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AN EXACT SUBSPACE METHOD FOR FUNDAMENTAL FREQUENCY ESTIMATION
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Dept. of Architecure, Design & Media Technology
Aalborg University, Denmark
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ABSTRACT

In this paper, an exact subspace method for fundamental fre-
quency is presented. The method is based on the principles
of the MUSIC algorithm, wherein the orthogonality between
the signal and and noise subspace is exploited. Unlike the
original MUSIC algorithm, the new method does not employ
an approximate measure of the angles between the subspaces
but rather uses an exact measure. This makes a difference, for
example, when the fundamental frequency is low, for real sig-
nals, or when the number of samples is low. In Monte Carlo
simulations, the performance of the new method is compared
to a number of state-of-the-art methods and is demonstrated
to lead to improvements in certain, critical cases.

Index Terms— Spectral estimation, fundamental fre-
quency estimation, subspace methods

1. INTRODUCTION

Many signals of interest to mankind are periodic or approx-
imately periodic. This is, for example, the case for signals
produced by the human speech production system, those pro-
duced by many musical instruments, bird songs, vital signs,
rotating targets in sonar and radar, and boats and helicopters.
Such periodic signals can be decomposed into sums of har-
monically related sinusoids whose frequencies are integer
multiples of a fundamental frequency and the problem of
finding this fundamental frequency, sometimes also referred
to as pitch estimation, is the topic of the present paper. A
host of different methods have been proposed over the years
for solving this important problem, e.g., [1–6], and we refer
the interested reader to [7] for an overview. Many of these
methods are, implicitly or explicit, based on asymptotic ap-
proximations and this causes trouble in certain situations.
This is, for example, the case for a low number of observa-
tions, for low fundamental frequencies and for real signals.

In this paper, we propose a new method for dealing with
these problems in the context of fundamental frequency es-
timation. It is a subspace method based on the orthogonal-
ity between the signal of noise subspaces, a principle known
from the classical MUSIC algorithm [8]. Unlike the MUSIC
algorithm, the proposed method method is based on an exact

measure of the angles between subspaces [9–11]. It is gen-
erally not feasible to employ such exact measures in uncon-
strained frequency estimation with several nonlinear parame-
ters. However, it is well-suited for the fundamental frequency
estimation problem as it only involves one nonlinear parame-
ter.

The remaining part of this paper is organized as follows:
In Section 2, we introduce the basic signal model, the under-
lying assumptions and define the problem at hand. Then, in
Section 3 the proposed method is presented. We then inves-
tigate the performance of the proposed method under vari-
ous conditions and compare it to a number of state-of-the-art
methods in Section 4. Finally, we conclude on our work in
Section 5.

2. COVARIANCE MATRIX MODEL

We will now introduce the problem at hand and the signal
model. The observed real signal x(n) is comprised of L sinu-
soidal components having frequencies that are integer multi-
ples of a fundamental frequency ω0, real amplitude Al > 0,
and phases φl ∈ [0, 2π). Moreover, we assume that an ad-
ditive noise source e(n) is present, which is here assumed to
be white with variance σ2. In math, the signal model can be
expressed for n = 0, . . . , N − 1 as

x(n) =

L∑
l=1

Al cos (ω0ln+ φl) + e(n). (1)

The problem at hand is then to estimate ω0, which, for a given
L, can be in the range ω0 ∈ (0, πL ). For a collection of sam-
ples {x(n)}, the model above can be expressed as

x(n) = Za + e(n), (2)

with the following definitions:

x(n) = [ x(n) x(n+ 1) · · · x(n+N − 1) ]
T (3)

Z = [ z(ω0) z∗(ω0) · · · z(ω0L) z∗(ω0L) ] , (4)

a =
1

2

[
A1e

jφ1 A1e
−jφl · · · ALejφL ALe

−jφL
]T

(5)



z(ω0l) =
[
1 ejω0l1 · · · ejω0l(N−1)

]T
(6)

e(n) = [ e(n) e(n+ 1) · · · e(n+M − 1) ]T . (7)

The covariance matrix of x(n) this vector is given by

R =E
{
x(n)xH(n)

}
= ZPZH + σ2I (8)

where the amplitude covariance matrix E
{
aaH

}
= P is

given by

P = E




a1a
∗
1 a∗1a

∗
1 . . . a1a

∗
L a∗1a

∗
L

a1a1 a∗1a1 . . . a1aL a∗1aL
...

...
...

...
aLa

∗
1 a∗La

∗
1 . . . aLa

∗
L a∗La

∗
L

aLa1 a∗La1 . . . aLaL a∗LaL




. (9)

Assuming that the phases φl are uniformly distributed and
independent over l we have that E

{
Ak

2 e
jφk
}

= 0 and that
E
{
Ak

2 e
jφk Al

2 e
−jφl

}
= Ak

2 E
{
ejφk

}
Al

2 E
{
e−jφl

}
= 0 for

k 6= l. For k = l we get that E
{
Ak

2 e
jφk Ak

2 e
−jφk

}
=

A2
k

4 .
Therefore, the amplitude covariance matrix P becomes

P =
1

4
diag

([
A2

1 A
2
1 · · · A2

L A
2
L

])
, (10)

which means that the diagonal structure obtained for complex
signals is retained for real signals, and the so-called covari-
ance matrix model, therefore, still holds.

The eigenvalue decomposition (EVD) of the covari-
ance matrix is R = UΓUH , where Γ is a diagonal ma-
trix containing the positive eigenvalues, γk, ordered as
γ1 ≥ γ2 ≥ . . . ≥ γM . Moreover, it can easily be seen
that γ2L+1 = . . . = γM = σ2. U contains the M orthonor-
mal eigenvectors of R, i.e., U =

[
u1 · · · uM

]
. Let

S be formed from a subset of the columns of this matrix as
S =

[
u1 · · · u2L

]
. We denote the subspace spanned

by the columns of S as S = R (S) and refer to it as the signal
subspace. Similarly, let G be formed from the remaining
eigenvectors as G =

[
u2L+1 · · · uM

]
. We refer to

the space G = R (G) as the noise subspace. Using these
definitions, we now obtain U

(
Γ− σ2I

)
UH = ZPZH . In-

troducing Ψ = diag([ γ1 − σ2 · · · γ2L − σ2 ]), this leads to
the following partitioning of the EVD:

R =
[

S G
]([ Ψ 0

0 0

]
+ σ2I

)[
SH

GH

]
, (11)

which shows that we may write SΨSH = ZPZH . As the
columns of S and G are orthogonal and R (Z) = R (S), it
follows that ZHG = 0, which is the subspace orthogonality
principle used in the MUSIC algorithm [8].

3. PROPOSED METHOD

In practice, the estimated noise subspace eigenvectors will not
be perfect due to the observation noise and finite observation

lengths, and the above relation is, therefore, only approxi-
mate. A measure must then be introduced to determine how
close a candidate model Z is to being orthogonal to G. Tra-
ditionally, this has been done using the Frobenius norm [8].
However, this measure is only an accurate measure of the an-
gles between the two spaces for orthogonal vectors in both Z
and G, and, the asymptotic orthogonality of the column of Z
may not always be accurate. Instead, we propose to measure
the orthogonality as follows. The principal angles {ξk} be-
tween the two subspaces Z and G are defined recursively for
k = 1, . . . ,K as [10]

cos (ξk) = max
u∈Z

max
v∈G

uHv

‖u‖2‖v‖2
, uHk vk, (12)

where K is the minimal dimension of the two subspaces, i.e.,
K = min{2L,M − 2L} and uHui = 0 and vHvi = 0
for i = 1, . . . , k − 1. This results in a set of angles that are
bounded and ordered, i.e., 0 ≤ ξ1 ≤ . . . ≤ ξK ≤ π

2 . Given
the orthogonal projection matrices for Z and G, denoted ΠZ

and ΠG, respectively, the expression in (12) can be written as

cos (ξk) = max
y

max
z

yHΠZΠGz

‖y‖2‖z‖2
(13)

= yHk ΠZΠGzk = κk. (14)

As can be seen, {κk} are the ordered singular values of the
matrix product ΠZΠG, and the two sets of vectors {y} and
{z} are the left and right singular vectors of the matrix prod-
uct, respectively. The singular values are related to the Frobe-
nius norm of ΠZΠG and hence its trace, denoted with Tr {·},
as

‖ΠZΠG‖2F = Tr {ΠZΠG} =
K∑
k=1

κ2k. (15)

If this Frobenius norm is zero, then the non-trivial angles are
all π2 , i.e., the two subspaces are orthogonal. We can use this
expression to find the fundamental frequency as

ω̂0 = argmin
ω0

‖ΠZΠG‖2F . (16)

As can be seen the estimate can be seen to be the value for
which the sum of cosine to the angles squared is the least.
Finally, (16) can be expressed as

ω̂0 = argmin
ω0

Tr
{

Z
(
ZHZ

)−1
ZHGGH

}
. (17)

We henceforth refer to this estimator as the angles between
subspaces (ABS) method. Interestingly, it is asymptotically
equivalent to the estimator proposed in [12] but is different for
finite M and N in that it takes the possible non-orthogonality
of the sinusoids into account. The estimator requires that
a number of quantities are computed as initialization, i.e.,
only once, namely the EVD of R and the projection ma-
trix for the noise subspace, which results in a complexity



of O((M − L)M2 + M3) with L < M . For each can-
didate fundamental frequency, operations having complexity
O(L2M +M2L+ L3) are computed. Regarding the covari-
ance matrix, we use the sample covariance matrix and note
that it is not required for this method that its estimate has full
rank. It must, however, allow for estimation of a basis for
the signal subspace, which requires that M ≤ N − 2L + 1.
Furthermore, we requre that M ≥ 2L + 1 for the orthogonal
complement to the signal subspace to be non-empty, which
means that we obtain that 2L+1 ≤M ≤ N−2L+1. More-
over, M should be chosen proportionally toN for the method
to be consistent.

4. EXPERIMENTAL RESULTS

The proposed method is compared to a number of other
fundamental frequency estimators using Monte Carlo simu-
lations by generating signals according to the model in (1)
and then applying various estimators to those signals. The
so-obtained parameter estimates are then compared to the
true parameters and the estimation error is measured in terms
of the mean square error (MSE). We compare the proposed
method (which, as mentioned, is referred to as ABS) to the
weighted least-squares (WLS) method of [3], the approxi-
mate nonlinear least-squares (ANLS) method [1,2,7], and the
optimal filtering method (OPTFILT) [13] and the MUSIC-
based method of [12]. Regarding the MUSIC-based method,
the proposed method should outperform it under adverse con-
ditions and they should perform the same for high N and M
as the methods will become identical then. For each set of
experimental conditions, 100 realizations are used and the
CRLB shown in the figures to follow is the average over the
exact CRLB. The signals were generated with the follow-
ing parameters, except for the parameters that are varied:
a fundamental frequency with ω0 = 0.3129 is used with
five harmonics each having unit amplitude and phases uni-
formly distributed between −π and π. Segments of N = 100
samples were used with M = 50 and white Gaussian noise
added at a signal-to-noise ratio (SNR) of 40 dB. Note that
this is the SNR for the fundamental frequency estimation
problem as defined in [7]. The high SNR is used so that the
noise will not be the limiting factor but rather the asymptotic
approximations.

The results are shown in Figures 1(a), 1(b), 1(c), and 1(d)
in terms of the MSE as a function of N , ω0, the SNR and M .
From the figures, a number of interesting observations can be
made. Firstly, it can be seen from Figure 1(a) that all methods
perform well for a high number of observations,N , except the
ANLS method which does not perform well at all. It can also
be observed that the methods exhibit different threshold be-
havior, but the ABS and MUSIC methods perform similarly
here. This is, however, not the case when the MSE is ob-
served as a function of the fundamental frequency, as shown
in Figure 1(b). From this Figure, it can be seen that the MU-

SIC method is indeed improved by avoiding the approximate
measure of orthogonality as is done in the ABS method. In
fact, the ABS method now performs as well as any of the
other methods. This clearly shows that, as claimed, the exact
measure is preferable when dealing with non-orthogonal si-
nusoids. In Figure 1(c), the MSE is depicted as a function of
the SNR. This figure shows that the subspace methods appear
to hold an advantage over the WLS and OPTFILT methods
in terms of being robust towards noise. In this case, it does,
though, not appear to matter whether the exact measure of
the ABS method or the approximate one of MUSIC is used.
Finally, the performance is assessed as a function of M , the
covariance matrix size, with the results being shown in Fig-
ure 1(d). It can be seen that as long as M is chosen not to
low or too high, it does appear to be all that critical to the per-
formance of the estimator, although this may be different for
different fundamental frequencies.

5. CONCLUSION

In this paper, a new method for fundamental frequency esti-
mation has been presented. The method, which is a subspace
method, avoids the commonly used asymptotic approxima-
tions of other methods, including also the classical MUSIC
algorithm. Instead, the method is based on an exact measure
of the angles between subspaces. In simulations, the method
was demonstrated to outperform its approximate counterpart
for low fundamental frequencies, a situation where the afore-
mentioned asymptotic approximations become inaccurate.
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