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ABSTRACT
Array-based time-frequency masking algorithms are an important
type of nonlinear array processing. In this paper we develop a model
that characterizes the directional sensitivity of these algorithms in a
fashion similar to commonly-used the beam patterns used to charac-
terize linear array processing. Two alternative formulations are de-
scribed, and it is shown that one of these formulations predicts signal
distortion and processing gain in time-frequency masking accurately,
as well as speech recognition accuracy afforded by time-frequency
masking in the presence of additive interfering sources.

Index Terms— Array processing, Time-frequency masking,
Beam patterns, Signal separation, Interaural phase difference

1. INTRODUCTION

Array processing techniques can improve the robustness of auto-
matic speech recognition systems in adverse enviromental condi-
tions. For example, interference from competing speakers is one of
the most damaging forms of signal degradation in automatic speech
recognition, and it is relatively common in real-world scenarios. The
so-called “cocktail-party problem” has, in fact, long been of interest
to researchers of the human auditory system (e.g. [1, 2]) and to those
who attempt to mimic its functionality articificially [3].

Approaches to microphone array processing can be broadly cat-
egorized into two groups: linear and nonlinear. The linear techniques
are based classical linear beamforming [4], with some modifications
that exploit specific properties of speech (e.g. [5]). They tend to
have solid theoretical bases and lend themselves well to analyses,
comparisons, and secondary metrics. The nonlinear approaches, on
the other hand, are typically based on various models of human au-
ditory processing, itself a highly nonlinear process. They are more
difficult to analyze without resorting to experimental performance
metrics such as word error rate (WER).

This work focuses on the important class of nonlinear algorithms
that is based on time-frequency (T-F) masking. Results of previous
studies using these techniques (e.g. [6, 7, 8, 9, 10, 11, 12]) sug-
gest the following observations (among others): While T-F mask-
ing techniques are typically well motivated, there has been little
formal mathematical analysis of them, with performance typically
expressed in terms of secondary statistics such the accuracy of au-
tomatic speech recognition (ASR) systems. While it is true that al-
gorithms developed to improve ASR recognition accuracy must be
evaluated in terms of ASR performance, we also believe that fur-
ther mathematical analysis and comparison to linear beamforming
is potentially beneficial, as speech recognition experiments tend to
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be complicated and time-consuming. Direct mathematical compar-
ison of linear and “nonlinear” beam forming avoids the complex-
ity of implementing a state-of-the art ASR system, and may also
provide more insight into the causes of recognizer errors. This pa-
per describes an initial attempt to mathematically characterize two-
microphone speech enhancement algorithms for ASR in a fashion
that facilitates comparison with the corresponding linear beamform-
ers. This model is based on averaging the behavior of the algorithm
over the random input conditions. We briefly review the basics of
T-F masking in Sec. 2 and develop and verify the models that char-
acterize the nonlinear beamformers in Secs. 3 through 5.

2. TIME-FREQUENCY MASKING
Although the model developed in this paper is more general, we
will focus on the performance of the simplest T-F systems, an array
with only two microphones. This configuration, for which almost
all array-based T-F masking techniques are designed, is illustrated
in Fig. 1, with a target and a single interferer. We assume that the
target signal lies directly on the bisecting plane, as illustrated.

Assuming that the sources are in the array’s far field, and that
s(t) and i(t) refer to the signal and interference as received by the
left microphone, in continuous time, the system is described by the
following equations:{

xL(t) = s (t) + i (t)

xR(t) = s (t) + i(t− τd)
(1)

where τd = (d/c) sinφ is the time difference between the arrival
of the interfering wavefront at the left and right microphones, with c
representing the speed of sound. Assuming alias-free sampling with
a period of TS , the discrete-time frequency representations are{

XL(e
jω) = S(ejω) + I(ejω)

XR(e
jω) = S(ejω) + I(ejω)e−jωτd/TS

(2)
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Fig. 1. Two-sensor array with single interferer - d is the distance
between the sensors and φ is the azimuth angle of the interferer.



In general, T-F masking is accomplished by computing the
short-time Fourier transforms (STFTs) of both input signals,XL[n, k]
and XR[n, k], followed by a determination of which cells in the
STFTs are dominated by the components of the target signal. This
determination is frequently characterized by an “ideal binary mask”
M [n, k] which indicates which cells of the STFT are believed to be
dominated by the target signal:

M [n, k] =

{
1 |S [n, k]| > |I [n, k]|
0 otherwise

(3)

An enhanced signal can be reconstructed solely from the cells
of the STFT for which M [n, k] = 1, and this entire process is il-
lustrated schematically in Fig. 2. Numerous algorithms have been
proposed for developing the values of M [n, k] based on the inputs
(e.g. [6, 7, 8, 9, 11, 12, 13]) and other variations are possible in
which M [n, k] is a continuous function of the inputs rather than bi-
nary. In the algorithms considered, the mask M [n, k] is typically
based on the cell-by-cell comparions of the left and right input sig-
nals; however, T-F masking is also widely applied to mono audio to
improve signal quality for ASR [14, 15, 16] and for human intelligi-
bility [17, 18].
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Fig. 2. Generic two-channel T-F masking algorithm

2.1. Phase-Difference Channel Weighting (PDCW)

To facilitate the subsequent discussion we review the fundamentals
of a locally-developed two-sensor T-F masking algorithm, Phase-
Difference Channel Weighting (PDCW) [12]. The T-F analysis
method is a regular STFT, but with a longer window duration of ap-
proximately 80 ms, as discussed in [12]. In its most straightforward
implementation, the mask estimation stage of PDCW aims to deter-
mine for which cells the difference between the phase angles of the
STFTs implies that the dominant source is arriving from an azimuth
close to that of the target source s[n]. Specifically, we define

M [n, k] =

{
1

∣∣θ [n, k] ∣∣ < ∣∣γ (ωk, φT ) ∣∣
0 otherwise

(4)

where ωk = 2πnk/N , withN being the number of frequency chan-
nels, is the center frequency of subband k. In Eq. (4), the left-right
phase difference θ [n, k] = 6 XL [n, k]− 6 XR [n, k] is compared to
the phase difference expected from a hypothetical single source at a
threshold azimuth, φT :

γ (ωk, φT ) = ωk(d/cTs) sinφT (5)

The threshold azimuth is an important tunable parameter of PDCW;
decreasing or increasing its value will tighten or widen the “cone of
acceptance” around the target direction.

For reconstruction, PDCW uses overlap-add (OLA) synthesis,
with one additional detail. Before masking, the binary masks are
smoothed by convolution along the frequency axis according the
shape of the standard gammatone filters [19]. This process is called

“channel weighting” [12] and improves output signal quality, both
subjectively and for ASR experiments, by reducing the distortion
caused by the sudden changes that a binary mask introduces to the
spectrogram.

3. “NONLINEAR BEAM PATTERNS”

The standalone behavior of linear beamformers are characterized by
their beam patterns [4]; these are a function of frequency and direc-
tion, producing (with two spatial dimensions) a function of the form
B (ω, φ). The elegance and intuitiveness of the beam pattern as an
analysis tool leads to the question, “Can an equivalent metric be de-
veloped for masking algorithms?” Such a metric would allow us to
view T-F masking algorithms as “nonlinear beamformers”.

The difficulty, of course, lies in the nonlinearity, as the effect of
any T-F masking algorithm on the target signal is heavily affected
by the position and power of the interferer(s). Nevertheless, with a
simple processor such as the one depicted in Fig. 2, the free vari-
ables can be limited to a manageable few: frequency ω, interferer
azimuth φ and the signal-to-interference ratio (SIR) of the target and
interferer. We say interferer azimuth because – as opposed to a linear
beam pattern which describes the reponse to any signal from a partic-
ular direction – in the masking paradigm, it is assumed the target is
straight ahead, but the interferer can be at any direction. SIR matters
because a more powerful interferer will cause more signal masking
than a weaker one; this comes into play at the level of individual T-F
cells, but we will attempt to develop an average characterization de-
pendent only on the nominal input SIR. Hence, the nonlinear beam
pattern will be a function of the form B (ω, φ, SIR). The following
sections will describe options for the quantity to be thus mapped and
the models used to calculate them.

4. MASK PRESENCE

Ignoring for the moment the smoothing step in PDCW and consid-
ering only the initial binary mask, one approach to estimating the
nonlinear beam pattern B (ω, φ, SIR) is to calculate the probabil-
ity that a cell in a given band will be accepted by the mask; i.e.
Pr
{
M [n, k] = 1

}
. Since the mask for each cell is a Bernoulli

variable, this suggests that the beam pattern can be defined as

B (ωk, φ, SIR) = E
[
M [n, k]

∣∣ωk, φ, SIR] (6)

Estimates are obtained by averaging over various conditions of the
signal and interference, as discussed below. The result is dependent
on frequency and approximates time averages of the masks in the
various subbannds. We will call this quantity mask presence, as it
describes the fraction of time the system allows the input to pass.

To calculate mask presence, we isolate the sources of ran-
domness in mask generation. The signals S [n, k] and I [n, k] are
assumed to exhibit random amplitude and phase. Since phase ref-
erences are arbitrary, we can collapse the relative phases of the
signal and interference into a single random variable: α [n, k] =
6 S [n, k] − 6 I [n, k], which is assumed to be a uniform random
variable for each T-F cell:

S [n, k] = |S|, I [n, k] = |I|e−jα (7)

Since both s[n] and i[n] are assumed to be speech signals, their long-
term spectral profiles will be similar and the nominal SIR will also
be the nominal SIR for each subband.



Now, combining Eqs. (2), (4), (5), (6), and (7):

B (ωk, φ, SIR) = E
[
M [n, k]

]
= Pr

{
M [n, k] = 1

}
= Pr

{
|θ| < |γ (ωk, φT )|

}
(8)

where the (random) phase difference equals:

θ = 6 (XLX
∗
R) = 6

[(
|S|+ |I|e−jα

)(
|S|+ |I|e−jαe−jγ(ωk,φ)

)∗]
= 6

[
S2 + 2SI cos (α+ 1/2γ (ωk, φ)) e

j/2γ(ωk,φ)

+ I2ejγ(ωk,φ)
]

(9)

We are not aware of analytical solutions to Eq. (9), and the
probability densities for S and I are irregular in form. Nevertheless,
an expression for B (ωk, φ, SIR) can be obtained computationally.
This can be accomplished by first building frequency-dependent
probability distributions for |S| and |I| from signal-level histograms
of actual speech spectrograms and then averaging the values of the
mask given each of the possible values of |S|, |I|, and α. Because
the signal and interference are both speech signals, their distribu-
tions will be identical, except the interference distribution must be
attenuated by the amount of the nominal SIR – a typical frequency-
dependent histogram of the log-spectra of speech is shown in Fig. 3.
Doing this for specific values of the three free parameters fre-
quency, interferer azimuth and nominal SIR will yield one value of
B (ω, φ, SIR), from which a complete “nonlinear beam pattern”
can be constructed.

Fig. 3. Distributions of speech subband signal levels in dB.

Fig. 4 shows examples of this, for a two-microphone array with
elements 4 cm apart and the phase threshold set for a “cone of ac-
ceptance” 20◦ wide around the target direction. Note that for SIRs
of both 0 dB and 20 dB, when the interferer is at φ = 0◦, the mask
is always 1. This occurs because when the interferer and target are
in the same direction, the mask accepts all input signals. For SIRs
of 0 dB, the mask presence drops to about 0.5 as interferer moves
off to the side. This is also expected because with equal signal and
interference powers about half the cells will be accepted and half re-
jected according to Eq. (3). When the SIR is increased to 20 dB, a
higher percentage of cells are accepted as the signal overpowers the
interference more frequently.

In this section we have developed a “beam pattern” for nonlinear
T-F masking. This pattern emulates a linear beam pattern in that it
shows, on average, how frequency and direction affect the incoming
signals; however, it falls short of describing the quality of the masker.
While the probability of masking is plotted in Fig. 4, the amount of
interference power masked is usually greater than the target power;
indeed, this is the goal of masking. The more adept the algorithm
is at identifying the appropriate cells, the better it will perform; un-
fortunately, the beam pattern developed above does not capture this
behavior. In the following section we turn our attention to an alter-
native metric, based on output noise, that does.

(a) SIR = 0 dB (b) SIR = 20 dB
Fig. 4. Mask presence patterns; d = 4 cm, φT = 20◦.

5. OUTPUT NOISE AND SNR

The system output y [n] after masking represents a distorted version
of the clean target signal s [n] expected by the speech recognizer.
To quantify this distortion we first assume a lossless T-F analysis-
synthesis pair, such as the STFT and OLA used in PDCW; this al-
lows us to calculate the distortion at the pre-reconstruction stage (i.e.
in Y [n, k]). For simplicity, we consider here the two-microphone
configuration of Fig. 1; extensions are trivial. From Fig. 2 and
Eq. (2), we obtain:

Y [n, k] = XL [n, k] ·M [n, k]

= S [n, k]M [n, k] + I [n, k]M [n, k] (10)

Hence, the distortion relative to the clean signal can be expressed as:

D [n, k] = S [n, k]− Y [n, k]

= S [n, k] (1−M [n, k])︸ ︷︷ ︸
signal suppression

+ I [n, k]M [n, k]︸ ︷︷ ︸
interference leakthrough

(11)

If the masking is binary, the terms (1−M [n, k]) and M [n, k]
terms represent a simple T-F cell selection. Combining with Eq. (7)),
this produces a characterization of noise at the output of the process-
ing at a given frequency as:

N2 = (|S| (1−M))2︸ ︷︷ ︸
signal suppression

+ (|I|M)2︸ ︷︷ ︸
interference leakthrough

(12)

In other words, the noise power is the sum of the signal power in
the rejected cells and the interference power in the accepted cells.
Similarly, the output SNR can be expressed as E

[
S2
]
/E
[
N2
]
, or

SNRout =
E
[
|S|2

]
E
[
(|S| (1−M))2

]
+ E

[
(|I|M)2

] (13)

Of course, Eq. (13) is not technically correct because the signal and
noise components are not independent of each other. In this case,
not only is one of the noise terms a direct function of the signal, but
the mask in both terms is a function of both signal and interference.
Nevertheless, this statistic is useful as a rough estimate of the relative
distortion in the the output signal, compared to the input signal.

The output noise from Eq. (13) can also be used to construct a
nonlinear beam pattern by setting B (ωk, φ, SIR) = E

[
N2
]
. The

mask value M is calculated for each instance of the random triplet
(|S|, |I|, α) exactly as described in in Section 4 and the calculation
of the average noise E

[
N2
]

from that information is trivial. The
beam pattern B (ωk, φ, SIR) is than computed by averaging over
the joint distribution of (|S|, |I|, α).

Fig. 5 shows the output noise pattern of the array whose mask
presence pattern was shown in Fig. 4. The noise levels in these plots



(a) SIR = 0 dB (b) SIR = 20 dB
Fig. 5. Output noise patterns; d = 4 cm, φT = 20◦.

are normalized so that B (ωk, 0, SIR) = 1. When the SIR equals
0 dB, as the interferer moves off to the side the output noise level
drops by about 10 dB, equivalent to a processing gain of 10 dB. The
gain is less when the SIR is higher as there is less interference to
suppress. Also note the consistency across frequency and azimuth.

5.1. Comparisons with Linear Beam Patterns

Figure 6 depicts the beam pattern of a delay-and-sum beamformer
with the same array shown in Fig. 5. With a target signal in the di-
rection of the main lobe and an interferer at various azimuth angles,
the beam pattern at any angle will be the amount of interferer power
if the interferer is at that same angle, normalized by the signal power.
This is equivalent to the nonlinear beam patterns of Fig. 5, except (1)
the nonlinear beam patterns give the power of the output noise metric
rather than the power of the interference signal at the output, and (2)
the nonlinear beam patterns are a function of input SIR. Even given
those differences, it is clear that interference suppression of the non-
linear T-F masker is much more consistent than the 2-element linear
beamformer, across both azimuth and frequency.

Fig. 6. Beam pattern of delay-and-sum beamformer.

(a) T-F masking (b) Linear beamforming
Fig. 7. Processing gain patterns, masking vs. beamforming.

5.2. Verification of the Model

In this section we describe the results of speech recognition exper-
iments to confirm that the general concept of SNR and processing
gain for nonlinear T-F masks is valid, despite its somewhat flawed
definition. We digitally simulated speech passed through an array
in the basic configuration of Fig. 1 with an interferer at φ = 60◦ at
various SIRs. We implemented T-F masking with both (1) a binary
mask with no smoothing and (2) a second continuous mask that is
smoothed over frequency (as in PD and PDCW, respectively, as in
[12]). We compare the WER obtained with this speech with WERs
obtained by corrupting single-channel speech with the same additive
noise presented at the frequency-dependent SIR based on the pre-
dicted array processing gain (as described in Fig. 7(a))). In other
words, the SIR of the single-channel experiments has the same spec-
tral profile as the output SNR from the array.

Results from these experiments are shown in Fig. 8. The pre-
dicted WER tracks the actual WER quite well for a single interfer-
ing speech source and for pink noise, lying between the actual data
for PD (which is based on binary masks) and PDCW (which smooths
the masks over frequency). The model predicts slightly better perfor-
mance than the actual PD algorithm, perhaps due to the dependence
of the noise on the signal, which the theoretical predictions do not
take into account but which in reality degrades the array’s perfor-
mance. Smoothing the masks ameliorates much of that degradation
to the point that the model predicts PDCW performance closely.
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Fig. 8. Word error rates (WER) of masked speech vs. speech with
an interferer with spectral profile predicted by output noise model

6. CONCLUSIONS

We have developed a model that characterizes the effective process-
ing gain produced by nonlinear T-F masking. The model provides
plausible beam patterns, and it predicts the results of ASR experi-
ments that enhance speech using T-F masking. Adapting the model
to other masking methods is straightforward, and adapting it to other
types of targets and/or interferers (e.g. music) requires only regener-
ating the data presented in Fig. 3 for the given signal type. The au-
thors are presently extending the model to characterize diffuse noise,
multiple interfering signals, and reverberant environments as well.
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