t =1, ..., T. Here, T' is some
fixed, final time point. It is possible to extend this approach
to fixed-interval or joint smoothing, but the computational
complexity of this would be prohibitive.

An alternative, very much related, approach is the forward
filter/backward simulator (FFBSi) by [8]], [9]. In this method,
the joint smoothing distribution is targeted by sampling back-
ward trajectories from an empirical smoothing distribution
defined by the PF. Consider the following factorisation of the
joint smoothing density,

T-1
p(irl:T | yl:T) = P(QUT ‘ yl:T) H p(% ‘ $t+1:T7y1:T) . (13)
t=1

=p(zt|Ter1,91:¢)

Here, the backward kernel density p(z: | xt11,y1:+) can be
written as,

P(Cﬂtﬂ | Sﬂt)P(xt | ylzt)

14
(s | o) (1

(e | Teg1,91:4) =
We note that the backward kernel depends on the filtering
density p(z: | y1.t). The key enabler of the FFBSi (or any
forward/backward based particle smoother) is that the filtering
density (in many cases) can be readily approximated by a
PF, without suffering from degeneracy. Hence, assume that
we have filtered the data record y;.7 using a PF. For each
t = 1,...,T we have thus generated a weighted particle
system {z% wi}N | targeting the filtering distribution at time
t, according to (12). These particles can then be used to
approximate the backward kernel (T4) with,

wtp Tiy1 | ‘Tt)
kwtp Tiy1 | xt

Plday | 241, y100) ZZ 5 2 (dzy). (15)

Based on this approximation, we may sample particle trajecto-
ries, backward in time, approximately distributed according to
the joint smoothing density (T3). The backward trajectories are
initiated by sampling from the empirical filtering distribution
at time 7', defined by (12), i.e.

@~ plder | yi7), (16a)

for j =1, ..., M. Note that the number of backward trajecto-
ries M is arbitrary, and need not equal the number of forward
filter particles N. At time ¢, the backward trajectories are

augmented by sampling from the empirical backward kernel

(15),
(16b)
(16¢)

fg ~ ﬁ(dxt | i’{+1ay1:t)v
‘i‘ljf:T = {jg"i‘iJrl:T}’

for j =1, ..., M. When the backward recursion is complete,
ie. at time ¢ = 1, the collection of backward trajectories
{ml T M | are approximately distributed according to the joint
smoothlng distribution. Sampling from the empirical backward
kernel (I3)) is straightforward, since it is discrete and has
support in N points. Hence, for a fixed Zy_ |, reduces
to,

N
Pldey | &y 010) = Y @yh0,(dey),  (17a)
i=1
where we have defined the smoothing weights,
wzle A tpk( H:; | t)k . (17b)
2o wip(Tiyy | @)
The FFBSi is summarised in Algorithm [1]
Algorithm 1 Standard FFBSi [9]
1: Initialise the backward trajectories. Set EJT = k. with
probability w? for j =1, ..., M.
2. fort=T—1to1do
3: forjzltono
4: Compute wflT x wtp(xt_H | x%), fori=1, ..., N.
5: Sample from the empirical backward kernel i.e. set

7] = ! with probability wtlT

6: end for
7: end for

The computational complexity of the standard FFBSi grows
like M N, i.e. with M = N it is quadratic in the number of
particles/backward trajectories. However, [10] have recently
proposed a reformulation of the FFBSi, which under certain
assumptions can be shown to reach linear complexity in the
number of particles. The key enabler of this approach is to
perform the backward simulation by rejection sampling, which
means that we do not need to compute all the M N smoothing
weights (I7D). This approach will be discussed further in
Section where we show how it can be applied to the
Rao-Blackwellised particle smoothers proposed in this paper.

C. Rao-Blackwellised particle filter

In the preceding sections we reviewed some ‘“non-Rao-
Blackwellised” particle methods for filtering and smoothing,
designed for general SsMs according to (I). Let us now return
to the filtering problem and instead consider the special class
of CLGSS models. The task is to design a PF which exploits the
tractable substructure in the model; the resulting filter is the
RBPF [S[|-[7]. Informally, the incentive for this is to obtain
more accurate estimates than what is given by a standard
PF. For a formal discussion on the difference in asymptotic
variance between the PF and the RBPF, see [16].



The RBPF targets the density p(&1.4,2¢ | y1:t), by utilising
the factorisation

p(fl:tazt | yl:t) :P(Zt | gl:t;ylzt)p(glzt i yl:t)- (18)

The key observation is that, for a CLGSS model, the first factor
in this expression is Gaussian and analytically tractable using
a Kalman filter (KF), i.e.

= N (23 Zee (€1:0), Pepe(€1:40)),

for some (tractable) sequence of mean and covariance func-
tions, zy; and P;, of the nonlinear state trajectory &i.;.
Clearly, z;; and Py; also depend on the measurement se-
quence, but we refrain from making that dependence explicit.

The second factor in , referred to as the state-marginal
smoothing densit is targeted by a weighted particle system
{€&,,witN | generated by an SMC method. Analogously to
(), the state-marginal smoothing distribution is approximated
by an empirical distribution defined by the particles,

p(ze | &1eey Y1) (19)

N
P(d€rr | yre) = D(dérs | y1:) 2D wider (dére).  (20)
i=1
For each nonlinear particle trajectory, we can evaluate the
mean and covariance functions for the conditional filter-
ing density (I9). Hence, from an implementation point of
view, we typically compute and store quadruples of the
form {&, wi z _i\f» tz‘“}i\fl for t = 1,..., T where z!

t|t
Zy(€1,,) and P|t £ P(&h)- However, it is important to
remember that for a CLGSS model, the conditional filtering
density is Gaussian, with mean and covariance as func-
tions of the nonlinear state trajectory. Hence, if we are given
some nonlinear state trajectory £7,, (not necessarily generated
by a PF), we may employ a KF to find the sufficient statistics of
the density conditioned on &j.,. This property is utilised
in the RBPS presented in Section

Furthermore, by combining (I8), (I9) and 20) we obtain
an approximation of the filtering distribution,

N
~>uv
=1

p(dft7 dz | yi:t)
(21)

This also provides an approximation of the conditional of the
filtering density,

p(zt | 6;’ yl:t) ~ N(Zt; 2t|t(£i:t)7 Ptit(gi:t))7 (22)

for ¢! belonging to the set of RBPF particles as time ¢. It is
worth to note that both (21) and (22) are approximations, as
opposed to (I9) which is exact.

V. "JOINT BACKWARD SIMULATION’-RBPS

We now turn to the problem of Rao-Blackwellised particle
smoothing and derive the first of the two RBPS that we will
present in this paper. This smoother is referred to as joint
backward simulation RBPS (JBS-RBPS).

I'The state-marginal smoothing density is a marginal of the joint smoothing
density. The prefix “state” is used to distinguish it from what we normally
mean by the marginal smoothing density, i.e. p(z¢ | y1.7).

(dzt; Et\t(gi:t)’ Pt\t(fi:t))55;‘ (d&t).

A. JBS-RBPS derivation

The JBS-RBPS is similar to the FFBSi discussed in Sec-
tion [[V-B]| in the sense that we wish to sample from the joint
smoothing distribution by exploiting the factorisation (L3).
The difference is that the JBS-RBPS makes use of an RBPF to
approximate the backward kernel, whereas the FFBSi uses a
“standard” PF. The smoother is initialised by sampling from
the empirical filtering distribution at time 7, generated by
the RBPF. Hence, we sample nonlinear forward trajectories
{&? 1L, from (20) and thereafter we sample “linear states”
from the Gaussian distribution (19), i.e.

(23a)
(23b)

5ijT ~ ﬁ(d&:T | yi:T),
.~ Nz (€), Prir(€00),

for j = 1, ..., M. The pair {ﬁng,,%}} is an approximate
realisation from p(&1.7, 21 | y1.7). The word approximate here
refers to the fact that we approximate the target distribution
with an RBPF, before sampling from it. The same type of
approximation is used also in the standard FFBSi; see (16).
To obtain approximate realisations from the filtering density
at time T, p(&7, 21 | yi.1), we simply discard 51:]T71 and set

i = {&), 21, (24a)
& =€y, (24b)

forj=1,..., M.

Now, assume that we have sampled joint backward trajec-
tories {7, ,.p})L, from time T down to time ¢ + 1. We
then wish to augment these trajectories with samples from the
backward kernel, approximated by the forward RBPF. Using
the partitioning of the state variable into nonlinear and linear
states, the backward kernel density (T4) can be expressed as,

(&, 2t | ets 241, Y11t)

= /p(zt | fi:t+1,2t+1,yizt)19(§1:t | ft+1,Zt+1,y1:t) d&i:—1.
(25)

Sampling from this density is done similarly to (23) and
(24). The outline of the procedure is as follows. We start
by drawing a nonlinear trajectory §1ft from the second factor
of the integrand above. Given this sample, we draw a linear
sample zt from the first factor of the integrand. We then
discard £/7, | and set & := {€/,z/} with & := &7 This is
an example of a basic sampling technique, known as ancestral
sampling, cf. with how sampling from e.g. a Gaussian mixture
is done.

Hence, we start by considering the second factor of the
integrand in (23). From Bayes’ rule we have,

(&1t | Eea1s 2641, Yit)
o p(&ea1s 261 | §1et, Y1:0)P (€t | W1:t)- (26)
We thus arrive at a distribution that can be readily approxi-
mated by the forward filter (i.e. the RBPF) particles. From (20))
and (26) we get

(die),  (27a)

p(dflzt | gt]+1> 21?4_1’ Yi: t

Z ~Z\)T5§1



with

wzp(fi+1a2§+1 | fimyl:t)
2ok wfp(§g+1’5g+1 | ff:tayl:t)
The density involved in the above weight expression is avail-
able from the RBPF for any CLGSS model. For the mixed

linear/nonlinear Gaussian state-space models studied here,
using the compact notation (), it is given by,

~ZJ ry
“ir

(27b)

p(&r1, 241 | €Ly Y1)
= N (e /' + A, Q14 AP (ANT)).

Here we have employed the shorthand notation, f! = f(&})

(28)

etc. For each backward trajectory, i.e. for j =1, ..., M, we
can now sample an index
1(5) ~ Cat ({@3 %) (29)

corresponding to the forward filter particle that is to be ap-
pended to the j :th backward trajectory, i.e. we set 51 b= I:tj )
and & := &7, Here, Cat({p;}Y,) denote the categorical
(i.e. discrete) dlstrlbutlon over the finite set {1, ..., N} with
probabilities {p;} ;.

With that, we have completed the backward simulation for
the nonlinear state at time ¢, and it remains to sample the linear
state. However, before we proceed with this, we summarise the
sampling of the nonlinear state in Algorithm [2] This algorithm
will be used as one component of the “full” JBS-RBPS method
presented in Algorithm [3] The reason for this decomposition
of the algorithm will become clear in the sequel.

Algorithm 2 Nonlinear trajectory backward simulation
1: for j =1 to M do
2: Compute the smoothing weights {wt‘T}
to (276) and @5).
3:  Sample I(j) ~ Cat ({w T} )
4: end for
5: return the indices {1(j)}}L,.

according

We now turn our attention to the first factor of the integrand
in (23). By the conditional independence properties of the
model and Bayes’ rule we have,

(2 [€1it415 2415 Y1:t)
X p(§t+17 Zt4+1 | Zt,&:t,yl:t)p(zt | §1:t,211:t)

= p(&t15 2e41 | & 20)P(2¢ | €1ty Ynit)- (30)

We recognise the first factor of (30) as the transition density,
which according to (3) is Gaussian and affine in z;. The
second factor of (30) is the conditional filtering density for the
linear state, given the nonlinear state trajectory. For a CLGSS
model, this density is also Gaussian according to (T9). Hence,
we arrive at an affine transformation of a Gaussian variable,
which itself is Gaussian. For £}, belonging to the set of RBPF
particles, we get,

p(Zt |£i:ta£t+172t+1ay1:t) = N(Zt;Ni\t(€t+1’zt+1)7ni\t)’
3D

where we have defined

i i i T i iz
H 2 2y T Hy ([@Ll ZtT+1] - ff—A Zt\t) ,  (32a)
i = Py — Hi APy, (32b)
with
H 2 Py, (A7 (Q'+ AP, (4)T) (320)

Remark 2. 1t is straightforward to rewrite (32a) according to,

Ni|t = Hi\thizt—s-l + Ci|t(€t+1) (33a)

with
e 2 10y, (WG = JO) = WifL+ (Pi)7'21) , (33b)
[We(&) Wa(&)] £ A(&) Q&) ™! (33¢)

This highlights the fact that (324)) is affine in z;;1; a property
that will be used in Section [VII O

Let {3/, L= = {& 1 20 r}1L, be the joint back-
ward trajectories available at time ¢+ 1. As in 29), let 1(j) be
the index of the RBPF particle which is appended to the j:th
backward trajectory. Then, for each 7 = 1, ..., M we can
evaluate the mean and covariance of the Gaussian distribution
(1), given by utll(tj >(,§g 1) and Ht|(tj ). respectively. It is
then straightforward to sample z; from (31), completing the
joint backward simulation at time t. The backward trajectories
are thus given by,

(34a)
(34b)

Typ =A%, Tt
~ 7 I ~
i ={§ (j) J}
forj=1,..., M.
At time t = 1, we have obtained a collection of joint

backward trajectories, approximating the joint smoothing dis-
tribution according to,

M
p(drrr | yi.7) M Z (dz1.7). (35)

We summarise the JBS-RBPS in Algorithm [3]

Algorithm 3 JBS-RBPS
1: Initialise the backward trajectorles according to (23) and
24): {xT}]wl = {gTizT}
2. fort=T—1to1do
3: Sample indices {I(j)}}Z, according to Algorithm I or
(preferably) according to Algorithm []
4. for j=1to M do

5: Set ég = tl(j).

6: Sample z ~ N(uf‘(g &1, 20, Hfﬁ”) using
7: Set #; = {¢/, 2/} and Tj.p = {T, %4 1.0}

8: end for

9: end for

10: return the backward trajectories {i{:T}jﬂil




B. Fast sampling of the nonlinear backward trajectories

Algorithm [2] provides a straightforward way to sample the
indices used to augment the nonlinear backward trajectories.
However, this method has a computational complexity which
grows like M N. This is easily seen from the fact that index j
ranges from 1 to M and index ¢ ranges from 1 to N. Hence,
if we would use M = N, the JBS-RBPS using Algorithm [2] is
quadratic in the number of particles. This is a major drawback,
common to many particle smoothers presented in the literature.
However, recently a new particle smoother has been presented,
which allows us to sample backward trajectories with a cost
that grows only linearly with the number of particles [10].
Below we explain how the same idea can be used also for the
mixed linear/nonlinear models studied in this work.

The quadratic complexity of Algorithm [2] arises from the
evaluation of the weights (27b). However, by taking a rejection
sampling approach, it is possible to sample from (29) without
evaluating all the weights. The target distribution is, from
and (27), categorical, with probabilities given by {LD;lJT}ZI\Ll
As proposal distribution, we take the categorical distribution
over the same index set {1, ..., N}, but with probabilities
{wilN |, ie. given by the filter weights. Let

e (271')7%  max

=1, ...,

{det (@ +a z’t(Ai)T)_é] ,
(36)

which implies that p; > p(éfﬂ, 2{+1 | €., y1.) for all i and
7. We can thus apply rejection sampling to sample the indices
{I(y )}Jj\i1 as described in Algorithm In terms of input and
output, this algorithm is equivalent to Algorithm [2}

Algorithm 4 Fast nonlinear trajectory backward simulation
. L« {1,..., M}
2: while L is not empty do

3: n <+ card(L).

4: 5+ 0.

5 Sample independently {C'(k)}7_, ~ Cat({wi}},).
6:  Sample independently {U(k)}7_, ~ U(0,1).

7. for k=1 ton do

8: it U(k)<p (%ﬁ(}f), EXV 10, yu) /p¢ then
9: I(L(k)) < C(k).

10: 5+ dU{L(k)}.

11: end if

12 end for

13 L+ L\J.

14: end while

15: return the indices {I(j)}},.

For M = N and under some additional assumptions, it
can be shown that the rejection sampling approach used by
Algorithm [ reaches linear complexity [I0]. However, it is
worth to note that there is no upper bound on the number of
times that the while-loop may be executed. Empirical studies
indicate that most of the time required by Algorithm [} is
spent on just a few particles. In other words, the cardinality
of L decreases fast in the beginning (we get a lot of accepted

samples), but can linger for a long time close to zero. This
can for instance occur when just a single backward trajectory
remains, for which all RBPF particles gets low acceptance prob-
abilities. To circumvent this, a “timeout check” can be added
to Algorithm E} Hence, let M.« be the maximum allowed
number of executions of the while-loop at row [2| If L is not
empty after M, iterations, we make an exhaustive evaluation
of the smoothing weights for the remaining elements in L, i.e.
as in Algorithm 2] but with j ranging only over the remaining
indices in L. By empirical studies, such a timeout check can
drastically reduce the execution time of Algorithm and
seems to be crucial for its applicability for certain problems.
A sensible value for M,,x seems to be in the range M/3 to
M/2.

As we will argue in Section [VITI] it is generally a good idea
touse N > M. Still, by empirical studies, we have found that
Algorithm [ provides a substantial speed-up over Algorithm [2]
for many problems.

C. Constrained smoothing of the linear states

After a complete pass of the JBS-RBPS algorithm, we have
obtained a collection of backward trajectories {Z{,,}1L, =
(&, ZiT}jl‘il, approximating the joint smoothing distribu-
tion with a point-mass distribution according to (33)). However,
since the model under study is CLGSS, it holds that for
fixed nonlinear state trajectories, the smoothing problem is
analytically tractable, since the model then reduces to an
LGSS. Hence, if we keep the nonlinear backward trajectories,
but discard the linear ones, we may perform a constrained
forward/backward smoothing for the linear states.

Hence, for each j = 1,..., M we fix é{:T and run a
KF and an RTS smoother [[17]], [18] on the model (G). The
conditional marginal smoothing densityﬂ for the linear state is
then obtained as,

(2 | &lpyyr) =N (zt; gi\T’Ptle) ’

(37

for some means and covariances, {th‘T}tT:l and {ﬁéT}tT:p re-
spectively. In contrast to the “joint point-mass representation”
(33)) produced by the JBS-RBPS, we thus obtain a mixed repre-
sentation of the marginal smoothing distribution (similarly to
the RBPF representation of the filtering distribution),

M
1 P
pldgedz | yur) ~ o2 DN (das Epp By ) by (d50).
j=1
(3%)

Hence, we use the JBS-RBPS given in Algorithm [3|to sample the
nonlinear backward trajectories. Note, however, that we still
need to sample the linear backward trajectories, since the linear
samples are used in the computation of the weights in (27).
Hence, the linear backward trajectories can be seen as auxiliary
variables in this method, needed to generate the nonlinear
backward trajectories. Once this is done, the linear samples
are replaced by an analytical evaluation of the conditional
smoothing densities (37).

2Recall that we, for notational convenience, focus on the marginal smooth-
ing distribution.



One obvious drawback with this method is that we need to
process the data twice, i.e. we make two consecutive forward
filtering/backward smoothing passes.

VI. "M ARGINAL BACKWARD SIMULATION’-RBPS

One obvious question to ask is whether it is possible to sam-
ple the nonlinear backward trajectories and at the same time,
sequentially backward in time, update the sufficient statistics
for the conditional smoothing densities for the linear states. In
other words; can we run a single forward filtering/backward
smoothing pass and obtain an approximation of the marginal
smoothing distribution of the same form as (38)? As we shall
see, this is not that easily achievable and we will require some
approximations to enable such a backward recursion.

Before we engage in the derivation of the marginal back-
ward simulation RBPF (MBS-RBPS), let us pause to think about
the cause for this problem. The basis for both the RBPF and
any RBPS is the CLGSS property of the model under study,
which more or less boils down to the conditional filtering
density given by (19). This states that, as long as we traverse
along (and condition on) a nonlinear state trajectory &/ .,, the
conditional distribution is Gaussian. However, the purpose of
smoothing through backward simulation is clearly to “update”
the trajectories generated by the forward RBPF; if we do not
allow for any change of the trajectories, we will not gain
anything from smoothing. The problem is that when we no
longer have fixed nonlinear state trajectories, the Gaussianity
implied by (T9) is lost.

We can also understand this by thinking of the nonlinear
state trajectories as “‘extra measurements” in the RBPF. Since
we, during the backward smoothing, sample new nonlinear
state trajectories, we will in fact change these “extra measure-
ments”. Clearly, for a forward/backward smoother for an LGSS
model to be applicable, we may not change the measurement
sequence between the forward and the backward passes.

To get around this problem we will, as mentioned above,
need some approximation. Naturally, we wish to compute the
conditional, marginal smoothing densities p(z; | &1.7, y1.7)-
Furthermore, we wish to compute these densities sequentially,
backward in time. Hence, we require that this conditional
smoothing density should be available for computation at time
t, which highlights the problem that we face; at time ¢ we have
generated nonlinear backward trajectories {g{T}ﬁ\il but we
do not know how these trajectories will extended to time ¢ —1.
This insight suggests the following approximation.

Approximation 1. For each t = 2, ..., T, conditioned on
&.r and yy.1, the linear state z; is approximately independent

of 1.1, Le. (2 | ey yrir) = 02 | s Yr1)-

We continue the discussion on this approximation in Sec-
tion but first we turn to the derivation of the MBS-RBPS.

A. Initialisation

We start the derivation of the MBS-RBPS by considering the
initialisation at time 7'. This will also provide some insight
into the nature of Approximation [I] The nonlinear backward
trajectories are initialised by sampling from the empirical

state-marginal smoothing distribution (20), defined by the
RBPF,

{T(G)}5%0 ~ Cat ({wr}ily) (39)

g =) j=1,...,M. (39b)
Furthermore, by Approximation [I| we conjecture that

(40)

~. I(4 .
p(ZT | g%ayl:T) ~ P(ZT | 51;(7]“),175%“71/1:T)~
—_———

=617
The density on the right hand side is the conditional filtering
density at time 7", which is provided by the RBPF according to
(19). Hence, we can approximate the density on the left hand
side with,

pler | & nr) 2N (zT; 2;|T,15$‘T) . (4la)

where,
Hp = Zrpr ( ff%)) : j=1,....M,  (41b)
Pl = Pryr ( ff%)) , j=1,...,M. (41¢)

This is in fact exactly the same approximation of the density
p(zr | &r,y1.7) as given by the RBPF in (22).

B. Marginal backward simulation
To enable a marginal backward simulation for the nonlinear
state, we consider a factorisation of the state-marginal smooth-
ing density, similar to (13,
T—1
p&r [ yrr) =pEr | vir) [] p& | Grrsyir). (42)
t=1
Now, assume that the backward smoothing has been completed
for time 7T down to time ¢ + 1. Hence, we assume that we
have obtained a collection of nonlinear backward trajectories
{& 1.0 }iL,; at time T these are given by (39). Furthermore,
analogously to (1)), we assume that we have approximated
the conditional smoothing densities for the linear state with,

P(ze41 | 5§+1:T’91:T) =N (Zt+1?5i+1|T7PtJ+1\T) ; (43)

57 ; DI .
for some mean z; T and covariance P; T and for j =

1, ..., M. How to compute these densities, sequentially back-
ward in time, will be the topic of Section [VI-C|
Based on the factorisation (42]), we see that we wish to

augment the backward trajectories with samples from
(& | &1y yrr)- (44)

To enable this, we write the target density as a marginal,
similarly to (23),

p(& | ft-‘,—l:Tayl:T)
= /p(§1:t72’t+1 |§t+1:T,y1:T) d§1:t—1d2’t+1, (45)

which implies that we instead may sample from the joint
density,

(e, Ze41 | £€+1;T7y1:T)

=p(&1e | Zt+1,§~f+1;T7y1;T)p(zt+1 | g{+1;T7y1:T)- (46)



Using @3], the second factor in is approximately Gaus-
sian, and we can easily sample,

7 5 P
Zjq ~ N <2t+1vzt+1|T’Pt+1\T) :

For the first factor of (6)), using the conditional independence
properties of the model, we get

(47)

p(gl:t ‘ Zt—&-lagt—&-l:Tvyl:T) = p(fl:t | Zt+17£t+17y1:t)a (48)

which coincides with (26). Hence, marginal backward simu-
lation in the MBS-RBPS is done analogously to the nonlinear
backward simulation in the JBS-RBPS, given by - 29):
only with 2], replaced with the auxiliary variable Z7,,
generated by (@7).

That is, for each backward trajectory j = 1, ...
sample an index

, M, we

I(j) ~ Cat ({wtlT R 1) (49)

corresponding to the forward filter particle that is to be ap-
pended to the j:th backward trajectory. The smoothing weights
{wtlT}N 1 are computed as in and (28). As before, since
(27) defines a distribution over RBPF particle trajectories, we
will in fact obtain a sample § 1 ) from the space of trajectories.
However, by simply discarding &; (t)l and also the auxiliary
variable Zf 11, we end up with an approximate realisation from
(44). This sample can then be appended to the j:th backward
trajectory,

) &) (50)

. I ~
5i:T = {ft W) &

Finally, we note that the fast backward simulation described
in Section [V=Bl can be used also for the MBS-RBPS.

C. Updating the linear states

When traversing backward in time, we also need to update
the sufficient statistics for the linear states. As previously
pointed out, the aim in the MBS-RBPS is to do this sequentially.
The requirement for this is also indicated by @7), from
which we note that the conditional smoothing densities for
the linear states are needed during the backward simulation of
the nonlinear state trajectories. In accordance with @]) we
seek a Gaussian approximation of the conditional smoothing
density,

PG | o) = N (26550 Py ) D)
at time ¢ = T, the approximation is given by {I).

The mean and covariance of this distribution will be de-
termined by fusing the information available in this RBPF at
time ¢, with the (existing) smoothing distribution for the linear
states at time ¢+ 1. We start by noting that, by the conditional
independence properties of the model, we have

(2 | &1rs zer1, y1r) = P(2e | Eregts 2eg1,y1). - (52)

The density on the right hand side coincides with (3T). Now,
as before, let I(j) be the index of the forward RBPF particle
which is appended to the j:th backward trajectory at time ¢, so

that &, = {¢/Y),&,.}. By (2, B1) and (333 we then

have,

(2t \f{(tj)a ffH T At+15 Y1: )
_J\/(Z I(J)wl(g)z +c I(5 )( ) Hl(j)) (53)
t3 Ly t+1 T Gy \Se41)s e )

which is Gaussian and affine in z;, . Furthermore, by making
use of Approximation [I] (for time ¢ + 1) and (@3) we have.

1) » -
p(Zt+1 | 51;(5),§i+1:T7y1:T) ~N (Zt-‘rl;zi_,_”T)Pt]-&-l\T) )
(54)

If we accept the approximation above, and describe
an affine transformation of a Gaussian variable, which itself
is Gaussian. Hence, with an additional application of Approx-
imation [T] (for time ¢) we obtain,

pla | 619,60, r917)

~ e | 6§98 i) 2N (2650 Pl ) s 59)
—_———

i

tr
with

t\T = H{\(tJ)WI(])ZtH\T + Ct|t (§t+1) (56a)

PtJ‘T _ Hf\(tj) | (WI(J))THI‘(J) (56b)

Mtj\T = Hf\(tJ)WzI Pl (56¢)

The expression above provides the sought density (3T).

Remark 3. Considering the relationship between (32a) and
(334) we may alternatively express (56a) as,

j I 10 £ ) y
ilT t\(tj) + H] € ([ 41 ] — 10— A10)5 (;)) ’
t+1|T
(57

which may be more natural to use in an implementation. [
Remark 4. In many cases, the 2-step, fixed interval smoothing
distribution p(d&s.¢41,dze.e+1 | y1.7) is needed; see e.g. [[14].
If this is the case, the variable defined in provides the
conditional covariance between z; and z;y1, i.e.

Mtle ~ Cov (ztthJrl ’ fi}pym) . (58)

The approximate equality in the expression above is due to
the fact that we made use of Approximation |l| when deriving
(53) and (56¢). 0

We summarise the MBS-RBPS in Algorithm [

VII. DISCUSSION

Before we continue with a numerical evaluation of the
proposed smoothers, we provide some additional discussion
regarding Approximation 1| used during the derivation of the
MBS-RBPS. As pointed out at the beginning of Section [VI| the
need for this approximation arises since we wish to traverse
backward in time, along nonlinear backward trajectories which
are different from the RBPF forward trajectories.

In Figure [T] we illustrate the steps used to update the linear
states when moving from time ¢ + 1 to time ¢ in the MBS-
RBPS. The boxes illustrate one nonlinear forward trajectory



Algorithm 5 MBS-RBPS

1: Initialise the marginal backward trajectories {éJT}jle ac-
cording to (39).

2: Initialise the means and covariances for the linear state
{ZT‘T, TT}j , according to (@I).

3: fort_T—ltoldo

: Sample ZtJr1 for j =1,

5:  Sample indices {I(j)}}~
or (preferably) accordlng to Algorithm I (with z/ 11
replaced by Zt +1)
Augment the backward trajectories according to (50).
Update the means and covariances according to (56).

end for ‘

return the marginal backward trajectories {¢] .},

and the means and the covariances for the linear state,

{Z\r- tJIT}jIVil fort=1,...,T.

, M according to (47).

° PR D

p(z | €19, y10)

I(5) 1(5) gj
1:t—1 t t+1:T

—
p(ze41 | fiH;T, Y1.T)

plze | 619 y1e)

1(5) 1(7) &
1:t—1 t t+1:T

— -
p(zerr | 619 € moyrr) ~ p(zesn | &1 Y1)

() =i
= p(zt ‘ 51:(g)>§'t]+1:Tayl:T)

1(5) 1(7)
1:t—1 t

£J
£tJrI:T

(Zf ‘ ggTa yl'T)
(Zt | 51 4 7§t+1 75 Y1: T)

Fig. 1. Tllustration of one time step in the MBS-RBPS. See the text for details.

) (generated by the RBPF) reaching up to time ¢, and one
nonlinear backward trajectory Eg 4 1.7 reaching down to time
t + 1. In the upper plot of the figure, the backward trajectory
is not yet connected to the forward trajectory. Two of the
densities for the linear state are shown, provided by the RBPF
and the MBS-RBPS, respectively.

In the middle plot, we extend the backward trajectory
by sampling among the forward filter particles. Hence, the
backward trajectory is connected to one of the RBPF forward
trajectories. Here, we make use of Approximation |I} as in
. In words, the meaning of this is that we assume that the
conditional smoothing density for the linear state at time ¢+ 1
is unaffected by the concatenation of the forward trajectory.
This enables us to fuse the conditional filtering density at

.y accordmg to Algonthm

time ¢, provided by the RBPF, with the conditional smoothing
density at time ¢ + 1. The result is given by (53] and (56).

Finally, in the bottom plot we discard the forward trajectory
up to time ¢ — 1, §1 ;.1 The reason for this is that we, in
general, wish to take a different path from time ¢ to time ¢ —1,
than what is given by the current forward trajectory. To enable
this, we again make use of Approximation [I]to “cut the link”
with the forward trajectory. This is the approximation utilised
in (53).

The basic meaning of Approximation [I]is that, conditioned
on the present nonlinear state (and the future nonlinear states)
as well as the measurements, the linear state is independent of
“previous” nonlinear states. The accuracy of the approximation
should thus be related to the mixing properties of the system.
If the system under study is slowly mixing, we expect the
approximation to be poor. Consequently, the MBS-RBPS should
be used with care for this type of systems.

In the derivation of the JBS-RBPS in Section [Vl we did not
encounter Approximation [T} However, it can be realised that
a similar procedure to that outlined in Figure [I] is used in
the JBS-RBPS as well. Recall that the backward kernel here is
expressed as (23). As described in Section [V] to sample from
this kernel we first draw one of the RBPF forward trajectories
51(] ). At this stage, we are in a similar state as illustrated by
the middle plot in Figure [I| We then draw a linear sample
from (31)), which is appended to the joint backward trajectory.
Finally, we discard the forward trajectory up to time ¢ — 1,
which corresponds to the procedure illustrated by the bottom
plot in Figure [T}

Based on this similarity, it is believed that not only the
MBS-RBPS, but also the JBS-RBPS, will encounter problems for
slowly mixing systems. However, this is not that surprising,
since they are both based on the RBPF, which is known to
degenerate if the system is too slowly mixing.

VIII. NUMERICAL ILLUSTRATIONS

In this section we will evaluate the proposed smoothers
on numerical data. Two different examples will be presented;
first we consider a linear Gaussian system and thereafter a
mixed linear/nonlinear system. The purpose of including a
linear Gaussian example is to gain confidence in the presented
smoothers. This is possible since, for this case, the smoothing
densities can be computed analytically.

For both the linear and the mixed linear/nonlinear examples,
we can also address the state inference problems using stan-
dard particle methods. To solve the filtering problem, we then
use the bootstrap PF [4]]. The smoothing problem is thereafter
addressed using the fast FFBSi [[10] (recall that this smoother is
equivalent to the FFBSi by [9]], given in Algorithm [I)). For the
Rao-Blackwellised particle smoothers, a bootstrap RBPF [7] is
used as forward filter.

A. A linear system

Consider the second order linear system,

E)-6 D v-roe

Yt = ft + €t, €t ~ N(OvR)v

(592)
(59b)



with Q = 0.11242 and R = 0.1. The initial state of the system
is Gaussian with mean (0 1)T and covariance 0.115. In the
Rao-Blackwellised particle methods, the first state &; is treated
as if it is nonlinear, whereas the second state z; is treated as
linear.

The comparison was made by a Monte Carlo study over 100
realisations of data y;.7 from the system (39), each consisting
of T" = 100 measurements. The three filters, KF, PF and RBPF,
and thereafter the four smoothers, RTS, (fast) FFBSi, (fast) JBS-
RBPS and (fast) MBS-RBPS, were run in parallel. Furthermore,
we performed a constrained RTS smoothing of the linear state,
based on the nonlinear backward trajectories generated by JBS-
RBPS, as described in Section [V-C] The PF and the RBPF both
employed N = 50 particles and the particle smoothers all used
M = 50 backward trajectories.

In Table [I| we present the time-averaged root mean squared
errors (RMSEs) for the smoothers. As can be seen, all the Rao-
Blackwellised smoothers performs similarly and close to the
RTS. The FFBSi, which is a “pure” particle smoother, performs
worse at estimating the z;-state. Clearly, this is a simple state
inference problem, but it still provides some confidence for
the adequacy of the proposed smoothers.

TABLE 1
RMSE VALUES FOR SMOOTHERS (x10~1)

Smoother &t 2t

FFBSi 2.33 11.26
JBS-RBPS 2.22 7.34
JBS-RBPS w. constr. RTS ~ 2.22 7.25
MBS-RBPS 2.22 7.25
RTS 2.11 7.23

B. A mixed linear/nonlinear system

We continue with a more challenging mixed linear/nonlinear
example. Consider the following first order nonlinear system,

&t

§t+1 = 05515 + etﬁ + 8COS(12t> + U&)t, (603)
t

yr = 0.05¢7 + ey, (60b)

for some process {6;};>1. The case with a static §; = 25,
has been studied in e.g. [4]], [19] and has become something
of a benchmark example for nonlinear filtering. Here, we
assume instead that 6, is a time varying parameter with known
dynamics, given by the output from a fourth order linear
system,

3 —1.691 0.849 —-0.3201
2 0 0 0
Zt41 = 0 1 0 0 2t + Uzt (61a)
0 0 0.5 0
6, =25+ (0 0.04 0044 0.008)z, (61b)

with poles in 0.8 £ 0.1¢ and 0.7 & 0.05i. Combined, and
(6I) is a mixed linear/nonlinear system. The noises are as-
sumed to be white, Gaussian and mutually independent; ve ; ~
N(0,0.005), v, + ~ N(0,0.011454) and e; ~ N(0,0.1).

We evaluate the proposed smoothers in a Monte Carlo study,
where we simulate 1000 realisations of data y;.r from the
system, each consisting of 7" = 100 measurements. As forward
filters, we employ a PF and an RBPF, both using N = 300
particles. We then run the different smoothers; FFBSi, JBS-RBPS,
JBS-RBPS with constrained RTS smoothing and finally MBS-
RBPS. This is done for three different number of backward
trajectories, M = 10, M = 50 and M = 100. Table
summarises the results, in terms of the time averaged RMSE
values for the nonlinear state & and for the time varying
parameter 6; (note that 6; is a linear combination of the four
linear states z;).

TABLE 11
RMSE VALUES FOR SMOOTHERS (X 10*1)

M =10 M =50 M = 100
Smoother ﬁt gt ét 9t Et 075
FFBSi 4.28 7.89 427 7.87 427 7.86
JBS-RBPS 3.17 589 3.13 574 312 5.72
JBS-RBPS w. constr. RTS ~ 3.17 5.85 3.13 5.71 3.12 5.69
MBS-RBPS 3.16 5.81 3.13 5.73 3.13 5.72

As comparison, the RMSE values for the PF with N = 300
particles were 5.10 x 10~! for & and 9.32 x 10! for 6;,
respectively. The corresponding numbers for the RBPF were
440 x 107! and 8.49 x 10~'. From this, we note that
smoothing clearly improves the performance over filtering,
even with as few as 10 backward trajectories. This is the
case, both for the “standard” particle methods, and for the
Rao-Blackwellised ones. This provides some insight into how
one should proceed when designing a forward/backward type
of particle smoother. Most important is to obtain an accurate
approximation of the backward kernel, and this depends only
on the filter! Once this approximation is fixed, the backward
simulators will generate conditionally i.i.d. samples from the
empirical smoothing distribution (see further [10]]). Hence, the
computational effort should to a large extent be spent on the
forward filter. If the filter provides an accurate approximation
of the backward kernel, it will in many applications be
sufficient to generate only a few backward trajectories.

The next thing to note is that the three RBPS all out-
perform the FFBSi, but compared to each other, they have
very similar performance. For the nonlinear state, there is
basically no difference at all. For the linear states (i.e. the
time varying parameter), the JBS-RBPS with constrained RTS
is, unsurprisingly, slightly better than just JBS-RBPS, regardless
of the number of backward trajectories. This comes at the
cost of an additional forward/backward sweep of the data.
However, it should be noted that the time requirement for
this constrained smoothing is much lower than for the JBS-
RBPS and the MBS-RBPS. Hence, in terms of time consumption,
it does not cost us very much to complement the JBS-RBPS
with a constrained RTS, too achieve somewhat better estimates.
Hence, the main drawback with this approach is perhaps not
the increased computational complexity. Instead, it might be
the fact that it requires the implementation of an additional
smoothing procedure, which increases the volume and the
complexity of the code.
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Fig. 2.
JBS-RBPS, JBS-RBPS w. constrained RTS and MBS-RBPS.

As pointed out above, the JBS-RBPS and the MBS-RBPS have
very similar performance, and it is not possible to say that one
is better than the other. However, there is a slight indication
that the MBS-RBPS has higher accuracy when we use very few
backward trajectories (M = 10). For this specific example,
the JBS-RBPS “catches up” as we increase the number of
backward trajectories. Hence, if we do not have any particular
time constraints, JBS-RBPS with a high number of backward
trajectories and complemented with constrained RTS might be
the better choice. On the contrary, if we wish to use only
a few backward trajectories, MBS-RBPS might be preferable.
However, we emphasise once again that the RBPS all have
similar performance, and that they all solve the problem with
increased accuracy when compared to standard FFBSi.

Finally, in Figure 2] we further illustrate the difference in
the representation of the smoothing distribution, between the
methods. The plots show (as thick black lines) the evolution
of the parameter 6; over time ¢ = 1,...,100, for one
data realisation. The plots also show the estimated marginal
smoothing distributions p(6; | y1.100) for the RBPF and the
three RBPS (with M = 50). All methods, except JBS-RBPS, have
continuous representations of the density function, which are
color coded in the plots (the darker the color, the higher is
the value of the density function). The JBS-RBPS uses an (un-
weighted) particle representation of the smoothing distribution,
which is illustrated with dots in the figure.

IX. CONCLUSIONS

We have developed methods for Rao-Blackwellised particle
smoothing, based on forward filter/backward simulator type
of particle smoothers. We argued that, as opposed to the Rao-
Blackwellised particle filter, there is no single “natural” way to
construct an RBPS. Therefore, we have proposed two different
approaches. The first, JBS-RBPS, uses a joint backward sim-
ulation in analogy with the “standard” FFBSi. The difference
is that the JBS-RBPS approximates the backward kernel using
an RBPF, whereas the FFBSi makes use of a PF. This method
has previously been used in [13|] for hierarchical models.
Here we have extended the approach to fully interconnected
mixed linear/nonlinear Gaussian state-space models. We also
proposed to complement this approach with a constrained RTS
smoothing for the linear states.

The second approach, MBS-RBPS, draws particles trajectories
only for the nonlinear state process. This shows a stronger
resemblance with the RBPE. However, due to the fact that

100 0 20 40 60 80

100 0 20 40 60 80 100

Plots over distributions for 6; over time, for one data realisation. The true value of 6; is shown as a solid black line. From left to right; RBPF,

we wish to update the nonlinear particle trajectories in the
backward simulation, we were forced to make certain approx-
imations.

In numerical studies, the different approaches gave similar
results, all with improved performance over ‘“standard” FFBSi.
There is a slight indication that MBS-RBPS is preferable if we
wish to use only a few backward trajectories, whereas JBS-RBPS
with constrained RTS performs better when we increase the
number of backward trajectories. However, which approach
that is preferable over the other is likely to be problem
dependent.

Finally, as a general message when designing a for-
ward/backward type of particle smoother (Rao-Blackwellised
or not) is to put effort in the forward filtering. For the
smoothers to perform well, it is crucial that the backward
kernel is accurately approximated, and this depends only on
the filter.
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