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Abstract

The general aim of this work is to learn a unique statistical signature for the state of a particular

speech pathology. We pose this as a speaker identification problem for dysarthric individuals. To

that end, we propose a novel algorithm for feature selection that aims to minimize the effects of

speaker-specific features (e.g., fundamental frequency) and maximize the effects of pathology-

specific features (e.g., vocal tract distortions and speech rhythm). We derive a cost function for

optimizing feature selection that simultaneously trades off between these two competing criteria.

Furthermore, we develop an efficient algorithm that optimizes this cost function and test the

algorithm on a set of 34 dysarthric and 13 healthy speakers. Results show that the proposed

method yields a set of features related to the speech disorder and not an individual's speaking

style. When compared to other feature-selection algorithms, the proposed approach results in an

improvement in a disorder fingerprinting task by selecting features that are specific to the disorder.

Index Terms

speech pathology; dysarthria; machine learning; feature selection

1. Introduction

Intelligibility of patients with speech pathologies is currently assessed through subjective

tests performed by trained speech-language pathologists. Subjective tests, however, tend to

be inconsistent, costly and, oftentimes, not repeatable. In fact, research has shown poor

inter- and intra-rater reliability in clinical assessment. Furthermore, clinicians working with

patients form a bias based on their interactions, resulting in intelligibility assessment of

limited validity and reliability [1–4]. The goal of our work is to augment speech language

pathologists with a digital signature of an individual's speech pathology state. This signature

can then be tracked over time to assess the efficacy of the provided treatment, or the

progression of a disease state. In this paper, we propose a novel feature selection algorithm

that identifies a series of pathology-specific features while attempting to minimize speaker-

specific effects.

We pose this problem as a speaker identification problem for dysarthric individuals.

Principal differences between different speakers arise from differences in their speaking

style and differences in the speech manifestation of their neurological disorder. We propose

an algorithm that selects features that mostly contribute to the differences in speech
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pathology rather than speaking style. More specifically, we select acoustic features that

discriminate well between dysarthric individuals, but provide minimal separation between

healthy speakers. This results in a feature set that focuses on acoustic cues capturing

differences in disorder rather than differences in speaking style. Consider the following

example illustrated by Fig. 1 and Fig. 2 as motivation, which shows the distribution of two

features (pitch period and pairwise energy variability) for 2 dysarthric and 2 healthy

speakers, respectively. It is clear from Fig. 1 that the pitch period provides significant

separation between the two dysarthric speakers, however it also provides separation between

the healthy speakers. Alternatively, as is apparent from Fig. 2, the pairwise frame energy

variability provides significant separation between the two dysarthric speakers, but has

significant overlap for the healthy speakers. This is a feature that analyzes the variability in

energy between consecutive 20 ms frames in the octave band centered at 2 kHz. With this,

we conclude the pairwise energy variability measures are sensitive to certain aspects of the

speech pathology, whereas the pitch metrics are sensitive to speaking style. The general aim

of this work is to extend this example by designing an algorithm that selects features that are

more sensitive to certain aspects of speech pathology rather than speaking style.

The literature contains limited work in this area. In [5], the authors rely on rhythm metrics

estimated through envelope modulation spectra to classify between different dysarthria

types. In [6] the authors make use of acoustic cues to detect Parkinson's disease using only

speech. In [7–9] the authors develop an algorithm for assessing intelligibility using a

regression scheme that makes use of a number of acoustic cues. In [9–12] the authors

present a number of schemes for assessing speech quality and intelligibility by comparing to

a clean reference signal. This paper is fundamentally different from the previous work, as

we are not interested in discriminating between dysarthria types or predicting intelligibility.

The goal here is to identify a set of features that act as a signature for the state of a speech

pathology in an individual. Toward this end, we derive a cost function for selection of

features and develop an efficient algorithm for solving it (Section 2). Following, we provide

comparative results and show the efficacy of our proposed technique (Section 3). In Section

4, we provide concluding remarks.

2. Feature Selection

The goal of our research here is to design an algorithm which takes a large set of features

and selects a subset of features that act as a signature for the state of a speech pathology. In

order to develop this algorithm, we next introduce our feature sets, define our cost function,

and define an efficient algorithm for solving it.

2.1. Feature Description

Although Mel-Frequency Cepstral Coefficients (MFCCs) have been the prevalent feature

used for automatic speech recognition for over 30 years [13, 14], our feature set is composed

of three different types of features more commonly found in the study of pathological

speech: Envelope Modulation Spectra (EMS) features, Long-Term Average Spectra (LTAS)

features, and ITU P.563 features. We discuss these below.
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EMS—The envelope modulation spectrum (EMS) is a representation of the slow amplitude

modulations in a signal and the distribution of energy in the amplitude fluctuations across

designated frequencies, collapsed over time [5]. It has been shown to be a useful indicator of

atypical rhythm patterns in pathological speech [5]. The speech segment, x(t), is first filtered

into 7 octave bands with center frequencies of 125, 250, 500, 1000, 2000, 4000, and 8000

Hz. Let hi(t) denote the filter associated with the ith octave. The filtered signal xi(t) is then

denoted by,

(1)

The envelope in the ith octave, denoted by enυi(t), is extracted by:

(2)

where, ℋ {·} denotes the Hilbert transform and hLPF(t) is the impulse response of a 20 Hz

low-pass filter. Once the amplitude envelope of the signal is obtained, the low-frequency

variation in the amplitude levels of the signal can be examined. Fourier analysis is used to

quantify the temporal regularities of the signal. With this, six EMS metrics are computed

from the resulting envelope spectrum for each of the 7 octave bands, xi(t), and the full

signal, x(t): 1) peak frequency; 2) peak amplitude; 3) energy in the spectrum from 3-6 Hz; 4)

energy in spectrum from 0-4 Hz; 5) energy in spectrum from 4-10 Hz; and 6) energy ratio

between 0-4 Hz band and 4-10 Hz band. This results in a 48-dimensional feature vector

denoted by fEMS.

LTAS—The long-term average spectrum (LTAS) features capture atypical average spectral

information in the signal [15]. Nasality, breathiness, and atypical loudness variation, all of

which are common causes of intelligibility deficits in pathological speech, present

themselves as atypical distributions of energy across the spectrum; LTAS attempts to

measure these cues in each octave. For each of the 7 octave bands, xi(t), and the original

signal, x(t), the LTAS features set consists of the: 1) average normalized RMS energy; 2)

RMS energy standard deviation; 3) RMS energy range; and 4) pair-wise variability of RMS

energy between ensuing 20 ms frames. This results in a 28-dimensional feature vector,

denoted by fLTAS.

P.563—The ITU-T P.563 standard for blind speech quality assessment [16] is designed to

measure speech quality using a parameter set that measures atypical and unnatural voice and

articulatory quality. There are five major classes of features deemed appropriate for our

purposes: 1) fbasic - basic speech descriptors, such as pitch and loudness information; 2) fVT

- vocal tract analysis, including statistics derived from estimates of vocal tract area based on

the cascaded tube model; 3) fstat - speech statistics, which calculate the skewness and

kurtosis of the cepstral and linear prediction coefficients (LPC); 4) fSNR - static SNR,

measurements of signal-to-noise ratio, estimates of background noise, and estimates of

spectral clarity based on a harmonic-to-noise ratio; and 5) fsegSNR - segmental SNR, or

dynamic noise, where the SNR is calculated on a frame-by-frame basis. In the standard, a

subjective rating (MOS, or Mean Opinion Score), is obtained through a non-linear
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combination of the above features. Here, we make use of the same feature set for our

analysis, by combining all feature sets into one vector, fVCL. For a detailed description of

each feature, including the mathematical derivation, please refer to [12,16].

2.2. Cost Function Derivation

We aim to select acoustic features that discriminate well between dysarthric individuals, but

that provide minimal separation between healthy speakers, as this is indicative of sensitivity

to speech pathology and not speaking style. More specifically, given a complete set of

features (F) ∈ RD, we aim to select the optimal subset Ω of cardinality k, such that the

learning error between the dysarthric speakers in a speaker ID task is minimized and the

error between healthy speakers in the same task is minimally effected.

We start by considering the simple example of 2 dysarthric speakers and 2 healthy speakers,

with feature matrices and binary label vectors given by (XD, yD) and (XC, yC) respectively.

We model the posterior probability of a dysarthric speaker with the sigmoid

:

(3)

We can write this more succinctly:

(4)

Given ND independent training points for the two dysarthric speakers, the log-likelihood of

the parameters for the dysarthric speakers can be written as:

(5)

Algorithm 1 Greedy Algorithm for Feature Selection

Input: Features and labels for dysarthric and healthy speakers: XD, yD, XC, yC

Output: Top k features that optimize criteria in (7): Ω

Define: f (Ω) =
maxθ lD(θ | XD(Ω), yD)

maxζ lC(ζ | XC(Ω), yC)

  Ω = ∅

  F = 1 … M

for j ∈ 1 … k do

 J = ∅

 for Fi ∈ F \ Ωj do

  J(Fi) = f(Ω ∪ Fi)

 end for

Berisha et al. Page 4

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2014 July 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Ω = Ω ∪ {argmax
Fi

J (Fi)}

end for

Similarly, we model the log-likelihood of the healthy speaker set:

(6)

Our goal is to find the subset of features that maximize the maximum likelihood of the

dysarthric feature set, while simultaneously minimizing the maximum likelihood of the

healthy speaker set. This results in features that accurately model the dysarthric speakers by

selecting features that are specific to the disorder rather than speaking style. We formulate

the following cost function:

(7)

In simpler terms, the cost function aims to find the subset of features that provide minimal

logistic regression error for the dysarthric feature set, while maximizing the logistic

regression error for the healthy set. This results in features that provide good classification

performance for the dysarthric speakers by focusing on features that do not provide good

classification performance on the healthy speaker set. Although the analysis here is provided

for the case of 2 speakers, we can easily extend this framework to multinomial logistic

regression [17]. In fact, in Section 3, we demonstrate this framework on a set of 53

dysarthric and 13 healthy speakers.

2.3. Feature Selection Algorithm

The cost function in Eq. (7) is a good model for the task at hand; however it is difficult to

solve since it optimizes over subsets of features. We approximate it using the greedy

algorithm in Alg. 1.

We aim to select the top k features, denoted by Ω, from the complete set of features, denoted

by F, that maximize the criteria in Eq. (7). Using a greedy approach we iteratively select the

features that provide the greatest increase in the cost function. More specifically, at iteration

i, we update the optimal subset using the following criteria:

(8)

where f(Ω) denotes the cost function in Eq. (7) and Fi ∈ F \ Ω. A more detailed

implementation is shown in Algorithm 1.
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3. Results and Discussion

The feature selection algorithm described in Section 2 was implemented in MATLAB, and

was used to select the top 12 features from the features in Section 2.1. A set of 34 dysarthric

speakers and 13 healthy speakers were used in the study. Multinomial logistic regression

was used to model the data for the dysarthric and healthy speakers [17]. The speakers were

selected from a pool, collected for a larger study conducted in the Motor Speech Disorders

Laboratory at Arizona State University. The dysarthria speakers included: 12 speakers with

ataxic dysarthria, secondary to cerebellar degeneration, 10 mixed flaccid-spastic dysarthria,

secondary to ALS, 8 speakers with hypokinetic dysarthria secondary to idiopathic

Parkinson's Disease, and 4 speakers with hyperkinetic dysarthria secondary to Huntington's

disease. Each speaker provided speech samples, including a reading passage, phrases,

sentences, and conversational speech. While varied, the speech collection session resulted in

approximately 10 minutes of recorded material per speaker, with a sampling rate of 16 kHz.

The material was split into individual sentences and the features in Section 2.1 were

extracted at the sentence level.

The minimum cross-validation error for the dysarthric set and the control set were used as

proxies for log-likelihoods in (7). Fig 3 shows the multinomial logistic regression error for

the dysarthric (34 speakers) and healthy (13 speakers) speaker feature sets after each

iteration of feature selection. As shown in Fig. 3, the error for both sets drops as more

features are selected. Although the final error values seem to indicate a similar error rate for

both the dysarthric ( 37% error) and healthy speakers ( 40% error), it is important to note

that the dysarthric set contains a total of 34 speakers, whereas the healthy speaker set

contains only 13 speakers.

Table 1 shows the 12 selected features using the proposed algorithm as well as 12 features

selected when using logistic regression for speaker identification (e.g. maximizing only the

numerator in (7)). Here we provide a brief description of the selected features, for a more

detailed discussion on computation of these features see [12,16] and [5]. The EMS and

LTAS features are extracted at different sub bands as well as for the whole signal, hence the

numeric subscript in each feature's name corresponds to the center frequency of the octave

band. The EMS features that were selected consist of: Ratio40 the energy ratio between 0-4

Hz band and 4-10 Hz band; Peak_Amp and Peak_Freq the peak frequency and

corresponding peak amplitude in a particular sub band; Above40 and Below40 the amount of

energy in the spectrum below 4 Hz and above 4 Hz; and E3_6 the energy in 3-6 Hz band.

The LTAS features that were selected consist of: PV the pairwise variability of RMS energy

between ensuing 20 ms frames; nsd and sd the normalized and unnormalized RMS energy

standard deviation. The P.563 features that were selected consist of: fPitchAverage the

average pitch; fSpecLevelDev the standard deviation in the band between 1-2 kHz.

Utilizing the proposed algorithm, the features that are most useful in minimizing speaker-

specific discrimination, while maximizing disorder-specific discrimination tap features of

rate, rhythm, and motor control patterns (i.e. top ten features identified in the analysis). For

instance, features of EMS in the octave band centered around 125 Hz, including the peak

frequency, amplitude of the peak frequency, and energy between 3 and 6 kHz, were all
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identified as important for completing this task. This is not surprising as this range is well

correlated with speaking rate. Similarly, the energy above 4 kHz and the ratio of the energy

above and below 4 kHz for the whole speech signal offers another representation of the rate

of the speech signal. The ratio of energy above and below 4 kHz in the octave band centered

around 8000 Hz was previously noted as a variable responsible for global distinction of

dysarthria type [5], and offers an insight into the global distinction of the different types of

speech patterns, related to the speech patterns, allowing for more idiosyncratic differences to

be revealed through the features described above and below.

The LTAS and P.563 features offer information related to the fine- motor control patterns of

the speakers. Features of LTAS, including pairwise variability indices in the 2000 and 8000

Hz octave bands quantify what is believed to represent articulatory precision and

imprecision, respectively. These measurements quantify the change, or consistency, of

energy present in 20-ms windows of the speech signal; therefore, we would expect changes

in energy to offer distinct representation of a given phoneme (i.e. precise articulation).

Interestingly, the P.563 feature most important for successful speaker identification was

SpecLevelDev. This measurement quantified the variability of the speech signal between

1000 and 3000 Hz. Given the similarity of the pairwise variability indices, and

complementary nature of the frequency range, this measurement, too, is proposed to be

related to the articulatory precision with which the speech sample was spoken. Compared to

the traditional speaker identification algorithms, the features identified by the proposed

algorithm utilize more pathology, disorder-specific features. The traditional speaker

identification algorithm utilizes more speaker-specific features. While there is some overlap

in the features selected by both, there are key differences. For instance, the Speaker ID

regression algorithm selects average pitch early on in the selection process, suggesting

association with specific speakers. Alternatively, the P.563 and LTAS features selected with

the proposed algorithm are sensitive to articulatory precision and imprecision, reflective of

the motor productions specific to speech pathology.

4. Conclusion

In this paper, we propose a novel algorithm for feature selection that minimizes the effects

of speaker-specific features and maximize the effects of disorder-specific features. The

selected features therefore represent a digital signature of an individual's speech pathology

state which can then be tracked over time to assess the efficacy of the provided treatment, or

to sensitively track speech changes resulting from disease progression. Furthermore, we test

the algorithm on a set of 34 dysarthric and 13 healthy speakers. Utilizing the proposed

algorithm, selected features mostly include those corresponding to rate, rhythm, and motor

control. The features selected correspond with those that are most perceptually salient in

motor speech disorders, yet not isolable with a single acoustic metric. The combination of

features utilized in the present investigation offers a complementary, non-redundant

representation of the disrupted aspects of the speech signal. Given the instability and

unreliability of subjective assessment, an objective measure of this nature is critical in the

development of a gold standard for care.
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Fig. 1.
The PDF of the average pitch (Hz) modeled as a normal distribution for (a) two dysarthric

speakers (b) two healthy speakers.
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Fig. 2.
The PDF of the Pairwise Variability at 2000 Hz modeled as a normal distribution for (a) two

dysarthric speakers (b) two healthy speakers.
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Fig. 3.
Error Probability for speaker ID using features selected using Alg. 1 for (a) the dysarthric

speaker set (b) the healthy set
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Table 1
Selected Features

Speaker ID Features Disorder Fingerprinting (Proposed Approach)

Ratio40_all Ratio40_8000

nsd125 PV8000

Above40_all PV2000

fPitchAverage fSpecLevelDev

Peak_Amp_125 sd1000

Below40_125 Above40_all

E3_6Hz_125 Ratio40_all

Peak_Freq_125 Peak_Freq_125

Ratio40_125 E3_6Hz_125

Peak_Amp_250 Peak_Amp_125

Peak_Freq_250 Below40_125

Above40_125 Above40_125
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