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ABSTRACT

The deployment of small cells, overlaid on existing cellutdras-
tructure, is seen as a key feature in next-generation eekystems.
In this paper, the problem of user association in the downtih
small cell networks (SCNs) is considered. The problem imfor
lated as a many-to-one matching game in which the users aB&SC
rank one another based on utility functions that accounbéoh the
achievable performance, in terms of rate and fairness fcedele
users, as captured by newly proposed priorities. To solgegdime,
a novel distributed algorithm that can reach a stable madcisipro-
posed. Simulation results show that the proposed appraafttsyn
average utility gain of up t65% compared to a common association
algorithm that is based on received signal strength. Coeapiarthe
classical deferred acceptance algorithm, the resultssalse a40%
utility gain and a more fair utility distribution among thsers.

Index Terms— Small cell networks; Matching theory; Cell as-

sociation.
1. INTRODUCTION

Smartphones have significantly increased the traffic loazliirent
cellular networks and this trend is expected to continudh@rtext
few years[[1]. Meeting the demand generated by this inangasaf-
fic requires significant changes to current cellular architee. One
promising approach to address this problem is via the cdnafep
small cell networks (SCNs)[2] 3]. SCNs allow to improve tlee c
pacity and coverage of wireless networks by reducing theudie
between users and their serving base stations. This is dode-b
ploying small cell base stations (SCBSs), overlaid on eumgacro-
cell networks and connecting to existing backhauls suchSis[8].

The deployment of small cells introduces numerous chadieng
in terms of interference management, resource allocasiod,net-
work modeling [1EIR]. In particular, cell association is iampor-
tant challenge in SCNs. For instance, directly deployirgssical
macrocell-oriented cell association schemes in SCNs @ahttein-
efficient association due to the factors such as heterogenzpa-
bilities and varying coverage areas [5]. [i1]6, 7], the auwhwoposed
several biased cell association approaches, in which tlBSS@ov-
erage areas are increased, to improve the network’s ovetelby
associating more user equipments (UEs) to SCBSs. Nevesthel
one practical limitation of biasing is the use of overheadrtels
shared by all SCBSs. Thus, different interference cariocaland
power control algorithms have been proposed i [8-11] toemid
this problem. A new dynamic cell association approach toimae
sum rate is introduced i [12] allowing UEs to adopt a heiaristll
range expansion algorithm for load balancing. Howevergddmg
on the bias value, this method may cause certain UEs to ddi@r
signal-to-interference plus-noise ratio (SINR) degriamtat
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Although these works provide interesting insights on cell a
sociation, they are not user-centric and are mostly basesigomal
strength or SINR. Indeed, most of these existing works requi
network-level coordination which increases both compjexnd
overhead and is undesirable in SCNs which are expected teltbe s
organizing. One prospective approach to providing sej&oizing
cell association in SCNs is via the powerful toolsmoétching the-
ory [13]. While matching theory has recently attracted a lot of
attention in wireless networks, such as for associatingnbla in
ad hoc and cognitive networks [14.]15], most of these workg on
focus on the maximization of SINR-based utilities and dohrasidle
SCN-specific challenges. Moreover, these approaches doffieot
satisfactory solution for non-uniform user distributi@sl are often
unfair to cell-edge users.

The main contribution of this paper is to develop a novel ap-
proach for cell association in which users are smartly fized
based on their location and proximity to the small cells. Ppheb-
lem is formulated as a matching game in which users and base
stations (BSs) rank one another using preferences basecelbn w
defined utility functions. The proposed utilities at each &pture
not only the rates it can offer to users, but also the pretereneach
user to be associated to other BSs. These utilities alsopocate
a new prioritization technique that allows cell-edge UEgrtore
actively participate in cell association. For solving trerge, we
propose a novel algorithm based on the deferred accept@#ce (
mechanism. Using this algorithm, we show that the usera=ll
sociation problem can reach a stable matching. Simulagsualts
show that the proposed approach gives a considerable gain ov
both conventional DA[[T4] and received signal strength datbr
(RSSI) approache$|[4]. The results also show that the peapos
priority-based deferred acceptance algorithm improves tility
distribution among users and increases the average ubiithe
network.

The rest of the paper is organized as follows. Section 2 dheescr
the system model. Section 3 defines the problem as the mgtchin
game and presents the proposed algorithm. Simulationtsestd
analyzed in Section 4 and conclusions are drawn in Section 5.

2. SYSTEM MODEL
Consider the downlink of an OFDMA SCN having a single macro-
cell overlaid with — 1 SCBSs randomly distributed in the cover-
age area of the macrocell base station (MBS). We considepam o
access scheme in which all UEs are allowed to connect topheir
ferred tier. We assume that all tiers use the same spectrentao-
channel deployment[16]. The total bandwidshis divided into N
subcarriers in the set and there are a total dff active users with
M being the set of all users. Hereafter, we use the term “BS” to
denote either an MBS or an SCBSsdn The Shannon’s achievable
capacity of UEm from BS! over subcarriej is:

Qjm (Vijm) = wiz log(1 + yim), (1)
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wherew;; and~;». denote the bandwidth of subcarrigrand the
SINR, respectively.

One important challenge in such an SCN is the problem of as- sk

sociating the UEs to their serving BS. In a conventionalirsgtt

each active UE is served by the BS which offers the highestt RSS

From the network’s perspective, the cell association isrofte-
fined as an optimization problem in which UEs are assigned3s B
(n : M — L) such that the overall sum utility of the network is

maximized:
argmaxz Z Z Dpjm (Vijm), 2
H IEL MEM; JEN
S.t., Vm : Z (Pljm(’yljm) > (I)th,nu (3)

JjEN
where M; denotes a set of all users associated tol B, rep-
resents the capacity threshold determined by the qualigenfice
(QoS) requirements of Um. The problem given by {2) is known to
be NP-hard and complex to solve, due to non-linear and caatisin
rial nature of the assignment problem[17].

In SCNs, it is desirable to develop a self-organizing cedbasa-
tion solution due to the network scale, the unplanned depéoy of
SCBSs, and the limited SCBS coordination due to the finifaciy
backhaull[4]. Hence, new approaches for cell associateneeded.
One promising approach is via matching theory, as discussed

3. CELL ASSOCIATION AS A MATCHING GAME

A matching game is defined by two sets of players that evahrate
another using well-defined preference relations [13]. Wenfdate
the proposed cell association problem in SCNs as a manpédo-o
matching game in which a set of use¥$ will be assigned to a set
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Fig. 1. Utility function at BS side versus SINR and for different
priorities. Here(, = 0.1 and¢2 = 3 anda., € {100, 30, 1}.

matrixH.,, userm shapes itd x N achievable data rate matrix, i.e.

®,,,, whose elements are defined By (1), where
pljhljm ) (4)

Zé:Lk;ézpkjhkjm + 02

(@) represents the potential achievable SINR for &dErom BS|

at subcarrierj. p;; ando? denote the transmit power of BSover

subcarrierj and the variance of the receiver's Gaussian noise, re-

spectively. In order to rank BSs, each usertakes the average of

the achievable data rates from each BS oveNadubcarriers. From

(1) and (4), thel x L utility vector of userm, R, is given by:

N N

1 1

le(’ﬂjm)ZﬁZ Pijm (Y15m) :NZ wy; logl +yi5m) . (5)
j=1 j=1

where R;,, denotes thd-th element of R,, that is the average

Yijm =

of BSs L, where each UE will be assigned to at most one BS. Weachievable rate for usen from BSi over N subcarriers. A BS

assume that an arbitrary B®an serve a maximum number of UEs

is said to beacceptablefor userm, i.e. BSI =, 0 if and only if

(quota)q; in the downlink. Depending on the channel quality or Ry, > ®. In addition, BSt -, BS's, if and only if Rem > Rem.

equivalently SINR values, each UE buildp@ference relation-,,
over subsets of BSs and being unmatchiedn fact, via the trans-
mission of initial ranging signals, each Ukis able to form aL x N
channel matridH,,, in which each elemeri,;,, is the channel gain
of the subcarrielj used for the link between BSand usem. We
will show that we can use these preference relations tomptsior-
mance gain over conventional cell association approadhegher,

Thus, thepreference matrixof users,M/x 1, can be obtained

whosem-th row, x,» = M(m,:), is the preference vector of the
userm. This vector is a subset af that is sorted in descending
order based on the utility vector,R

3.1.2. Preferences of the MBS and SCBSs

The proposed matching game can be fully represented onpedfie

erence of each BS over users is defined. Here, we defimevel

each BS has a preferense over the subset of UEs based on a pre-gchemat the BS side of the game, which gives priority to UEs based

defined utility function. Iteratively, the UEs propose t@ithmost
preferred BS according to their preferences and BSs accept 0
ject proposals based on utilities they assign to their appts. With

on the information gathered by each BS on the UES’ prefesence
Most of the matching approaches in the literature focus eruth-
ities that only depend on SINR informatidn [[4] 15]. We shbwatt

this in mind, a matching: between SCBSs and users is defined asjlizing the information concealed in the UES’ preferenasfers

follows:

Definition 1 A matchingis defined as a function from the setU L
into the set ofM U £ such that: 1)|u(m)| = 1 for each user and
ulm) € LU, 2) |u(l)] < ¢ for BSI. Also,u(l) € M UD, and 3)
m € p(l) ifand only ifpu(m) = 1.

Therefore, the tupléC, M, -2, = ¢, Q) , determines the cell asso-
ciation matching problem with-.= {-;},_ . being the preference
set of the BSSi- = {>-m},,cr Peing the preference set of the
users, and = {q| VI € L} being the BSs’ quota vector.

3.1. Priority-based Preferences

To fully describe the matching, next, we define the preferences by
each side of the game.

3.1.1. Users’ Preferences

From the users’ side, each UE seeks to maximize its own, iohaoiy
utility function. Therefore, from the UEs’ point of view, wese rates
as the utility functions. Thus, using the estimated chanaefficient

considerable gains in rates and other metrics of the netwidr&re-
fore, unlike prior works, we propose novel utilities thapdad on
such information. Suppose that users send their preferesuter
to each BS they wish to associate with. Hence, each BS candorm
chancevector for its UE applicants, a7, whose elements are cho-
sen from{0, 1}. Then, the BS assigns priorities to its UE applicants
based on this vector. Depending on the type of priority giecem UE
applicant, BS will promote the utility of that particular UEUE ap-
plicantm has another option to apply to according to its preference
vector, the BS sets(@:) = 1, otherwise @m) = 0. Consequently,
chance vectors are different at each BS and get updated ¢br ea
set of new applicants. Thus, instead of ranking users by il
maximization criterion, each BS takes the chance of eachine
account.

Next, we describe the matching approach at the BSs side while
clarifying the user assignment procedure. Usidg (5), tHigfunc-
tion of each BS is defined as follows:
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Fig. 2. An example of cell association with PDA. The black dotted
lines show the matching among randomly distributed UEs &8sl B

Ulm(anu €, ’Yl]m) = 6—Rl111("ylj"r77,) + (1 - 6) \Illm (Oé'nu "Yljm)7 (6)

whereU,,, denotes the utility of usem given by BSI which is a
function of priority coefficientsy,,, resemblance facterc {0, 1},
and~;;». Hence, UE, =; UE,, if and only if Ui, > Uj,.
Clearly, UEm will be rejected if its utilityU;,,, is not one of they
highest utilities. If two users are identified with the samierity by
the BS they apply to, then= 1. Otherwise, the BS assigias= 0
to the utility of those two users. Functioby,, (aum, yijm) in (6) is
given by:

\Ijlm(amy ’Yljm) = ]Dlm(amy ’Yljm) + le(’yljm) (7)

N

! E amCl

N wyj | — s +log (1 +vijm) | -
N j=1 Y (bg (G2 + amYiim) g (14 ))

The promotion functionP,,, (cm,y1;m) represents the amount of
promotion given to each class of users. That is, a BS incseihse
value of each user’s achievable rate, based on the usestétpri,, .
The higher the priority that a certain user has, the more ptiam

it will receive from the BS. Basically, we let,, € {a®,a’ a°}
indicate the first, second and third priority coefficienespectively.
The constant paramete¢s and(, are used to control the shape of
U (am,vi;m). Fig.[ illustrates how each type of priority impacts
the utility functionU;,,,. The parametee is used to avoid priori-
tizing two users that have the same priority, since the ptmmas

a function of SINR. Clearly, the proposed priorities allaw"pro-
mote" users that are experiencing a relatively low SINRs tllow-
ing them to have a better BS association. Following dessrihe
prioritizing procedure.

Once the UE proposals are sent to an arbitraryl B$plicants
of that BS can be divided into three groups of priorities defes:
1st Priority: Thisincludes UEs who have B&s both their first and
their only remaining preference. Therefore, these appigcaave
been accepted by BSn the first iteration of proposals. That is, all
mwho C(m) =0 and x (1) = 1.
2nd Priority: This includes users for whom BBSis not the first
preference but it is the only remaining BS in the prefereimste In
other words, €m) = 0 and x.,(1) # L.

3rd Priority: This includes the users that, if and when rejected by

BS/, they still have other choices in their preference list, dé’ ¢
L\1l: R;> Ry > Pn, or equivalently Gm) = 1.

These priorities are defined such that no UE can belong to twddoxs=|(0 3 2 2 2 2

different priority groups. We will show that this schemehiitrease
the overall utility and the average rate of the SCBSs withstvoase
rates, by having more users involved in the associationgsoc
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Fig. 3. Average utility per UE for PDA, RSSI and DA algorithms.
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3.2. Proposed Priority-based Deferred Acceptance Algoritm

In Table[1, we show the various stages of the proposed priorit
based deferred acceptance (PDA) algorithm which incotpsrine
prioritizing procedure in Subsection 3.1. For practicapiementa-
tion, the preference matrid can be obtained from Reference Sig-
nal Received Power (RSRP) signaling [4]. In addition, sinsers
send their preferences to BSs, no knowledge of SCBS disisibu
is required. Hence, the priority-based approach is feaddl self-
organizing SCN implementation.

Definition 2 A matching u is stable if and only if no pair of
{(m,1)lm € M, € L} blocks the matching. That is,

A(m, 1) st m = u(l) and 1 =, p(m). (8)
For the proposed algorithm in Talilk 1, we can state the fatigw

Lemma 1 The proposed PDA algorithm shown in Tafllés guar-
anteed to converge to a stable matching.

This is a direct result of the fact that the proposed algorithbased

on DA, which is shown to always converge to a stable matcHiBg [
Fig.[2 shows an example of a small-scale SCN with= 6

dL 3. Here, the user preference matrix is derived as

11 1 1 1 1\"

, where them — th row indi-

0 2 3 0 0 O
cates the preference list of the user x., and(.)" is the transpose
operation. The DA, RSSI and PDA approaches will lead to the
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Fig. 5. The histogram of the utility distribution for differentga-
rithms. Number of users is assum&f = 60.

Table 1. Proposed priority-based deferred acceptance
Inputs: £, M, O, H
Initialize: Calculate the preference matt using (5). Initialize temporary
rejected vector of user.
while R is nonempty
repeat
step 1:Userm € R sends its preference vectgt,, to the next BS that is
going to apply.
step 2:BS 1 € L updates its applicant list, assigns priorities to usersigs d
cussed if:3.1]2 and calculates the utilities from (6-7).l B&ks the applicants by
their utility and selects firs@ (1) users and rejects the rest.
step 3: Acceptance matrixA and the rejection vectoR get updated. For
Vm € R:
If C(m)=0,
Exclude m fromR and add to unmatched set of uséfs

Output: Stable matchinge
T
® 2 4 0/

. Owing to the proposed utilities, PDA is able

-
following matchings:uDA=<é ) (2)) '

(1 4 3\T
~\5 6 2
to cover all UEs in the match which leads to a higher perforcean
specifically for cell edge users which in this example are B&ad

6.

PDA

4. SIMULATION RESULTS
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Fig. 6. Average number of iterations versus the number of users.

PDA. That is due to the fact that the priorities defined in tiAP
provides a fairer allocation between users. In particulas, PDA
will allow significant improvements in the worst-case tigs and
rates achieved by worst-case SCBSs, as shown ifLFig. 4.

Fig.[4 shows the SINR-based rates of three approaches for the
average rate of worst-case small cell. In Fif. 4, we can sae th
as M increases, the average worst-case rates increases. Tais is
result of the fact that there are more UEs in the proximity adhe
BS asM increases. This increases the probability of filling up the
quotas of the SCBSs with UEs having higher quality links. His t
figure, we can clearly see that, at all network sizes, the qregp
PDA has a considerable gain compared to DA reaching att$atof
improvement (atV/ = 70 UES) in the worst-case rate. In addition,
Fig.[4 shows that the proposed PDA has a comparable worst-cas
SCBS rate, when compared to the RSSI.

In Fig.[3, we evaluate the performance of the proposed PDA via
the utility distribution among UEs fol/ = 60 UEs. Fig[® shows
that the proposed PDA has significantly more users achidvgiter
utilities, when compared to both RSSI and DA. For example, fo
M = 60, only 32% of users are assigned to the low&g¥ of utili-
ties, while this value for DA and RSSIi$% and47%, respectively.
This is mainly due to the the fact that the proposed PDA is &ble

For simulations, we compare the performance of the proposeteduce significantly the number of unmatched users.

matching approach with the RSSI algorithm and the conveatio
DA proposed in[[I4]. We consider a total o SCBSs distributed
randomly within a square area of 1 km 1 km with the MBS at
the center. The quota per BS is set to a typical valué OEs [4].
The channels experience Rayleigh fading, with the propag#iss

Fig.[d shows the average number of iterations resulting ffeen
proposed PDA as the number of us@isvaries, assuming, = 7
andL = 11 BSs. In this figure, we can see that, as the number of
UEs and SCBSs increase, the average number of iteratioeases
due to the increase in the number of players. Nonethelegs[GFi

set toayess = 3. The transmit power of the MBS and the SCBSs demonstrates that the proposed matching approach hasonabées
are assumed to be 10 W and 1 W, respectively. We assume tleonvergence time that does not exceed an averad® dérations

noise level to be negligible compared to the interferencelleThe
parameters of the promotion function are sefite= 0.1 and{z = 3
and the priority coefficient is set ®,, € {100, 30, 1}. Throughout
the simulations, the unmatched users are assigned a zko A
statistical results are averaged over a large number opamtient
runs for different locations and channel gains.

In Fig.[3, we show the average utility per UE resulting frora th

for a network withM = 86 users and 0 SCBSs.

5. CONCLUSIONS
In this paper, we have proposed a novel approach for celtegim
in SCNs. We have formulated the problem as a many-to-onelmatc
ing game in which users and base stations evaluate eachbathed
on well defined utilities. In the proposed utilities, we hamgo-
duced a new notion of priorities that allows the base stattoruse

proposed PDA algorithm and we compare it to both RSSI and BA, athe information concealed in the preferences of each usanjunc-
the number of UEs varies. Figl 3 shows that, as the number sf URtion with conventional rate maximization. We have showrt besng

increases, the average utility of all three schemes dezsedise to
the quota limitations of each BS. Indeed, the number of uoheat
users increases as the total number of users grows. IriFige 3,

aware of each user’s overall preferences provides a beséfisight
to the base stations thus allowing an enhanced user assndiat
the downlink of SCNs. To solve the game, we have proposed-a sel

can see that, at all network sizes, the proposed PDA has #i-sign organizing algorithm that is guaranteed to reach a stabtehimay.

cant advantage in terms of the average utility per UE, reachp
to 65% relative to the RSSI scheme (&f = 80 UEs). However,
in Fig.[3, we can see that the average utility of DA is complar i

Simulation results have shown that the proposed approadtisya
significant performance improvement in terms of the averdjiéy
per user and the average rate experienced by worst-case cell
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