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ABSTRACT

The Denoising autoencoder (DAE) has been successfully applied
to acoustic emotion recognition lately. In this paper, we adopt the
framework of the modified DAE introduced in [1] that projects the
input signal to two different hidden representations, for neutral and
emotional speech respectively, and uses the emotional representa-
tion for the classification task. We propose to model gender infor-
mation for more robust emotional representation in this work. For
neutral representation, male and female dependent DAEs are built
using non-emotional speech with the aim of capturing distinct infor-
mation between the two genders. The emotional hidden representa-
tion is shared for the two genders in order to model more emotion
specific characteristics, and is used as features in a back-end clas-
sifier for emotion recognition. We propose different optimization
objectives in training the DAEs. Our experimental results show im-
provement on unweighted accuracy compared with previous work
using the modified DAE method and the classifiers using the stan-
dard static features. Further performance gain can be achieved by
structural level system combination.

Index Terms— Emotion recognition, Denoising autoencoder,
Gender

1. INTRODUCTION

There has been a lot of research efforts lately on identifying paralin-
guistic information in human speech (information beyond words).
Many challenges [2, 3, 4] related to paralinguistic tasks have been
organized and attracted many researchers. Automatic emotion
recognition is one of such paralinguistic tasks (others include vari-
ous speaker states, age, etc.). To accurately detect emotion, front-end
feature extraction and back-end classification are two major parts.
In the front-end, it is important to extract a robust feature represen-
tation which captures emotional cues. Previous work (e.g., [5]) has
shown that static features extracted by applying various functionals
to large amounts of low level descriptors (LLD) can yield competi-
tive performance on emotion recognition tasks. Many studies have
been conducted to investigate complementary features in addition to
these static features, such as gaussian mixture model (GMM) related
features [6, 7], bag-of-word sentiment categories as lexicon features
[8], and facial related features [9]. In the classification stage, stan-
dard classifiers such as support vector machines (SVM) have been
very popular. In addition, ensemble methods have been used to take
advantages of strength of multiple classifiers and shown good re-
sults. For example, in [10], a particle filtering based method is used

Correspondence should be addressed to {rx,yangl}@hlt.utdallas.edu,
{jun.deng,schuller} @tum.de

990

for fusion of audio, visual and lexicon features. Besides these, prior
studies also investigated transfer learning [11] and active learning
[12, 13] approaches for the emotion recognition task. With growing
interest in deep neutral network (DNN) recently, deeper structure by
stacking autoencoders or Restricted Boltzmann Machines (RBM)
has also been successfully used in many fields including emotion
recognition task [14, 15, 16, 17, 18, 19]. In our previous work
[1], we proposed to use the denoising autoencoder (DAE) and its
modified version for emotion recognition. By introducing two hid-
den representations, one used to capture neutral information and
the other for emotional cues, we demonstrated that a more robust
feature representation can be extracted, yielding a performance gain
on emotion recognition.

In this study, we adopt the modified DAE framework as in [1],
but propose to better model the neutral projection in order to con-
sider gender information. In speech recognition, gender dependent
acoustic models are sometimes used in order to model the huge dif-
ference between male and female speech (vocal tract characteris-
tics, pitch, etc.). For emotion recognition, there has been little prior
work on modeling gender information. In [20], gender-dependent
emotion recognizers are trained. In our method, we train female
and male dependent DAEs separately by using their corresponding
non-emotional data. These gender dependent parameters are used in
the modified DAE {ramework to estimate the emotional projection.
In addition, we propose different cost functions when pre-training
the gender dependent DAEs, which are meant to either capture the
shared information between the two genders or the distinct features
between them. Our experimental results show that our proposed
method has better performance compared with results in previous
work.

2. METHOD

In this section, we first briefly introduce the method in previous work
[1] that uses the denoising autoencoder (DAE) for emotion recogni-
tion. Then, based on this previous approach we propose a method
considering gender variability.

2.1. Previous Work: Modified DAE for Emotion Recognition

The traditional DAE introduced by Vincent et al. [21] aims to learn
a mapping function from an input to a hidden representation, which
can capture the main variation of the data. There are two stages for
training DAE, pre-training and fine-tuning. The unsupervised pre-
training stage iteratively minimizes the loss function between the
original input and the reconstructed input. To make a prediction, a
softmax layer can be added on top of the hidden layer. Given the



predicted labels and the ground truth, a supervised fine-tuning stage
is applied to further update parameters. The details of the learning
algorithm can be found in [21].
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Fig. 1. Modified DAE structure with two hidden representations for
emotion recognition.

In [1], we proposed a modified DAE framework for emotion
recognition, as shown in Figure 1. The major difference between
this and the traditional DAE is that in the hidden layer we proposed
to project the input into two hidden representations, ¥, and ye. yn
is called neutral hidden and designed to capture neutral information
that may be contained in all emotional speech. The other one y, is
called emotional hidden, which encodes emotional information.

During training, two parameter sets need to be estimated. The
parameter set, 0, (W5, by, bln), associated with the projection to neu-
tral hidden is pre-learned by a traditional DAE using a large neutral
based corpus. The parameter set of emotional hidden representation,
Oc(We, be, b;), is estimated via pre-training and fine turning. It is
initialized with random values and pre-trained based on the follow-
ing steps:

e Encoding: project corrupted input to hidden representations

Yn = S(WnT + bn), (D
Ye = S(WeX + be). 2)

e Decoding: reconstruct inputs from hidden representations

Z0 = (W, yn + by), 3)
ze = s(Wye +b,). )

e Combine: make new reconstructed input with linearly
weighted combination

z=ax*xze+ (1 —a)* 2z, )
e Learning: minimize the loss function and update 6.
L(z,z) = |z — z|*. (6)

where s is sigmoid function (s(z) = (1 + exp(—z)) ). The loss
function L(z, z) is defined as the squared error between the new re-
constructed input and the original input. Stochastic gradient descent
algorithm is applied to minimize the cost. Note that here we only
update the parameter set 0. and fix the other parameter set 0,,.

After pre-training, a softmax layer is added on top of the emo-
tional hidden layer for classification. Parameters in 6, are fine-tuned
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based on the predictions and the corresponding ground truth. For
emotion recognition, the emotional hidden representations are used
as features with support vector machine (SVM) as the back-end clas-
sifier. Experimental results in [1] showed improved emotion recog-
nition performance using this modified DAE method, suggesting the
emotional hidden projection in this framework is a better feature rep-
resentation.

2.2. Proposed Method

Based on research in speech recognition, it is expected that there
may be significant differences between male and female speech, in-
cluding emotional speech. Therefore we investigate if modeling
gender information benefits speech emotion recognition. One way
to do this would be using the same above framework for male and
female speech separately, i.e., build gender dependent neutral and
emotion models. However, since the typical emotional speech data
sets are rather small, we expect that splitting the data this way will
result in too little data for training the emotion models. Therefore
in this study, we propose to model gender information by using gen-
der dependent neutral models, but shared emotion models, based on
the modified DAE framework described above. Additionally, when
training the gender specific neutral models, we propose to consider
the relationship between the two genders. The following describes
our method in details.

2.2.1. Gender Dependent Neutral DAEs

Assume we have non-emotional speech training utterances for fe-
male, zf, and male, x,,,. From these, the corrupted input sets, x5
and Z,,, are generated by adding Gaussian noise. To build gender
dependent DAESs, instead of simply estimating model parameters us-
ing the two sets separately, we propose to consider the relationship
between the male and female data. Figure 2 shows our proposed
method — we use the female model as an example here to explain the
method. Note that this DAE corresponds to the left part of Figure 1,
i.e., the neutral model.

[ i e i i Loss(zs, x5, KL(Yf, Ym))
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|
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Fig. 2. Proposed DAE for the female neutral model.

To train the female dependent DAE, we first encode female cor-
rupted instances zs to the hidden representation and reconstruct it as
follows:

yr = s(Way + bn), 7
25 = s(WIG7 + by). )

Here, we use the pre-learned parameter set 0, (the same for female
and male models) as the initial value instead of training from scratch.



To train the female model parameters, we consider male speech
information as well, and define two loss functions Lossi and Lossz
as follows:

Lossi(zs,2) = |25 — x4|* — B x KL(pllq), ©)
Lossa(zs,25) = |25 — x5* + 7% KL(pllq) (10

where 3 and ~y are hyper parameters, p and ¢ are calculated as fol-
lows:

s(Whzy, + bn), (11)
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where M and N represent the number of instances for female and
male sets. With p and g, K L(p||q) is defined as:

1< i 1—p;
KL(pla) = g 3 (mlog(() + (1= ps) xlog(1= 1), (13)
i—1 7 7

where S means the number of the hidden nodes.

There are two components in these loss functions(Equation 9
and 10). The first part is the standard squared loss function — it cal-
culates the reconstruction cost between the original input = ¢ and the
reconstructed zy. This is the same as the standard or the modified
DAE. The second term in the above loss functions considers infor-
mation from the other gender. p and g, as calculated in Equation 11
and 12, represent the average of the hidden representations over the
training set for female and male respectively. We introduce a dis-
tance function (Equation 13) for these two average representations,
based on KL-divergence: it is the average KL-divergence between
each of the corresponding hidden nodes for the two genders.

The two loss functions are based on two different considera-
tions: Loss1 (Equation 9) aims to increase K L(p||q), which means
increasing the difference between the two hidden representations,
i.e., forcing the models to learn differences between genders. Lossa
(Equation 10) tries to minimize K L(p||q) in order to make the DAEs
to encode some shared information in both genders. The motivation
behind these two is based on the assumption that female and male
speech may have shared information, as well as distinct gender spe-
cific information. Note that the added KL term in the loss function
compared to the standard squared loss can also be treated similarly
as a regularization term in many optimization problems.

During training, the stochastic gradient descent algorithm is ap-
plied to minimize the loss function and update parameters. Since we
use batch mode to train the DAE, when training the female models,
M is equal to the number of instances in each minibatch. N is the
total number of instances in the male set x,,. After training, two
groups of the estimated parameter sets based on different loss func-
tions can be obtained. O sm)r, (W(sim)Ly» brimyLys O fimyz,)
denote female or male parameter sets trained by using Lossi.
Of1m)La (Wisim)Las b(fim)LysO(fimyr,) are for DAEs learned
based on Lossa.

2.2.2. Emotional Hidden Representation and Emotion Recognition

For building the emotion model, we use the same modified DAE
framework. Different from the previous work, for projection to the
neutral hidden representation, we apply gender specific parameter
sets (different depending on the loss functions used) on inputs with
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the known gender label in the training set. Projection parameter sets
from input to the emotional hidden are initialized with randomized
value and iteratively estimated. Pre-training minimizes the squared
loss between the reconstructed z and the input, and fine-tuning up-
dates parameters for the emotional hidden projection to minimize the
emotion classification error.

After pre-training and fine-tuning, emotional hidden representa-
tions are used as new features for emotion recognition with standard
classifiers. Again, we use the same emotional hidden representation
for male and female data. This is meant to capture gender indepen-
dent but emotion specific information. During testing, we do not
need to know the gender label for the test instances because features
are generated by only passing instances into the emotional projec-
tion.

2.2.3. Combination

In the above, we mentioned using different loss functions will result
in different models. Here we propose a combination method on the
structure level to combine the different losses. Rather than projecting
the input to one neutral hidden representation in the modified DAE
framework, we project the input to two neutral hidden projections.
The parameter set for each projection is associated with the corre-
sponding loss function, 0, |y, and 0y, |f)L,- Given (| sy, and
O(m|1)Ls» two neutral reconstructed inputs zr,, and zr, can be cal-
culated as follows:

~ T !
2Ly = S(s(Wisim)L, T+ b(sm)n )Wisimyn, + 0(simyry)s (14)

~ T ’
2Ly = S(SWisim)La® + bisimyL2 )W (simyLa + b(simzo)- (15)
Then, we combine z;,, and 2y, linearly with equal weights to obtain
the neutral reconstructed input z,, as:

zn = 0.5 % 201 + 0.5 % zL2. (16)

Parameter training is similar to above, except now in pre-training we
use the combined z,. Estimation of z. is the same as before, via
pre-training and fine tuning.

3. EXPERIMENTS

3.1. Features

We use the static features extracted with openSMILE [22] as the
input signal in the DAE framework. There are 1,584 features in total,
as used in the INTERSPEECH 2010 Paralinguistic Challenge [23].
Since the feature values have very different ranges, we normalized
all the features to the range of O to 1 before using them as input
to the DAE. Details of the features can be found in [23]. Table 1
summarizies these features.

3.2. Data

The interactive Emotional Dyadic Motion Capture (USC IEMO-
CAP) database [24] is used in this study. This corpus has approxi-
mately 12 hours of audiovisual data, including video, speech, motion
capture of face, and text transcriptions. It has 10 professional actors
(5 male and 5 female) acting in two different scenarios: scripted play
and spontaneous dialog, in their dyadic interaction. Each interaction
is around 5 minutes long, and is segmented into sentences. These
sentences are labeled by at least 3 annotators. We use four emotion
categories in this study: angry, happy, sad and neutral. Note that we
merged Happy and Excited in the original annotation into one class:
happy. Only the utterances with the majority agreement are used in
the experiments. There are 5,531 utterances in this database.



Table 1. Acoustic feature sets: 38 low-level descriptors (LLD) and
21 functionals.

| Descriptors | Functionals |
PCM loudness Position max./min.
MEFCC [0-14] arith. mean, std. deviation

log Mel Freq. Band [0-7] skewness, kurtosis
LSP Frequency [0-7] lin. regression coeff. 1/2
FO lin. regression error Q/A

FO Envelope quartile 1/2/3
Voicing Prob. quartile range 2-1/3-2/3-1
Jitter local percentile 1/99

Jitter consec. frame pairs
Shimmer local

percentile range 99-1
up-level time 75/90

3.3. Experimental Setup

We conduct leave-one-speaker-out cross validation for the emotion
recognition experiments. Normalization of features is based on all
the training set, instead of a speaker-wised manner. To pre-train gen-
der independent 0,, in the DAE, we use the Wall Street Journal (WSJ)
corpus (about 78K instances) to train with the traditional DAE. The
learning rate is set to 0.01 and the number of training epochs is 30.
Each minibatch contains 1000 instances. The reason of using WSJ
corpus here, rather than the IEMOCAP data, is because we want
to train a general DAE to represent neutral speech. Then, to train
the gender dependent DAE parameter sets 6y, |5y, and O(m|f)L,»
we use 10 iterations with 0.01 as the learning rate. This is done
using the training set from the IEMOCAP data. The hyper param-
eters 3 and ~y are set as 0.01 and 0.1 respectively. After that, we
use O )L, and (., 5y, as parameters of the neutral projections

improved, using the two loss functions respectively, compared to the
previous modified DAE method. System combination on the struc-
ture level yields further gain. Our method has a significant improve-
ment compared with our previous work (p-value < 0.05 with one
tailed z-test) and passes the significance level of 0.01 compared with
the baseline static features. When KL cost is not used in the loss
function, there is a performance degradation compared to when it is
used in our proposed method, indicating the effectiveness of mod-
eling the relationship between the two genders. Table 3 shows the
accuracy for each emotion class. We notice that there is more im-
provement for the ‘neutral’ and ‘sad’ classes, and less for ‘angry’
and ‘happy’. This suggests we may need to build models taking into
account the valence or arousal dimension. Finally, we extended the
above gender dependent framework to speaker dependent ones. Us-
ing the same data set, our experimental results show similar perfor-
mance as when using gender dependent neutral models. This might
be because each speaker has very little data, limiting the potential
advantage of building speaker dependent models. We will continue
to investigate this in the future work.

Table 2. Emotion classification results (in %).

| System | UAR |
Static features 59.7
Previous modified DAE [1] 61.4
Loss 62.9
New DAE Losso 62.6
System combination | 63.1
No KL in Loss 62.2

Table 3. Accuracy in % for each emotion category.

in the modified DAE method. In the pre-training stage, the number System angry | happy | neutral | sad
of training iterations is set to 20 and the learning rate is 0.01. In i Static ffeatures 660 | 523 33.0 | 67.5
the fine-tuning stage, we use 12 iterations with 0.05 as the learning Previous modified DAE [1] 683 | 582 54.0 | 652
rate. The weight combination parameter « is 0.7, which means the Loss, 69.4 584 56.3 67.3
emotional reconstruction has more weight than the neutral one. For | New DAE Lossa 68.8 57.8 56.5 67.0
all the DAE models, a corruption level of 0.1 is used to obtain the System combination | 69.5 58.8 56.8 67.3

corrupted signal from the original features. The number of hidden
nodes is 800, the same as that used in previous work [1]. SVMs with
radial basis function (RBF) kernels are used as the classifier for the
new features from the hidden representation in the proposed DAE
method.

3.4. Experiment Results

Table 2 shows the emotion classification results based on the un-
weighted average recall (UAR), a metric that has been used as the
standard measurement in the INTERSPEECH Emotion Challenges.
This is the average of the results for each emotion class. For a com-
parison, the first two results in 2 are from systems using the origi-
nal static features and emotional hidden projection as features in the
previous modified DAE method [1]. The following rows show the
results with features extracted by using the gender dependent neu-
tral projection learned based on different loss functions, and system
combination. The last row shows the result using the new gender
dependent neutral projection as in our proposed method; however,
for the loss function, we do not include the KL cost, and thus it is
just a standard squared loss for each gender separately, without con-
sidering their relationship during DAE training.

From Table 2 we can see that features extracted based on our
proposed method can yield better results on UAR, 1.5% and 1.2%

4. CONCLUSION

In this paper, we proposed to consider gender information to model
neutral projection and better capture emotion specific features in the
DAE framework. When training gender dependent models, we use
KL-divergence between the hidden representations of the male and
female speakers as the additional cost in the objective function to
measure correlation between the two genders. Emotional projection
is trained under the modified DAE framework with gender depen-
dent DAEs used for neutral projection. Our experiments show that
using the new emotional projection as features yielded better system
performance, suggesting the benefit of modeling gender variability
for emotion recognition.
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